The present disclosure relates to engine assemblies for vehicles including an integral cylinder head and liner assembly and a polymeric composite housing and methods of manufacturing the engine assemblies.
This section provides background information related to the present disclosure which is not necessarily prior art.
Traditionally, engine components for automotive applications have been made of metals, such as steel and iron. Metals components are robust, typically having good ductility, durability, strength and impact resistance. While metals have performed as acceptable engine components, they have a distinct disadvantage in being heavy and reducing gravimetric efficiency, performance and power of a vehicle thereby reducing fuel economy of the vehicle.
Weight reduction for increased fuel economy in vehicles has spurred the use of various lightweight metal components, such as aluminum and magnesium alloys as well as use of light-weight reinforced composite materials. While use of such lightweight materials can serve to reduce overall weight and generally may improve fuel efficiency, issues can arise when using such materials in an engine assembly due to high operating temperatures associated with the engine assembly. For example, the lightweight metal components can also have relatively high linear coefficients of thermal expansion, as compared to traditional steel or ceramic materials. In engine assemblies, the use of such lightweight metals can cause uneven thermal expansion under certain thermal operating conditions relative to adjacent components having lower linear coefficients of thermal expansion, like steel or ceramic materials, resulting in separation of components and decreased performance. Additionally, lightweight reinforced composite materials may have strength limitations, such as diminished tensile strength, and they can degrade after continuous exposure to high temperatures. Thus, lightweight engine assemblies having increased durability under high temperature operating conditions are needed to further improve efficiency of operation and fuel economy.
This section provides a general summary of the disclosure, and is not a comprehensive disclosure of its full scope or all of its features.
In certain aspects, the present disclosure provides an engine assembly for a vehicle. The engine assembly may comprise a plurality of metal liners each defining a an open void cylindrical region for each receiving a piston, a metal cylinder head integrally joined to the plurality of metal liners, wherein the metal cylinder head is integrally joined to the plurality of metal liners as a single component or the metal cylinder head and the plurality of metal liners are separate components each respectively integrally joined by fasteners, threading present on the metal cylinder head and metal liners, an adhesive, and/or a weld, and a polymeric composite housing disposed around at least a portion of an exterior surface of the metal liners and adjacent to the metal cylinder head. The polymeric composite housing may comprises a polymer and a plurality of reinforcing fibers and at least one of: a plurality of microchannels for receiving a fluid for heating and/or cooling the engine assembly; or at least one wire for heating the engine assembly.
In other aspects, the present disclosure provides a method for manufacturing an engine assembly. The method may comprise arranging an assembly in a mold. The assembly comprises a plurality of metal liners each defining an open void cylindrical region for each receiving a piston and a metal cylinder head integrally joined to the plurality of metal liners. The method may further comprise arranging a component precursor in the mold adjacent to at least a portion of the assembly, wherein the component precursor forms a polymeric composite housing disposed around at least a portion of an exterior surface of the metal liners and adjacent to the metal cylinder head. The polymeric composite housing may comprises a polymer and a plurality reinforcing fibers. The method may further comprise introducing a resin into the mold and curing the resin to form the polymeric composite housing.
Further areas of applicability will become apparent from the description provided herein. The description and specific examples in this summary are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustrative purposes only of selected embodiments and not all possible implementations, and are not intended to limit the scope of the present disclosure.
Corresponding reference numerals indicate corresponding parts throughout the several views of the drawings.
Example embodiments will now be described more fully with reference to the accompanying drawings.
Example embodiments are provided so that this disclosure will be thorough, and will fully convey the scope to those who are skilled in the art. Numerous specific details are set forth such as examples of specific compositions, components, devices, and methods, to provide a thorough understanding of embodiments of the present disclosure. It will be apparent to those skilled in the art that specific details need not be employed, that example embodiments may be embodied in many different forms and that neither should be construed to limit the scope of the disclosure. In some example embodiments, well-known processes, well-known device structures, and well-known technologies are not described in detail.
The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting. As used herein, the singular forms “a,” “an,” and “the” may be intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms “comprises,” “comprising,” “including,” and “having,” are inclusive and therefore specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. The method steps, processes, and operations described herein are not to be construed as necessarily requiring their performance in the particular order discussed or illustrated, unless specifically identified as an order of performance. It is also to be understood that additional or alternative steps may be employed.
When an element or layer is referred to as being “on,” “engaged to,” “connected to,” “attached to” or “coupled to” another element or layer, it may be directly on, engaged, connected, attached or coupled to the other element or layer, or intervening elements or layers may be present. In contrast, when an element is referred to as being “directly on,” “directly engaged to,” “directly connected to,” “directly attached to,” or “directly coupled to” another element or layer, there may be no intervening elements or layers present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., “between” versus “directly between,” “adjacent” versus “directly adjacent,” and the like). As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
Although the terms first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms may be only used to distinguish one element, component, region, layer or section from another region, layer or section. Terms such as “first,” “second,” and other numerical terms when used herein do not imply a sequence or order unless clearly indicated by the context. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the example embodiments.
Spatially relative terms, such as “inner,” “outer,” “beneath,” “below,” “lower,” “above,” “upper,” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. Spatially relative terms may be intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the example term “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
It should be understood for any recitation of a method, composition, device, or system that “comprises” certain steps, ingredients, or features, that in certain alternative variations, it is also contemplated that such a method, composition, device, or system may also “consist essentially of” the enumerated steps, ingredients, or features, so that any other steps, ingredients, or features that would materially alter the basic and novel characteristics of the invention are excluded therefrom.
Throughout this disclosure, the numerical values represent approximate measures or limits to ranges to encompass minor deviations from the given values and embodiments having about the value mentioned as well as those having exactly the value mentioned. Other than in the working examples provided at the end of the detailed description, all numerical values of parameters (e.g., of quantities or conditions) in this specification, including the appended claims, are to be understood as being modified in all instances by the term “about” whether or not “about” actually appears before the numerical value. “About” indicates that the stated numerical value allows some slight imprecision (with some approach to exactness in the value; approximately or reasonably close to the value; nearly). If the imprecision provided by “about” is not otherwise understood in the art with this ordinary meaning, then “about” as used herein indicates at least variations that may arise from ordinary methods of measuring and using such parameters.
In addition, disclosure of ranges includes disclosure of all values and further divided ranges within the entire range, including endpoints and sub-ranges given for the ranges.
In a vehicle, such as an automobile, an engine is a power source that produces torque for propulsion. The engine is an assembly of parts, including cylinder liners, pistons, crankshafts, combustion chambers, and the like. In a four stroke internal combustion engine each piston has an intake stroke, a compression stroke, a power stroke, and an exhaust stroke. During the intake stroke, a piston moves downward and an inlet valve is opened to permit a gaseous air mixture to fill a combustion chamber. During the compression stroke, intake and exhaust valves are closed and the piston moves upward to compress the gaseous air mixture. During the power stroke, the gaseous air mixture in the combustion chamber is ignited by a spark plug and the rapidly expanding combustion gases drive the piston downward. During the exhaust stroke, the exhaust valve is opened and the piston moves upward to discharge the combustion gases (exhaust gases). Overall, during internal combustion, the engine components may be subjected to varying amounts of stresses as well as varying temperatures due to the exothermic combustion reactions occurring in the engine block.
As discussed above, as weight of engine components increases, power, fuel economy, and efficiency may decrease. Thus, it is desirable to include various lightweight components, such as lightweight metals and lightweight composite materials, in engine assemblies instead of the traditional steel and/or iron components to decrease weight of the engine but also to maintain structural integrity of the engine.
Thus, engine assemblies for use in vehicle assemblies are provided herein which include a combination of components formed of lightweight materials (e.g., polymeric composite materials) and traditional materials. Advantageously, such engine assemblies also may result in an improvement in noise, vibration and harshness. While the engine assemblies described herein are particularly suitable for use in components of an automobile, they may also be used in a variety of other vehicles. Non-limiting examples of vehicles that can be manufactured by the current technology include automobiles, tractors, buses, motorcycles, boats, mobile homes, campers, aircrafts (manned and unmanned), and tanks.
In particular, engine assemblies including an integral cylinder head and liner assembly and a polymeric composite material are provided herein. For example, as best shown in
The engine assembly 100 further includes a cylinder head 13 integrally joined to the plurality of liners 2, 2a, 2b. The cylinder head 13 has a fifth terminal surface 14 and an opposing sixth terminal surface 15. The cylinder head 13 may be any suitable material, such as metal (e.g. steel, iron, magnesium alloy, aluminum alloy, metal composite), ceramic (e.g., alumina, silicon carbide, ceramic composite) or a polymeric composite material as described herein. In certain variations, the cylinder head 13 is a metal material. Preferably, the cylinder head 13 and the plurality of liners 2, 2a, 2b are the same material (e.g., both metal, both ceramic) and/or materials that are compatible for joining. As shown in
Additionally or alternatively, the engine assembly 1 can further include a plate 35 integrally joined between the cylinder head 13 and the plurality of liners 2, 2a, 2b, as shown as shown in engine assembly 120 in
The engine assembly 1 also includes a housing 8 disposed around at least a portion of the exterior surfaces 4, 4a, 4b of the plurality of liners 2, 2a, 2b. The housing 8 may also be adjacent to the second terminal surfaces 6, 6a, 6b of the plurality of liners 2, 2a, 2b. The housing 8 has an interior surface 9, an opposing exterior surface 10, a third terminal surface 11, and an opposing fourth terminal surface 12. The housing 8 may be a lightweight metal (e.g., aluminum alloy, magnesium alloy), a ceramic material (e.g., alumina, silicon carbide) or a polymeric composite material. A layer of polymeric composite (e.g., comprising discontinuous fibers) (not shown) may also be present between the exterior surfaces 4, 4a, 4b of the plurality of liners 2, 2a, 2b and the housing 8. The cylinder head 13, housing 8 and/or plurality of liners 2, 2a, 2b may further be coupled together by any suitable fasteners (e.g., bolts) and/or adhesive or sealant. The fasteners may comprise any suitable material, such as, but not limited to, metal, polymeric composites and combinations thereof.
In various embodiments, as shown in
In certain aspects, the housing 8 is a polymeric composite material. In such instances, the housing 8 may comprise a suitable polymer and plurality of suitable reinforcing fibers. Examples of suitable polymers include, but are not limited to a thermoset resin, a thermoplastic resin, elastomer and combination thereof. Preferable polymers include, but are not limited to epoxies, phenolics, vinylesters, bismaleimides, polyether ether ketone (PEEK), polyamides, polyimides and polyamideimides. Examples of suitable reinforcing fibers include, but are not limited to carbon fibers, glass fibers, aramid fibers, polyethylene fibers, organic fibers, metallic fibers, and combinations thereof. In particular, the reinforcing fibers are glass fibers and/or carbon fibers. The reinforcing fibers may be continuous fibers or discontinuous fibers. In particular, the reinforcing fibers are continuous fibers. Advantageously, the housing 8 comprising a polymeric composite material as described herein may have a compression strength of about 100 MPa to about 2000 MPa, about 500 MPa to about 1000 MPa or about 1000 MPa to about 1500 MPa.
Polymeric composites can be formed by using strips of the composite precursor material, such as a fiber-based material (e.g., cloth or graphite tape). The composite may be formed with one or more layers, where each layer can be formed from contacting and/or overlapping strips of the fiber-based material.
The fiber-based substrate material (e.g., reinforcing fibers) may also comprise a resin (e.g., a polymer). The resin can be solidified (e.g., cured or reacted) and thus can serve to bond single or multiple layers together in the polymeric composite. Various methods are typically employed for introducing resin to impregnated fiber-based substrate composite material systems: wet winding (or layup), pre-impregnating (referred to as “pre-preg”), and resin transfer molding. For wet winding, a dry fiber reinforcement material can be wetted with the resin as it is used, usually by submersion through a bath. For pre-impregnating (pre-preg), the resin is wetted into the fiber-based material in advance, and usually includes a step of partially curing the resin to have a viscous or tacky consistency (also known as a B-stage partial cure), and then winding up the pre-preg fiber-based material for later use. Pre-preg composite material systems tend to use thermoset resin systems, which can be cured or reacted by elevated temperatures with cure or reaction times ranging from about 1 minute to about 2 hours (depending on the cure or reaction temperatures). However, some pre-preg materials may employ resins that cure or react with actinic radiation (e.g., ultraviolet radiation (UV)). For resin transfer molding, dry fiber reinforcement material may be placed into a mold and resin may be infused into the mold under pressure (e.g., about 10 psi to about 2000 psi). Injection molding techniques known in the art may also be used to introduce resin into the reinforcement material, particularly where the reinforcement material comprise discontinuous fibers. For example, a precursor comprising a resin and the reinforcement material may be injected or infused into a defined space or mold followed by solidification of the precursor to form the polymeric composite material. The term “injection molding” also includes reaction injection molding using at thermoset resin.
In certain other aspects, the present teachings also contemplate an attaching step where a reinforcement material is applied, for example, via filament winding, braiding or weaving near, within, and/or over a work surface (e.g., exterior surfaces 4, 4a, 4b). The method may optionally comprise applying or introducing an uncured or unreacted resin composition into or onto the fiber-based reinforcement material. By applying, it is meant that the uncured or unreacted resin composition is wetted out onto the fiber-based material and thus may be coated on a surface of the fiber-based material or imbibed/impregnated into the reinforcement fiber-based material (for example, into the pores or openings within the reinforcement fiber-based material). After the resin is introduced to the regions having the reinforcement material, followed by solidifying (e.g., curing or reacting) to form the polymeric composite. Pre-preg fiber-based material may be applied via filament winding, braiding or weaving as well.
In order to heat and/or cool the engine assembly 100, the housing 8 (e.g., polymeric composite) can further include a plurality of microchannels 25, as shown for example in
The microchannels 25 may have a substantially round cross-section. As understood herein, “substantially round” may include circular and oval cross-sections and the dimensions of the cross-section may deviate in some aspects. The microchannels 25 may have a diameter of less than about 8,000 μm. Additionally or alternatively, the microchannels 25 have a diameter of about 0.1 μm to about 8,000 μm, 0.1 μm to about 5,000 μm, 0.1 μm to about 1,000 μm, about 1 μm to about 500 μm or about 1 μm to about 200 μm. Additionally or alternatively, the microchannels 25 may have a substantially rectangular cross-section. As understood herein, “substantially rectangular” may include square cross-sections and the dimensions of the cross-section may deviate in some aspects. Preferably, at least a portion of the microchannels 25 are interconnected, which may prevent blockages. The microchannels 25 may be oriented in any suitable direction, for example, axially, radially, spiral, branched, intersecting, criss-crossing and combinations thereof.
In certain other aspects, the present teaching also contemplates a process of using sacrificial fibers to form the microchannels 25 in the polymeric composite (e.g., housing 8). As shown in
Following incorporation of the sacrificial fibers 203, a resin 204 is infused into the composite woven preform 200, and the composite woven preform 200 is solidified (e.g., reacted or cured) under suitable conditions, as shown in
Additionally or alternatively, it is contemplated herein that varying dimensions and configurations of sacrificial fibers may incorporated into the reinforcing fibers to form other channels or void spaces. For example, further sacrificial fibers may be incorporated into the reinforcing fibers to form supply channels for the microchannels described herein.
In other variations, a composite precursor material may be injection molded or otherwise applied to the opposing exterior surfaces 4, 4a, 4b of the plurality of liners 2, 2a, 2b, which may be followed by solidifying (e.g., curing or reacting) to form the housing 8.
Additionally or alternatively, the polymeric composite (e.g., housing 8) may include a plurality of microspheres (not shown) for improved heat transfer. The microspheres may be ceramic or glass, and optionally, may be coated with a metal, ceramic and/or nanoparticles. Preferably, the coating has a high thermal conductivity, e.g., aluminum, copper, tin and the like. The microspheres may have a diameter of less than about 1,000 μm. Additionally or alternatively, the microspheres have a diameter of about 0.1 μm to about 1,000 μm, about 1 μm to about 500 μm or about 1 μm to about 200 μm.
Additionally or alternatively, the polymeric composite (e.g., housing 8) may include at least one wire for heating the engine assembly. For example, as shown in
In a particular embodiment, the polymeric composite housing comprises one or more of: (i) a plurality of microchannels as described herein; (ii) at least one wire as described herein; and (iii) a plurality of microspheres as described herein. Additionally or alternatively, the polymeric composite housing comprises two or more of (i), (ii) and (iii) (e.g., (i) and (ii), (i) and (iii), (ii) and (iii)). Additionally or alternatively, the polymeric composite housing comprises (i), (ii) and (iii).
Referring back to
The open void cylindrical regions 7, 7a, 7b defined by the plurality of liners 2, 2a, 2b may each receive a piston (not shown). Each piston may be connected to a crankshaft via a connecting rod. The piston, connecting rod and crankshaft may be any suitable material, e.g., metal, ceramic, polymeric composite, and combinations thereof. For example, as shown in
As will be appreciated by those of skill in the art, the engine assembly 100 shown in
Referring back to
In other variations, polymeric composites used herein for the housing 8, and/or the polymeric composite layer 26 may be made by any other suitable methods known in the art, e.g., pultrusion, reaction injection molding, injection molding, compression molding, prepreg molding (in autoclave or as compression molding), resin transfer molding, and vacuum assisted resin transfer molding. Further, fiber precursors may be made by any other suitable methods known in the art, e.g., braiding, weaving, stitching, knitting, prepregging, hand-layup and robotic or hand placement of tows.
In various aspects, as shown in
In other variations, it is further contemplated that one or more of the engine assembly components described herein include one or more mechanical interlock features for coupling together the various vehicle components. For example, complementary protruding flanges, grooves, channels, locking wings of differing shapes could be used as mechanical interlock features. In particular, as shown in
In other particular embodiments, methods of manufacturing the engine assemblies described herein are provided. The method may comprise arranging an assembly in a mold. The assembly may comprise a plurality of metal liners as described herein each defining an open void cylindrical region for each receiving a piston and a cylinder head as described herein integrally joined to the plurality of liners. In particular, the cylinder head and plurality of liners may be metal. The method may further comprise arranging a component precursor in the mold adjacent to at least a portion of the assembly, wherein the component precursor forms a polymeric composite housing as described herein disposed around at least a portion of an exterior surface of the metal liners and adjacent to the cylinder head. The component precursor may comprise a plurality of reinforcing fibers as described herein (e.g., carbon fibers, glass fibers, aramid fibers, polymeric fibers, metallic fibers and a combination thereof).
The method further comprises introducing a resin as described herein into the mold, and the resin may be cured or reacted under suitable conditions to form the polymeric composite housing. The resin may be any suitable polymer, such as but not limited to a thermoset resin, a thermoplastic resin, elastomer and a combination thereof. Preferable polymers include, but are not limited to epoxies, phenolics, vinylesters, bismaleimides, polyether ether ketone (PEEK), polyamides, polyimides and polyamideimides. The polymeric composite housing comprises a polymer as described herein (e.g., thermoplastic resin, thermoset resin) and a plurality reinforcing fibers as described herein (e.g., carbon fibers, glass fibers, aramid fibers, polymeric fibers, metallic fibers and a combination thereof).
Alternatively, the polymeric composite housing may be formed by injection molding. For example, the mold may include a housing define void space for receiving a housing precursor comprising a plurality of reinforcing fibers as described herein (e.g., carbon fibers, glass fibers, aramid fibers, polymeric fibers, metallic fibers and a combination thereof). The housing defined void space may be defined by a metal or polymer boundary present in the mold, which delineates the shape of the housing. The housing precursor and the resin, separately or together may, introduced into the mold followed by solidification (e.g., curing or reacting) to form the polymeric composite housing.
Additionally or alternatively, prior to arranging of the assembly in the mold, the method may further comprise (i) casting the cylinder head as described herein and the plurality of liners to form a single component (e.g., integral single component 30); or (ii) joining together the plurality of liners and the cylinder head by welding.
In certain other aspects, the method may further comprise using sacrificial fibers as described herein to form microchannels as described herein as well as supply channels for the microchannels as described herein in the polymeric composite housing. As discussed herein, sacrificial fibers can be woven into a composite woven preform along with the reinforcing fibers. After reacting or curing to form the polymeric composite housing, the method may further comprise removing the plurality of sacrificial fibers from the polymeric composite housing. In particular, the polymeric composite housing may be further treated (e.g., heated) to volatilize, melt, or degrade the sacrificial fibers or the sacrificial fibers may be dissolved to produce degradants. For example, the sacrificial fibers may be heated to a temperature (e.g., about 150° C. to about 200° C.) that substantially vaporizes or melts the sacrificial fibers but does not substantially degrade the reinforcing fibers and/or the cured resin. Any suitable solvent, such as, but not limited to acetone, may be applied to the sacrificial fibers to dissolve them, optionally with agitation, so long as the solvent does not substantially degrade or dissolve the reinforcing fibers and/or the cured resin. Alternatively, the sacrificial fibers may be etched using a suitable acid (e.g., hydrochloric acid, sulfuric acid, nitric acid, and the like). The degradants may be removed to form microchannels in the polymeric composite housing, e.g., by applying a vacuum to the polymeric composite or introducing a gas to the polymeric composite to expel the degradants out of the polymeric composite.
Additionally or alternatively, the method may further comprise forming a polymeric composite layer as described herein (e.g. polymeric composite layer 26) around at least a portion of the engine assembly, e.g., by injection molding. The polymeric composite layer may comprise a suitable polymer as described herein and plurality of suitable reinforcing fibers as described herein. In particular, the reinforcing fibers are glass fibers and/or carbon fibers. The reinforcing fibers may be discontinuous fibers. Additionally or alternatively, the polymeric composite layer may be formed around any other suitable surface of the vehicle assembly, e.g., around an oil pan, around a cam cover. Additionally or alternatively, the polymeric composite layer may be formed around any peripheral systems of the vehicle assembly, e.g., water pump, air conditioner, turbocharger.
In an alternative embodiment, a method of manufacturing the engine assemblies described herein is provided wherein the polymeric composite housing is formed separately from the integrally joined cylinder head and liners. The method may further comprise bonding (e.g., with an adhesive or fasteners) the polymeric composite housing with the integrally joined cylinder head and liners.
The foregoing description of the embodiments has been provided for purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure. Individual elements or features of a particular embodiment are generally not limited to that particular embodiment, but, where applicable, are interchangeable and can be used in a selected embodiment, even if not specifically shown or described. The same may also be varied in many ways. Such variations are not to be regarded as a departure from the disclosure, and all such modifications are intended to be included within the scope of the disclosure.
Number | Name | Date | Kind |
---|---|---|---|
1534411 | Potter | Apr 1925 | A |
3481316 | Olson | Dec 1969 | A |
4446827 | Kubozuka | May 1984 | A |
4726334 | Holtzberg et al. | Feb 1988 | A |
4848292 | Holtzberg | Jul 1989 | A |
4901692 | Madden | Feb 1990 | A |
4930470 | Kabat et al. | Jun 1990 | A |
5062393 | Smith | Nov 1991 | A |
5083537 | Onofrio et al. | Jan 1992 | A |
5207120 | Arnold et al. | May 1993 | A |
5301423 | Clark | Apr 1994 | A |
5370087 | Guimond | Dec 1994 | A |
5435059 | Chawla | Jul 1995 | A |
6223702 | Achenbach et al. | May 2001 | B1 |
6684844 | Wang | Feb 2004 | B1 |
7191770 | Anderson | Mar 2007 | B1 |
7367303 | Yamamoto et al. | May 2008 | B2 |
7819462 | Owens | Oct 2010 | B1 |
8033592 | Hsu et al. | Oct 2011 | B2 |
8109492 | Winocur | Feb 2012 | B2 |
8961724 | Polewarczyk et al. | Feb 2015 | B2 |
9227673 | Berger et al. | Jan 2016 | B2 |
9302733 | Schlanger | Apr 2016 | B2 |
20040226393 | Hong | Nov 2004 | A1 |
20060102110 | Takenaka et al. | May 2006 | A1 |
20090223479 | Schoell | Sep 2009 | A1 |
20120085313 | Reisser | Apr 2012 | A1 |
20130065042 | Esser-Kahn et al. | Mar 2013 | A1 |
20130189888 | Patrick | Jul 2013 | A1 |
20160264082 | Berger et al. | Sep 2016 | A1 |
Number | Date | Country |
---|---|---|
3011358 | Oct 1981 | DE |
19818589 | Nov 1999 | DE |
102014224827 | Jun 2015 | DE |
0361367 | Apr 1990 | EP |
1593248 | May 1970 | FR |
WO-2014153065 | Sep 2014 | WO |
Entry |
---|
Guimond et al.; “Composite V-6 Diesel Engine Concept;” SAE Technical Paper 920084; Feb. 1992; 8 pages. |
Esser-Kahn et al.; “Three-Dimensional Microvascular Fiber-Reinforced Composites;” Advanced Materials; vol. 23; 2011; pp. 3654-3658. |
Brosius et al.; “Phenolics for High Temperature Applications in Small Engine Technologies (Cost Effective Performance Advantages);” SAE Technical Paper 951809; 1995; pp. 405-414. |
Buckley et al.; “A Prediction of Weight Reduction and Performance Improvements Attainable through the use of Fiber Reinforced Composites in I.C. Engines;” SAE Technical Paper 2005-01-3693; Oct. 2005; 17 pages. |
“Dow Introduces Bonding Process;” Materials Today; http://www.materialstoday.com/carbon-fiber/news/dow-introduces-bonding process; May 10, 2016; 1 page. |
Hamid G. Kia et al.; U.S. Appl. No. 15/225,025, filed Aug. 1, 2016 entitled “Polymeric Composite Engine Assembly and Methods of Heating and Cooling Said Assembly”; 42 pages. |
Anthony M. Coppola et al.; U.S. Appl. No. 15/225,037, filed Aug. 1, 2016 entitled “Methods of Manufacturing Vehicle Assemblies”; 52 pages. |
Anthony M. Coppola et al.; U.S. Appl. No. 15/225,051, filed Aug. 1, 2016 entitled “Methods of Joining Components Vehicle Assemblies”; 55 pages. |
Anthony M. Coppola et al.; U.S. Appl. No. 15/225,080, filed Aug. 1, 2016 entitled “Crankshaft Assemblies and Methods of Manufacturing the Same”; 52 pages. |
Second Office Action in German Application No. 102017213316.3 from the German Patent Office dated Jun. 7, 2018 and correspondence from Manitz, Finsterwald & Partner summarizing contents; 6 pages. |
First Office Action in German Application No. 102017213316.3 from the German Patent Office dated Apr. 4, 2018 and correspondence from Manitz, Finsterwald & Partner summarizing the First Office Action; 6 pages. |
Number | Date | Country | |
---|---|---|---|
20180030923 A1 | Feb 2018 | US |