Information
-
Patent Grant
-
6415758
-
Patent Number
6,415,758
-
Date Filed
Monday, August 21, 200024 years ago
-
Date Issued
Tuesday, July 9, 200222 years ago
-
Inventors
-
Original Assignees
-
Examiners
- McMahon; Marguerite
- Ali; Hyder
Agents
-
CPC
-
US Classifications
Field of Search
US
- 123 195 R
- 123 9027
- 123 9031
- 123 195 C
- 123 195 H
- 123 1932
- 123 195 A
- 123 198 R
- 123 198 C
- 123 509
-
International Classifications
-
Abstract
An engine block 10 is disclosed having machined front and rear faces. Each of the front and rear faces is capable of receiving and sealing against a housing (20,40) enclosing a gear train for coupling the engine crankshaft to a camshaft of the engine. The front face is additionally capable of directly receiving and sealing against an engine front cover while the rear face is additionally capable of directly receiving and sealing against a flywheel housing. In this way, the same engine block may be selectively assembled into an engine having a front mounted or a rear mounted camshaft gear train.
Description
FIELD OF THE INVENTION
The present invention relates to an internal combustion engine and is particularly concerned with the design of the engine block of large capacity engines as used in trucks and agricultural vehicles.
BACKGROUND OF THE INVENTION
The gear train that drives the camshaft from the crankshaft in an internal combustion engine can be mounted either at the front end or the rear end of the engine. The rear of the engine refers to the end connected to the vehicle drive train, i.e. the end on which the flywheel and gearbox are mounted. From the point of view of reducing noise, the rear mounted drive train configuration is to be preferred but packaging considerations may dictate that the drive train be positioned at the front of the engine.
Heretofore, a manufacturer producing variants of the same engine having front and rear camshaft gear trains needed to produce two totally different engine blocks. This added to manufacturing costs.
SUMMARY OF THE INVENTION
The present invention provides an engine block having machined front and rear faces, wherein each of the front and rear faces is capable of receiving and sealing against a housing enclosing a gear train for coupling the engine crankshaft to a camshaft of the engine, and wherein the front face is additionally capable of directly mating with and sealing against an engine front cover and the rear face is additionally capable of directly mating with and sealing against a flywheel housing, whereby the same engine block may be selectively assembled into an engine having a front mounted or a rear mounted camshaft gear train.
As the size and shape of the drive train housing will usually differ from the size and shape of the engine front cover, or the flywheel housing, as the case may be, the front and rear faces of an engine block will have machined sealing surfaces and holes for receiving fastening elements that are redundant in any selected camshaft gear train configuration.
In the present invention, the same engine block can be sent to different assembly lines for the manufacture of engines having both front mounted and rear mounted gear trains. This results in a considerable cost saving, avoiding the need for separate castings for the different engine variants.
In order to be able to mount the gear or cog driving the camshaft at either end of the engine, it is important that there should be fastening elements provided at both ends of the engine to receive an axial thrust bearing plate to limit the axial displacement of the camshaft. It is possible to use these fastening elements at the front end of the engine to secure the front cover to the engine block when the camshaft gear train is mounted at the rear of the engine.
It is preferred to provide a water pump fastening element at the front end of the engine and to mount a belt driven water pump at the front end of the engine, regardless of the position of the camshaft gear train.
It is further preferred to provide fastening elements for mounting a gear driven oil pump at the front end of the engine to be driven from the front end of the engine crankshaft, regardless of the position of the camshaft gear train.
To facilitate the introduction of the camshaft into the engine block from either end of the engine and to enable the same camshaft to be used in both gear train configurations, it is preferred to provide bushed cam journals at both ends of the engine for supporting the camshaft.
It is also desirable to be able to reverse the oil pan and to this end it is advantageous to provide a symmetrical bolt pattern on the underside of the engine.
The camshaft gear train, in both engine configurations, may additionally include means for driving ancillary equipment, such as a mechanical fuel pump, a hydraulic pump or a power steering pump.
BRIEF DESCRIPTION OF THE DRAWINGS
The invention will now be described further, by way of example, with reference to the accompanying drawings, in which:
FIG. 1
is a front perspective view of an engine comprising a block of the engine and a front mounted camshaft gear train,
FIG. 2
is a rear perspective view of an engine comprising a block of the engine and a front mounted camshaft gear train,
FIG. 3
is a front perspective view of an engine comprising a block of the engine and a rear mounted camshaft gear train,
FIG. 4
is a rear perspective view of an engine comprising a block of the engine and a rear mounted camshaft gear train,
FIG. 5
is a view from below of an engine having a front mounted camshaft drive train housing,
FIG. 6
is a view from below of an engine having a rear mounted camshaft drive train housing, and
FIGS. 7 and 8
are sides views of two different engine variants having oil pans mounted on them in opposite ways.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
The drawings show two engines assembled using the same engine block
10
. The engine of
FIGS. 1 and 2
has a front mounted camshaft gear train housing
20
while the engine of
FIGS. 3 and 4
has a rear mounted camshaft gear train
40
.
The gear train housings
20
and
40
used in the two configurations are clearly not the same. When the camshaft gear train housing
20
is positioned at the front of the engine, it only needs to receive an access panel whereas the gear train housing
40
that fits at the rear of the engine must receive the flywheel housing and permit a flywheel to be mounted on the crankshaft
15
.
The engine block
10
is nevertheless designed to optimise the number of components that can be used in both engine variants. Hence, in both engine variants, a water pump
12
is mounted on the front end of the engine to be driven by a belt from a pulley (not shown) mounted on the front end of the crankshaft
15
. Furthermore, a gear driven oil pump
14
is mounted on the front end of the engine which in both engine variants is driven by a gear
16
fitted to the crankshaft
15
and acting on the oil pump drive gear through an idler gear
18
.
The front face of the engine block
10
receives the housing
20
of the camshaft gear train in the manner shown in FIG.
1
. The bolt pattern and sealing surfaces that enable the housing
20
to be mounted on the engine block
10
are better shown in FIG.
3
. The front mounted camshaft gear train comprises a gear
22
directly meshing with the gear
16
on the crankshaft
15
and a further gear
24
that meshes with the gear
22
and drives ancillary equipment, such as a mechanical fuel injection pump
26
.
As shown in
FIG. 2
, in which the camshaft gear train housing
20
is mounted at the front of the engine, the rear face of the engine has a machined surface and a bolt pattern to enable the flywheel housing to be directly bolted to the engine block
10
. A collar
32
formed integrally with the crankshaft has bolt holes for mounting a flywheel next to the rear face of the engine.
Identical journal bearings
34
for the camshaft
30
are used at both ends of the block and there are bolt holes surrounding the camshaft journals at both ends of the block to mount a plate for resisting axial thrust on the camshaft.
The sealing surfaces and the bolt hole pattern on the rear face of the engine also allow the camshaft gear train housing
40
be mounted on it in the manner shown in
FIGS. 3 and 4
. The rear mounted camshaft gear train housing
40
has aligned fastening holes to allow it to be mounted to the engine block
10
and other holes that allow the flywheel housing to be bolted through it to the engine block
10
.
The rear mounted camshaft gear
22
can be the same as the one that fits the front end of the camshaft but in this case a gear
50
must be fitted on the crankshaft behind the collar
32
. This can be achieved by heat shrinking the gear
50
and the collar
32
on the crankshaft. The gear
22
can also mesh with further gears, such as the gear
52
, to drive ancillary equipment such as a hydraulic pressure pump or a power steering pump.
In the variant in which the drive train housing
40
is fitted to the rear of the engine, the front face (shown in
FIG. 3
) can receive a front cover that fits only over the gears
14
,
16
and
18
and the front end of the camshaft
30
. Such a cover will use some of the bolt holes provided for the front drive train housing
20
but as it is smaller than the housing
20
, there will also be some sealing surfaces and bolt holds that are redundant.
As shown in
FIGS. 5
to
8
, different variants of the engine based on the engine block of the invention can all be designed to receive the same oil pan and the oil pan can be mounted with different orientations.
Thus in
FIG. 5
, the oil pan
60
overlaps the gear housing
20
at the front end of the engine and the flywheel housing
62
at the rear, whereas in
FIG. 6
the same oil pan overlaps the engine front cover
64
at the front of the engine and the rear mounted gear housing
40
at the rear. To this end, the oil pan mounting holes in the front mounted gear housing
20
should match the bolt pattern in the engine front cover
64
. Similarly, the bolt pattern in the rear mounted gear housing
40
should match that in a seal carrier
66
that is mounted beneath the flywheel housing
62
in the variant with a front mounted gear train housing
20
.
As shown in
FIGS. 7 and 8
, the oil pan
60
has a deeper section and a tray that slopes towards the deeper section. The bolt patterns on the underside of the engine and on the oil pan are symmetrical so that the deep section of the oil pan may either be located at the rear of the engine (as shown in
FIG. 7
) or at the front of the engine (as shown in FIG.
8
).
Claims
- 1. An engine block having machined front and rear faces, wherein each of the front and rear faces is capable of receiving and sealing against a housing enclosing a gear train for coupling the engine crankshaft to a camshaft of the engines, and wherein the front face is additionally capable of directly mating with and sealing against an engine front cover and the rear face is additionally capable of directly mating with and sealing against a flywheel housing, whereby the same engine block may be selectively assembled into an engine having one of a front mounted and a rear mounted camshaft gear train, wherein each cover and housing has a plurality of holes in predetermined positions, machined sealing surfaces on the front and rear faces have a plurality of holes in predetermined positions, there being sufficient numbers of holes on the front and rear faces of the block to align with all the holes of the covers and housings, said block further comprising fastening elements received in said holes, whereby there are redundant holes in any selected camshaft gear train configuration.
- 2. An engine block as claimed in claim 1, further comprising fastening elements provided at both ends of the engine to receive an axial thrust bearing plate to limit the axial displacement of the camshaft.
- 3. An engine block as claimed in claim 2, wherein the fastening elements at the front face of the engine for receiving an axial thrust bearing plate are suitable to receiving a front cover overlying the end of the camshaft and the front end of the crankshaft.
- 4. An engine block as claimed in claim 1, comprising a water pump fastening element only at the front end of the engine.
- 5. An engine block as claimed in claim 1, further comprising fastening elements for mounting a gear driven oil pump only at the front end of the engine to be driven from the front end of the engine crankshaft.
- 6. An engine block as claimed in claim 1, further comprising bushed cam journals provided at both ends of the engine for supporting the camshaft.
- 7. An engine block as claimed in claim 1, a symmetrical bolt pattern on an open lower surface, said block further comprising an oil pan mounted on the underside of the engine.
Priority Claims (1)
Number |
Date |
Country |
Kind |
9919760 |
Aug 1999 |
GB |
|
US Referenced Citations (5)
Number |
Name |
Date |
Kind |
4121557 |
Congram et al. |
Oct 1978 |
A |
4125036 |
Nakamura et al. |
Nov 1978 |
A |
4607601 |
Kohler |
Aug 1986 |
A |
4885953 |
Sweetland et al. |
Dec 1989 |
A |
5669346 |
Leweux et al. |
Sep 1997 |
A |