Information
-
Patent Grant
-
6302751
-
Patent Number
6,302,751
-
Date Filed
Monday, September 27, 199925 years ago
-
Date Issued
Tuesday, October 16, 200123 years ago
-
Inventors
-
Original Assignees
-
Examiners
- Basinger; Sherman
- Wright; Andrew
Agents
-
CPC
-
US Classifications
Field of Search
US
- 440 84
- 440 88
- 123 9017
-
International Classifications
-
Abstract
A small planing watercraft including a hull, a propulsion unit mounted on the hull and a high RPM—high output engine for driving the propulsion unit, wherein the engine includes at least one intake valve and an intake valve timing control system for advancing the opening and closing of the intake valve when the watercraft is operating below a predetermined speed corresponding to a velocity at which the watercraft transitions from non-planing to planing motion. The engine may also include a long air intake passage for low-speed operation and a short air intake passage for high-speed operation, with an air intake control valve in the short air intake passage that is closed when the watercraft is operating below the predetermined speed. The engine may also include an exhaust control valve for constricting the exhaust passage, and a system for at least partially closing the exhaust control valve when the watercraft is operating below the predetermined speed. The invention increases the lower RPM output of a high RPM—high output engine to enable faster transition of the watercraft between non-planing and planing operations. Engine intake air flows over the intake valve timing control to provide a cooling effect.
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention generally relates to driving engines for watercraft, and, more particularly, engines for small watercraft that plane across the surface of the water.
2. Description of Related Art
Small planing watercraft, sometimes referred to as “personal watercraft,” are typically configured with a bench seat that the driver and any passengers straddle while the driver grasps handlebars that are used to steer the watercraft. The engine is typically mounted in an engine compartment formed in a hull structure below a deck portion so that the output from the engine is transmitted directly, without a transmission, to a propulsion unit. At low engine RPM, and corresponding low velocity, the hull of the watercraft parts the water in what is referred to as a “non-planning” condition. As the engine speed and velocity of the watercraft increase, the watercraft bow rises until the watercraft crosses the so-called “hump” where the watercraft transitions from non-planing motion, where the hull splits the water, to planing motion where the hull skims over the surface of the water. Such small planing watercraft are typically equipped with high-speed, high-output engines which expel exhaust gases into the water at the stern of the watercraft and generally provide good mobility during planing motion. However, conventional high speed, high output watercraft engines have been found to produce insufficient power at lower engine speeds (RPM's) to enable the craft to move smoothly and quickly “over the hump” through the transition from non-planing to planing movement.
BRIEF SUMMARY OF THE INVENTION
The present invention addresses these and other drawbacks of conventional technology by providing a small planing watercraft with a high-RPM, high-output engine which can make a smooth transition from non-planing to planing movement. The watercraft includes a hull or shell, a propulsion unit arranged in the hull, and an engine arranged in an engine compartment in the hull for directly driving the propulsion unit. The engine includes an exhaust passage, at least one air intake valve, an air intake valve camshaft for opening and closing the air intake valve, and valve timing control means for advancing the normal closure of the air intake valve when the watercraft and engine are operating below a predetermined speed or RPM at which the watercraft transitions from non-planing motion to planing motion. The predetermined speed of the watercraft is directly related to a predetermined engine RPM.
The valve timing control means may include a toothed intake camshaft drive pulley mounted on the end of the intake valve camshaft and operatively connected (e.g., by a toothed belt) with the crankshaft for rotation therewith, and means for selectively rotating the pulley relative to the intake camshaft for advancing the closure of the air intake valve when the engine is operating below the predetermined speed. More particularly, the selective rotating means may include an inner shaft fixed on the end of the intake valve camshaft and having helical splines arranged on its outer surface. An annular sliding piston is slidably arranged around the inner shaft with helical splines on its inner surface for engaging the splines on outer surface of the inner shaft. The piston also has oppositely twisted helical splines on its outer surface for engaging similar splines inside an interior cylindrical opening of the pulley. All of the splines are arranged so as to rotate the pulley relative to the camshaft in response to axial translation of the annular piston.
The engine may also include a long air intake passage for low RPM operation and a short air intake passage for high-RPM operation, with an air intake control valve provided in the short air intake passage that includes means for closing the air intake control valve when the watercraft is operating below a predetermined speed. The engine may include an exhaust passage having an exhaust control valve for selectively constricting the exhaust passage by partially closing the exhaust control valve when the watercraft is operating below the predetermined speed.
BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS
Various embodiments of the invention will now be described with reference to the following drawings wherein the same reference numerals are used to refer to the same features in each of the figures.
FIG. 1
is a partial cutaway side elevational view of a small planing watercraft including the present invention;
FIG. 2
is a sectional view taken long line II—II in
FIG. 1
;
FIG. 3
is a top plan partial sectional view of the cylinder head of the engine shown in
FIGS. 1 and 2
;
FIG. 4
is an enlarged section view of the valve timing control apparatus;
FIG. 5
is a sectional view of a hydraulic pressure control apparatus for use with the valve timing control apparatus;
FIG. 6
is a graph showing the relationship between valve position and crank angle;
FIG. 7
is a graph showing the relationship between engine rpm, engine output, and water drag against the watercraft;
FIG. 8
is a partial sectional view of the engine compartment for another embodiment of the invention;
FIG. 9
is a transverse sectional view of the engine compartment of yet another embodiment of the invention; and
FIG. 10
is a sectional view of an exhaust system of yet another embodiment of the invention.
DETAILED DESCRIPTION OF THE INVENTION
A first embodiment of the present inventions will now be described with reference to
FIGS. 1-7
.
FIG. 1
is a side view of a small planing watercraft
1
which is operated by a rider (not shown) straddling a seat
2
while grasping the handlebars
3
in front of the seat. The watercraft
1
is supported by a hull or shell
6
including an upper deck
4
, lower hull
5
, and a bulkhead
7
which separates the engine compartment
8
shown in the cutaway portion of FIG.
1
. The engine
9
is mounted in the engine compartment
8
near the center of the for-and-aft length of the hull
6
. Engine compartment
8
is defined at least in part by upper deck walls
4
and the upper end of engine
9
extends between upper deck walls
4
, as shown in FIG.
2
.
A fuel tank
11
is mounted in front of the engine
9
and a crankshaft
10
extends aft of the engine toward a conventional jet-type propulsion apparatus
12
. Although each of the embodiments discussed below is described with respect to a jet-type propulsion apparatus, an outboard engine or other suitable propulsion apparatus may also be used. Forward and aft outside or fresh air intake ducts
13
and
14
are arranged near the transverse center of the watercraft
1
so as to draw air into the engine compartment
8
at location longitudinally spaced in front of and behind the engine
9
. The propulsion apparatus
12
includes an impeller (not shown) which rotates at the same speed as the crank shaft
10
in order to pump water through the jet outlet
12
a
to propel the watercraft. The jet outlet
12
a
is then rotated by the moving the handlebars
3
to steer the watercraft.
The engine
9
illustrated in the Figures is a water-cooled, twin-cylinder, DOHC-type internal combustion engine. As shown in
FIG. 3
, it has two intake valves for each cylinder that are operated by an intake valve camshaft
15
, and two exhaust valves for each cylinder (not shown) that are operated by an exhaust valve camshaft
16
. Each of the camshafts
15
and
16
are installed in the cylinder head
17
. The intake valve camshaft
15
is mounted on the port, or left, side of the engine
9
with one end connected to the charge (air and fuel) intake system
18
while the exhaust camshaft
16
is mounted to the starboard, or right, side and is connected to an exhaust manifold
19
.
As shown in
FIG. 2
, the intake system
18
includes a carburetor
21
connected by an intake duct
20
to the cylinder head
17
. An air intake silencer
22
is arranged upstream of the carburetor
21
on the port side of the watercraft I and includes an air intake opening
23
which draws air from inside the engine compartment
8
. Air that enters the forward air intake duct
13
exits the opening
13
a
flows upwardly past, and cools, the valve timing control apparatus
31
(discussed below) before entering the air intake opening
23
in the silencer. Similarly, air that enters the aft intake duct
14
exits opening
14
a
and flows upwardly past and cools the hydraulic pressure control apparatus
34
(also discussed below) enroute to the engine air opening
23
.
The exhaust manifold
19
is connected through an exhaust pipe
24
that leads from the cylinder head
17
to the water lock
25
shown in FIG.
1
. The water lock
25
expels the exhaust gases into the pump chamber of the propulsion apparatus
12
and then out through the exhaust gas outlet
19
a
. When the hull
6
is operating in a non-planing state, the water jet outlet
12
a
is submerged so that the exhaust gases are expelled underneath the surface of the water. When the hull
6
is operating in a planing state, the waterjet outlet
12
a
is positioned above the surface of the water so that the exhaust gases are expelled into the atmosphere.
As shown in
FIGS. 1-3
, a toothed belt drive apparatus
26
is arranged on the front side of the engine
9
that is connected to and transmits the rotation of the crank shaft
10
to the intake valve camshaft
15
and the exhaust valve camshaft
16
. Each of the crank shaft
10
, camshaft
15
and camshaft
16
includes a respective toothed pulley
27
,
28
, and
29
, which are engaged and are driven by a toothed belt
30
.
As best shown in
FIG. 3
, a valve timing control apparatus
31
is mounted on the front side of the intake valve camshaft
15
, while a flywheel/magneto
32
is mounted on the front side of the crankshaft
10
. As described in more detail below, the valve timing control apparatus
31
uses hydraulic pressure to adjust the timing phase of the intake valve camshaft
15
relative to the exhaust camshaft
16
, and hence the opening and closing interval of the intake valves relative to the crankshaft rotational angle.
As shown in
FIG. 3
, the valve timing control apparatus
31
includes a control or actuating unit
33
arranged on the front end of the intake valve camshaft
15
and a hydraulic pressure control apparatus
34
arranged at the rear end of the intake valve camshaft. As shown in
FIG. 4
, the control unit
33
includes a bolt
35
which secures an inner shaft
36
to the end of the intake valve camshaft
15
. An annular sliding actuating piston
37
slidably fits over the outside of the inner shaft
36
and inside an outer cylinder
38
of the intake valve camshaft pulley
27
which preferably is integrally formed as one piece with the pulley. An oil supply passage
39
is bored through the center of the attachment bolt
35
and on one end communicates with a second oil passage
40
and an engine lubricating oil pressure supply passage
47
formed in the intake valve camshaft
15
as shown in FIG.
3
. The opposite end of the oil passage
39
communicates with an oil pressure receiving chamber
41
on the front side of the cylinder
38
so that hydraulic pressure received in the oil pressure receiving chamber
41
will be applied against the face of the sliding piston
37
opposite the camshaft
15
.
The actuating piston
37
includes a primary piston
37
a
and a secondary piston
37
b
which are joined by bolts
37
c
and a small compression spring
37
d
. A larger compression coil spring
42
normally urges the sliding piston
37
away from the camshaft
15
. Helical splines
43
and
44
twisting in opposite directions are arranged on the inner and outer circumferential surfaces of the sliding piston
37
and mate with corresponding adjacent helical splines
45
and
46
on the outer circumference of the inner shaft
36
and the inner circumference of the cylinder
38
, respectively. The helical splines cause the intake valve camshaft
15
to rotate in an advance direction relative to the pulley
27
when the piston
37
is translated in the aft direction. Thus, increased hydraulic pressure in the oil chamber
41
urges the sliding piston
37
to the right in
FIG. 4
, or aft in the watercraft
1
, so as to cause the intake valve camshaft
15
to rotate forward in the same direction as it is rotating through a predetermined angle with respect to the pulley
27
.
FIG. 5
illustrates the structure of the pressure control apparatus
34
that selectively drives and releases the sliding piston
37
by opening and closing the engine oil passage
40
inside the intake valve camshaft
15
. The pressure control apparatus
34
includes a control valve
48
within a housing
50
which is secured to the aft end of the camshaft
15
, and a plunger
52
that slides freely inside the housing against a compression spring
51
.
FIG. 5
illustrates the plunger
52
in the normal pressure release position at which oil holes
50
a
and
52
a
are in communication so as to allow oil to flow out of the oil passage
40
in which pressurized engine lubricating oil is circulated.
The plunger
52
is selectively driven by a solenoid
49
including a housing
49
a
in which a coil
49
b
into which an armature rod
49
c
is inserted are located. A controller (not shown) senses engine speed (RPM) from the crankshaft
10
, camshaft
15
or camshaft
16
and switches the solenoid from an OFF state to an ON state by applying a current to the coil
49
b
while the engine speed is below a certain level. This, in turn, causes the rod
49
c
to move toward the left in
FIG. 5
, restricting or stopping the flow of oil between oil holes
50
a
and
52
a
and thereby permitting the pressure in passages
39
,
40
to be at a high level, and likewise in oil chamber
41
. The increased pressure in the oil pressure receiving chamber
41
urges the sliding piston
37
toward the right in
FIG. 4
against the force of the coil spring
42
.
As the piston
37
moves aft in the watercraft
1
, the helical splines
43
-
46
cause the intake valve camshaft
15
to rotate in a forward direction over a predetermined angle with respect to the pulley
27
which, in turn, advances the timing phase of intake camshaft
15
relative to the exhaust camshaft
16
. As discussed in more detail below, this timing change causes the air intake valves to close earlier and to open earlier relative to (overlap longer with) the exhaust valves. In contrast, when the solenoid
49
is in the OFF state at high engine speed above a predetermined RPM, the plunger
52
slides to the right in
FIG. 5
so that the engine lubricating oil inside the passage
40
flows through the oil holes
50
a
and
52
a
and into the valve chamber of the cylinder head
17
. The ensuing release of pressure in oil chamber
41
allows the intake camshaft
15
to return to its original position by means of spring
42
.
In the embodiment discussed above, the engine
9
uses lift-type valves for the intake and exhaust valves, and a valve timing which is a suitable for high-RPM, high-output engines.
FIG. 6
illustrates the positions of these valves versus crank angle with the exhaust valve positions shown in the left curve (left of the top dead center crank position) and the intake valve position shown in the two curves on the right (following the top dead center position). During high-speed planing motion of the watercraft at high engine RPM as depicted by the solid-line curves in
FIG. 6
, the exhaust and intake valves operate with minimal overlap at the top dead center crank position. However, when the engine
9
is operated at lower RPM (during low- to mid-speed, non-planing motion) the valve timing control apparatus
31
causes earlier closure of the intake valves and lengthens the overlap period as shown by the broken-line intake valve curve in FIG.
6
. This provides greater output of the engine at lower RPM's.
FIG. 7
illustrates engine output (in the broken-lines) and drag (in the solid
10
line) verses engine RPM (and watercraft velocity), for a typical watercraft
1
. The solid-line drag curve illustrates how below speed A, the watercraft
1
operates in a non-planing mode where the bow of the watercraft
1
parts the water as it advances, similar to cruising mode for a water displacement craft. As its speed increases to speed B, the watercraft hull
6
begins planing over the surface of the water. During the transition from non-planing motion below speed A, to planing motion at and above speed B, the bow of the watercraft
1
gradually rises out of the water and drag increases until a hump is crossed between A and B. If the engine power output during the transition from non-planing to planing motion is insufficient, then the watercraft will be unable to move through the transition zone and into the planing mode at speed B or will transition too slowly.
As illustrated by the broken lines in
FIG. 7
, engine output generally increases with increasing engine RPM. However, as depicted by the evenly-spaced broken lines in
FIG. 7
, low-speed engines typically provide higher torque and power output at lower engine RPM than high-speeds high output engines. Conversely, high-speed engines generally provide higher output at higher engine RPM, as depicted by the unevenly-spaced broken lines in FIG.
7
. Consequently, for engine RPMs below speed C, it is preferable to have an engine with low-speed engine output characteristics, while at speeds above speed C, it is preferable to have an engine with high-speed output characteristics.
Low-speed engine output characteristics can be obtained nevertheless from the high-RPM, high-output engine
9
by using the valve timing control apparatus
31
to advance the opening and closing time of the intake valves. Thus, engine speed C, where the low- and high-speed output engine lines cross, is the desired preselected RPM level at which the controller discussed above switches the solenoid
49
ON in order to enhance the low speed output of the engine. The solenoid
49
can also be switched ON at RPM level B when the watercraft
1
is moving through the transition zone from non-planing to planing motion. Thus, the high RPM high output engine
9
can be selectively controlled so as to produce sufficient output at lower engine speeds to move smoothly “over the hump” as the watercraft makes the transition from non-planing to planing operation.
Output of an engine of the type discussed is enhanced during low- and mid-speed operation by advancing the timing of the intake valves for several reasons. First, the timing change eliminates the blow-back of intake air into the combustion chamber following the intake stroke. Second, the longer exhaust valve overlap interval increases the exhaust pressure and internal exhaust gas recirculation (“EGR”) so as to reduce pumping losses when the pistons descend on the intake stroke. This latter effect is particularly important during non-planing operations when the exhaust outlet
19
a
is submerged underwater so as to increase the exhaust back pressure. The control apparatus
31
can also be set to exclude operation during certain periods, such as start-up or idling, in order to shorten the intake and exhaust valve overlap interval and improve engine performance during those periods.
FIG. 8
illustrates another embodiment of the invention related to an engine compartment
8
of a small planing watercraft
1
. In this embodiment, the valve timing control apparatus
31
is arranged on the intake valve camshaft
15
near the aft, or rear, side of the engine
9
relative to intake opening
23
. Consequently, when the engine is running, air enters the engine compartment
8
from the exit
19
a
of the rear aft air intake duct
14
and cools the timing control apparatus
31
and control unit
33
as it is drawn towards and into the air intake opening
23
of the air intake silencer
22
(not shown and FIG.
8
).
FIG. 8
, incidently, also illustrates a bilge pump apparatus
51
for removing water that collects at the bottom of the hull of the watercraft
1
.
FIG. 9
is a transverse sectional view of the engine compartment for another embodiment the engine block
9
is tilted laterally about its longitudinal axis so the cylinder head
17
is located towards one side of the engine fly wheel
32
and of a small planing watercraft
1
. In this embodiment, the cylinder head
17
of the engine
9
is connected to the air intake silencer
22
by an intake manifold
61
which has a relatively short intake passage
62
for high-speed operations, and a relatively long intake passage
63
for low speed operations. In particular, the intake manifold
61
includes a substantially straight intake passage
62
for high-speed operations, and a longer S-shaped, or otherwise curved intake passage
63
for low-speed operations. Each of the intake passages
62
and
63
is connected at the engine at an area
65
where a fuel injector
64
sprays fuel into the intake air. As seen in
FIG. 9
, the tilted engine configuration provides ample space for the intake passages
62
and
63
on that side of the engine located further away from the wall of upper deck
4
without requiring enlargement of the engine compartment to accommodate the intake passages.
A throttle valve
66
is arranged in the low-speed intake passage
63
, upstream from the connecting area
65
. A similar throttle valve (not shown) is arranged in the high-speed intake passage
61
along with an air intake control valve
67
installed upstream of the throttle valve. The throttle valves
66
are opened and closed by a linkage to the throttle grip mounted on the handlebars
3
as shown in FIG.
1
. The air intake control valve
67
is operated by an air intake valve controller (not shown) which senses the engine RPM from the crankshaft
10
, camshaft
15
, camshaft
16
, or the engine ignition system. When the engine RPM is lower than that shown at C in
FIG. 7
, the air intake controller closes the air intake control valve
67
. Conversely, the air intake control valve
67
is opened when the engine RPM is higher than speed C, indicating that the watercraft
1
is planing. During high-speed planing motion above speed C, the engine
9
will draw large volumes of air through the straight air intake passage
62
. When the engine speed falls below the planing transition speed B, engine output is improved by taking advantage of the well known air intake inertia effect available in the longer air intake passage
63
and directing intake air through the longer passage.
FIG. 10
illustrates an embodiment of an exhaust system for a small planing watercraft
1
including a water-cooled, four-cycle, three-cylinder engine
71
having a cylinder head
72
fitted with cylinder bores
74
and spark plugs
75
. In
FIG. 10
, the port side of the cylinder head
72
is attached to the exhaust manifold
73
while the air intake system is arranged on the starboard side of the cylinder head. The exhaust manifold
73
merges the exhaust passages from each of the three cylinders
74
and leads to an exhaust pipe
76
. The exhaust pipe
76
then extends along the starboard side of the watercraft
1
to the water lock
25
shown in
FIG. 1. A
coolant passage W is formed by a double-walled structure of the exhaust manifold
73
and extends from the coolant outlet
71
to area G midway down the exhaust pipe
76
. After cooling the exhaust manifold
73
and exhaust pipe
76
, the water in the coolant passage W is expelled into the area G, or through a water drain hose
77
leading outside the hull of the watercraft.
A catalyst
78
and exhaust control valve
79
are installed in the double-walled area of the exhaust pipe
76
. Multiple exhaust control valves
79
may also be installed in the exhaust manifold
73
for each of the cylinders, as shown by the double-dashed lines in FIG.
10
. The exhaust control valve(s)
79
is/are linked by a drive mechanism, including a pulley
79
a
and a cable
79
b
, to an exhaust valve controller (not shown). When the exhaust control valve
79
is partially closed, pressure waves propagating through the exhaust passage G are reflected off of the valve and back into the combustion chamber during the valve overlap interval. The exhaust valve controller partially closes the exhaust control valve
79
when the engine speed is less than speed C in
FIG. 7
, and opens the control valve
79
when the speed is higher than speed C. Consequently, when the watercraft is making the transition from non-planing to planing motion between speeds B and C, the exhaust valve
76
is closed, except for a small gap, until the engine reaches speed C when the valve is opened, or partially opened.
In this embodiment, when the engine rpm is high enough that the watercraft
1
begins planing, the exhaust control valve
79
is opened so as to lower the exhaust back pressure and obtain full high RPM power output. Conversely, when the engine speed is low and the watercraft
1
is operating in a non-planing or transition condition, the exhaust passage G is restricted so as to reflect the exhaust pressure waves and boost low RPM engine power as the watercraft
1
moves through the transition zone.
The invention described above offers numerous advantages over conventional small planing watercraft technology. For example, advancing the closure of the intake valves increases engine output at low speed by eliminating blow-back at the end of the air intake stroke. Similarly, lengthening the overlap interval between the intake and exhaust valves increases the exhaust pressure and decreases the pumping loss during intake piston descent. Using an intake system with separate air intake passages for low- and high-speed operations takes advantage of the inertial effect of air moving through the longer passage to boost engine output under low speed conditions. Constriction of the exhaust passage by one or more exhaust control valves utilizes exhaust gas pressure waves in order to boost engine output at low speeds. Consequently, the high-speed, high output engine
9
has more power at lower RPM to move the watercraft smoothly and quickly over the hump in making the transition from non-planing to planing motion. Furthermore, by arranging the valve timing control apparatus between the opening of the main air intake duct of the hull and the engine air intake opening, the flow of air inside the engine compartment cools the valve timing control apparatus and improves its life. Likewise, the oil pressure control
34
is cooled by air moving over the control from aft air duct
14
.
While the technology discussed above has been discussed with respect to various preferred embodiments and configurations, this description is merely illustrative of some of the many useful forms in which the invention might be reduced to practice by one of ordinary skill in the art. The scope of the protection for the invention is defined by the subject matter of the following claims when they are properly construed and interpreted in light of the description provided above.
Claims
- 1. A small planing watercraft, comprising:a hull extending longitudinally in fore and aft directions configured for planing above a predetermined watercraft speed; a propulsion unit carried by the hull; a high RPM-high output reciprocating piston engine located in an enclosed engine compartment in the hull and drivingly connected to the propulsion unit; said engine including an air intake system including an air intake opening; said engine also including at least one intake valve that opens and closes in timed relationship with engine rotation during engine operation; an intake valve timing control device located adjacent one end of the engine longitudinally spaced from said intake opening and configured and arranged to advance the closure of the intake valve relative to engine rotation when the watercraft is operating below a predetermined speed to thereby boost lower RPM output of the engine; and an outside air intake duct having an exit opening located in the engine compartment longitudinally spaced towards a side of the intake valve timing control device that is opposite the side thereof toward which the engine intake opening is located, whereby intake air is caused to flow over the valve timing control device enroute to the engine air intake opening during engine operation.
- 2. The small planing watercraft recited in claim 1, wherein said predetermined speed is an engine RPM corresponding to a watercraft velocity at which the watercraft transitions from a non-planing to a planing condition.
- 3. The small planing watercraft recited in claim 2 wherein said engine includes an intake valve camshaft for synchronously opening and closing said intake valve; and said valve timing control device includes:a pulley mounted on and drivingly connected with the intake camshaft, and operatively connected to and for rotation with a crankshaft on the engine; and a device responsive to engine speed arranged to rotate the pulley relative to the intake valve camshaft to thereby vary the relative driving positions between the pulley and the camshaft.
- 4. The small planing watercraft recited in claim 3 wherein said device responsive to engine speed includes:inner pulley splines on an interior annular surface of the pulley; an inner shaft fixed on the end of the intake valve camshaft and having helical splines arranged on an outer circumferential surface thereof; said splines on said inner pulley and said inner shaft twisting in opposite directions; an annular piston, slidably arranged over the inner shaft, and having inner helical splines on an inner annular surface of the piston engaging the splines on the outer surface of the inner shaft, said piston also having helical splines on an outer circumferential surface mating with the inner pulley splines; said splines collectively being configured to rotate the rotational position of the pulley relative to the camshaft in response to translation of the piston relative to the inner shaft.
- 5. The small planing watercraft recited in claim 4, further comprising an engine speed responsive hydraulic system including a pressurized engine lubricating oil supply conduit in communication with an oil pressure chamber on one side of said piston and a selective oil pressure control device arranged to selectively supply pressurized engine lubricating oil to said oil pressure chamber via said supply conduit to cause translation of the piston relative to the inner shaft in response to engine speed.
- 6. The small planing watercraft as recited in claim 1, wherein the exit opening of the air intake duct is located below the intake valve timing control device, whereby the intake is caused to flow upwardly and over the intake valve timing control device enroute to the engine air intake opening during engine operation.
- 7. A small planing watercraft, comprising:a hull extending longitudinally in fore and aft directions configured for planing above a predetermined watercraft speed; a propulsion unit carried by the hull; a high RPM—high output reciprocating piston engine for driving the propulsion unit located in an enclosed engine compartment in the hull; said engine including an air intake system including an air intake opening; said engine also including at least one intake valve and one exhaust valve that open and close in timed relationship with each other and with engine rotation during engine operation; and an intake valve timing control device located adjacent one end of the engine longitudinally spaced from said intake opening and configured and arranged to increase the overlap of the intake and exhaust valves opening when the engine is operating below a predetermined engine speed to thereby boost the low RPM output of the engine; and an outside air intake duct having an exit opening located in the engine compartment longitudinally spaced towards a side of the intake valve timing control device that is opposite the side thereof toward which the engine intake opening is located, whereby intake air is caused to flow over the valve timing control device enroute to the engine air intake opening during engine operation.
- 8. The small planing watercraft recited in claim 6, wherein said predetermined engine speed is an engine RPM corresponding to a watercraft velocity at which the watercraft transitions from non-planing motion to planing motion.
- 9. The small planing watercraft as recited in claim 7, wherein the exit opening of the air intake duct is located below the intake valve timing control device, whereby the intake is caused to flow upwardly and over the intake valve timing control device enroute to the engine air intake opening during engine operation.
- 10. A small planing watercraft, comprising:a hull extending longitudinally in for and aft directions configured for planing above a predetermined watercraft speed; a propulsion unit arranged on the hull; a high RPM-high output engine located in an enclosed engine compartment and directly connected to and driving the propulsion unit, said engine including at least one intake valve and an intake valve camshaft for opening and closing said intake valve, said engine also including an exhaust conduit; said engine including an air intake system including an air intake opening; a drive pulley drivingly connected to the intake camshaft and operatively engaged for rotation with a crankshaft on the engine; and an intake valve timing control device associated with the pulley that rotates the pulley relative to the intake valve camshaft and advances the closure of the air intake valve relative to engine rotation when the engine is operating below a predetermined engine speed at which the watercraft transitions from non-planing operation to planing operation to thereby boost engine output at RPM's below said predetermined engine speed; and an outside air intake duct having an exit opening located in the engine compartment spaced towards one side of the intake valve timing device that is opposite the side thereof toward which the engine intake opening is located, whereby intake air is caused to flow upwardly and over the valve timing control device enroute to the engine air intake opening during engine operation.
- 11. The small planing watercraft recited in claim 10, further comprising:said engine having a cylinder head at its upper end; a long air intake passage for use under low-speed engine operating conditions and a short air intake passage shorter than said long air intake passage for use under high-speed engine operating conditions, said long air intake passage and said short air intake passage being separate passages and further being connected to the engine at an upper side surface of the cylinder head; an air intake control valve arranged in the short air intake passage; and a device for selectively closing the air intake control valve when the engine is operating below said predetermined speed and for opening said air intake control valve when the engine is operating above said predetermined speed.
- 12. The small planing watercraft recited in claim 11, further comprisingan exhaust control valve selectively operable to constrict the exhaust conduit; and an exhaust control valve actuator operable to at least partially close the exhaust control valve when the engine is operating below said predetermined speed to thereby boost the lower RPM output of the engine.
- 13. The small planing watercraft recited in claim 12 wherein said rotating means includes:inner pulley splines on an interior annular surface of the pulley; an inner shaft fixed on the end of the intake valve camshaft and having helical splines arranged on an outer circumferential surface thereof; said splines on said inner pulley and said inner shaft twisting in opposite directions; an annular piston, slidably arranged over the inner shaft, and having inner helical splines on an inner annular surface of the piston engaging the splines on the outer surface of the inner shaft, said piston also having helical splines on an outer circumferential surface mating with the inner pulley splines; said splines collectively being configured to rotate the rotational position of the pulley relative to the camshaft in response to translation of the piston relative to the inner shaft.
- 14. The small planing watercraft recited in claim 11 wherein said timing control device includes:said drive pulley including inner helical splines within a cylindrical opening in the pulley; an inner shaft fixed on an end of the intake camshaft and having helical splines arranged on an outer surface thereof; an annular sliding piston slidably fitted over the inner shaft and having helical splines on its inner surface for engaging the splines on the outer surface of the inner shaft, said piston also having helical splines on an outer surface thereof for engaging said inner pulley splines inside the drive pulley; said splines collectively being arranged to rotate the drive pulley relative to the intake camshaft in response to translation of the annular piston.
- 15. The small planing watercraft recited in claim 10, further comprising:an exhaust control valve selectively operable to constrict the exhaust conduit; and an exhaust control valve actuator operable to at least partially close the exhaust control valve when the engine is operating below said predetermined speed to thereby boost the lower RPM output of the engine.
- 16. The small planing watercraft recited in claim 15 wherein said timing control device includes:inner pulley splines on an interior annular surface of the pulley; an inner shaft fixed on the end of the intake valve camshaft and having helical splines arranged on an outer circumferential surface thereof; said splines on said inner pulley and said inner shaft twisting in opposite directions; an annular piston, slidably arranged over the inner shaft, and having inner helical splines on an inner annular surface of the piston engaging the splines on the outer surface of the inner shaft, said piston also having helical splines on an outer circumferential surface mating with the inner pulley splines; said splines collectively being configured to rotate the rotational position of the pulley relative to the camshaft in response to translation of the piston relative to the inner shaft.
- 17. The small planing watercraft as recited in claim 10, wherein the exit opening of the air intake duct is located below the intake valve timing control device, whereby the intake is caused to flow upwardly and over the intake valve timing control device enroute to the engine air intake opening during engine operation.
US Referenced Citations (10)