Claims
- 1. An engine control device having manual opening and closing means and automatic opening and closing means of a throttle valve, in which a throttle opening indicated value for said automatic opening and closing means is a value obtained by adding, to a totally closed reference value, a water temperature correction value, that is a function of engine cooling water temperature, and an atmospheric pressure correction value, that is a function of the atmospheric pressure, comprising:a throttle opening detection means for said engine control device for detecting the throttle opening, and a value obtained by subtracting said water temperature correction value and said atmospheric pressure correction value from an actual opening to be detected by said throttle opening detection means is set to a totally closed value of said throttle opening.
- 2. The engine control device according to claim 1, wherein a dead zone concerning said totally closed value is set and wherein when a value obtained by subtracting said water temperature correction value and said atmospheric pressure correction value from said actual opening goes out of said dead zone, there is provided renewal means for replacing said totally closed value with a value obtained by subtracting said water temperature correction value and said atmospheric pressure correction value from said actual opening.
- 3. The engine control device according to claim 2, wherein when the value obtained by subtracting said water temperature correction value and said atmospheric pressure correction value from said actual opening continues for a scheduled renewal time period to go out of said dead zone, said renewal means is constructed to renew the totally closed value.
- 4. The engine control device according to claim 3, wherein predetermined set fuel increase correction values are provided which are different from each other between when the opening is increased from said totally closed position and when the opening is increased from any other position than said totally closed position, and the structure is arranged so as to correct a reference amount of fuel supply by using said fuel increase correction value.
- 5. The engine control device according to claim 2, wherein predetermined set fuel increase correction values are provided which are different from each other between when the opening is increased from said totally closed position and when the opening is increased from any other position than said totally closed position, and the structure is arranged so as to correct a reference amount of fuel supply by using said fuel increase correction value.
- 6. The engine control device according to claim 1, wherein predetermined set fuel increase correction values are provided which are different from each other between when the opening is increased from said totally closed position and when the opening is increased from any other position than said totally closed position, and the structure is arranged so as to correct a reference amount of fuel supply by using said fuel increase correction value.
- 7. An engine control device comprising:a throttle opening; a manual opening and closing means for selectively opening and closing the throttle opening; an automatic opening and closing means for selectively opening and closing the throttle valve; a throttle opening indicated value for said automatic opening and closing means is a value obtained by adding, to a totally closed reference value, a water temperature correction value, that is a function of engine cooling water temperature, and an atmospheric pressure correction value, that is a function of the atmospheric pressure; a throttle opening detection means for said engine control device for detecting the throttle opening, and a value obtained by subtracting said water temperature correction value and said atmospheric pressure correction value from an actual opening to be detected by said throttle opening detection means is set to a totally closed value of said throttle opening.
- 8. The engine control device according to claim 7, wherein a dead zone concerning said totally closed value is set and wherein when a value obtained by subtracting said water temperature correction value and said atmospheric pressure correction value from said actual opening goes out of said dead zone, there is provided renewal means for replacing said totally closed value with a value obtained by subtracting said water temperature correction value and said atmospheric pressure correction value from said actual opening.
- 9. The engine control device according to claim 8, wherein when the value obtained by subtracting said water temperature correction value and said atmospheric pressure correction value from said actual opening continues for a scheduled renewal time period to go out of said dead zone, said renewal means is constructed to renew the totally closed value.
- 10. The engine control device according to claim 9, wherein predetermined set fuel increase correction values are provided which are different from each other between when the opening is increased from said totally closed position and when the opening is increased from any other position than said totally closed position, and the structure is arranged so as to correct a reference amount of fuel supply by using said fuel increase correction value.
- 11. The engine control device according to claim 8, wherein predetermined set fuel increase correction values are provided which are different from each other between when the opening is increased from said totally closed position and when the opening is increased from any other position than said totally closed position, and the structure is arranged so as to correct a reference amount of fuel supply by using said fuel increase correction value.
- 12. The engine control device according to claim 7, wherein predetermined set fuel increase correction values are provided which are different from each other between when the opening is increased from said totally closed position and when the opening is increased from any other position than said totally closed position, and the structure is arranged so as to correct a reference amount of fuel supply by using said fuel increase correction value.
- 13. A method for controlling an engine having manual opening and closing means and automatic opening and closing means of a throttle valve, in which a throttle opening indicated value for said automatic opening and closing means is a value obtained by adding, to a totally closed reference value, a water temperature correction value, that is a function of engine cooling water temperature, and an atmospheric pressure correction value, that is a function of the atmospheric pressure, comprising the following steps:detecting a throttle opening for said engine control device; and obtaining a value by subtracting said water temperature correction value and said atmospheric pressure correction value from an actual opening to be detected by detecting the throttle opening when the throttle opening is set to a totally closed value of said throttle opening.
- 14. The method for controlling an engine according to claim 13, including the step of setting a dead zone concerning said totally closed value and wherein when a value obtained by subtracting said water temperature correction value and said atmospheric pressure correction value from said actual opening goes out of said dead zone, there is provided renewal means for replacing said totally closed value with a value obtained by subtracting said water temperature correction value and said atmospheric pressure correction value from said actual opening.
- 15. The method for controlling an engine according to claim 14, wherein when the value obtained by subtracting said water temperature correction value and said atmospheric pressure correction value from said actual opening continues for a scheduled renewal time period to go out of said dead zone, said renewal means is constructed to renew the totally closed value.
- 16. The method for controlling an engine according to claim 15, wherein predetermined set fuel increase correction values are provided which are different from each other between when the opening is increased from said totally closed position and when the opening is increased from any other position than said totally closed position, and the structure is arranged so as to correct a reference amount of fuel supply by using said fuel increase correction value.
- 17. The method for controlling an engine according to claim 14, wherein predetermined set fuel increase correction values are provided which are different from each other between when the opening is increased from said totally closed position and when the opening is increased from any other position than said totally closed position, and the structure is arranged so as to correct a reference amount of fuel supply by using said fuel increase correction value.
- 18. The method for controlling an engine according to claim 13, wherein predetermined set fuel increase correction values are provided which are different from each other between when the opening is increased from said totally closed position and when the opening is increased from any other position than said totally closed position, and the structure is arranged so as to correct a reference amount of fuel supply by using said fuel increase correction value.
Priority Claims (1)
Number |
Date |
Country |
Kind |
2001-297608 |
Sep 2001 |
JP |
|
CROSS-REFERENCE TO RELATED APPLICATIONS
The present application claims priority under 35 USC 119 to Japanese Patent Application No. 2001-297608 filed on Sep. 27, 2001 the entire contents thereof is hereby incorporated by reference.
US Referenced Citations (2)
Number |
Name |
Date |
Kind |
5377562 |
Kitagawa et al. |
Jan 1995 |
A |
6199540 |
Katashiba et al. |
Mar 2001 |
B1 |
Foreign Referenced Citations (3)
Number |
Date |
Country |
56-107926 |
Aug 1981 |
JP |
61291729 |
Dec 1985 |
JP |
11-343901 |
Dec 1999 |
JP |