Engine controller

Information

  • Patent Grant
  • 8360040
  • Patent Number
    8,360,040
  • Date Filed
    Wednesday, January 18, 2012
    13 years ago
  • Date Issued
    Tuesday, January 29, 2013
    12 years ago
Abstract
A system for controlling fuel to an engine to minimize emissions in an exhaust of the engine. There may be a controller connected to an actuator, for example a fuel control actuator, of the engine and to emissions sensors, such as an NOx and/or PM sensor, proximate to an exhaust output of the engine. The controller, for example a speed controller, may have an input connected to an output of a pedal or desired speed setting mechanism. A speed sensor at a power output of the engine may be connected to an input of the controller.
Description
BACKGROUND

The present invention pertains to engines and particularly to fuel control for internal combustion engines. More particularly, the invention pertains to fuel control based on contents of engine exhaust.


SUMMARY

The present invention includes fuel control of an engine based on emissions in the exhaust gases of the engine.





BRIEF DESCRIPTION OF THE DRAWING


FIG. 1 is a chart showing the standard diesel engine tradeoff between particulate matter and nitrogen oxide emissions of an engine;



FIG. 2 is a graph of fuel injector events and the magnitudes reflecting some injection rate control for an engine;



FIG. 3 is a diagram of an emission sensing and control system for engine fuel control;



FIG. 4 is a schematic view of an illustrative model predictive controller; and



FIG. 5 shows a particulate matter sensor.





DESCRIPTION

Engines often use catalytic converters and oxygen sensors to help control engine emissions. A driver-commanded pedal is typically connected to a throttle that meters air into engine. That is, stepping on the pedal directly opens the throttle to allow more air into the engine. Oxygen sensors are often used to measure the oxygen level of the engine exhaust, and provide feed back to a fuel injector control to maintain the desired air/fuel ratio (AFR), typically close to a stoichiometric air-fuel ratio to achieve stoichiometric combustion. Stoichiometric combustion can allow three-way catalysts to simultaneously remove hydrocarbons, carbon monoxide, and oxides of nitrogen (NOx) in attempt to meet emission requirements for the spark ignition engines.


Compression ignition engines (e.g., diesel engines) have been steadily growing in popularity. Once reserved for the commercial vehicle markets, diesel engines are now making real headway into the car and light truck markets. Partly because of this, federal regulations were passed requiring decreased emissions in diesel engines.


Many diesel engines now employ turbochargers for increased efficiency. In such systems, and unlike most spark ignition engines, the pedal is not directly connected to a throttle that meters air into engine. Instead, a pedal position is used to control the fuel rate provided to the engine by adjusting a fuel “rack”, which allows more or less fuel per fuel pump shot. The air to the engine is typically controlled by the turbocharger, often a variable nozzle turbocharger (VNT) or waste-gate turbocharger.


Traditional diesel engines can suffer from a mismatch between the air and fuel that is provided to the engine, particularly since there is often a time delay between when the operator moves the pedal, i.e., injecting more fuel, and when the turbocharger spins-up to provide the additional air required to produced the desired air-fuel ratio. To shorten this “turbo-lag”, a pedal position sensor (fuel rate sensor) may be added and fed back to the turbocharger controller to increase the natural turbo acceleration, and consequently the air flow to the engine which may for example set the vane positions of a VNT turbocharger.


The pedal position is often used as an input to a static map, the output of which is in turn used as a setpoint in the fuel injector control loop which may compare the engine speed setpoint to the measured engine speed. Stepping on the pedal increases the engine speed setpoint in a manner dictated by the static map. In some cases, the diesel engine contains an air-fuel ratio (AFR) estimator, which is based on input parameters such as fuel injector flow and intake manifold air flow, to estimate when the AFR is low enough to expect smoke to appear in the exhaust, at which point the fuel flow is reduced. The airflow is often managed by the turbocharger, which provides an intake manifold pressure and an intake manifold flow rate for each driving condition.


In diesel engines, there are typically no sensors in the exhaust stream analogous to the oxygen sensors found in spark ignition engines. Thus, control over the combustion is often performed in an “open-loop” manner, which often relies on engine maps to generate set points for the intake manifold parameters that are favorable for acceptable exhaust emissions. As such, engine air-side control is often an important part of overall engine performance and in meeting exhaust emission requirements. In many cases, control of the turbocharger and EGR systems are the primary components in controlling the emission levels of a diesel engine.


Diesel automotive emissions standards today and in the future may be partly stated in terms of particulate matter (soot) and nitrogen oxides (NOx). Direct measurement feedback on the true soot measurement may have significant advantages over an air-fuel ratio (AFR) in the related art. The present system may enable one to read the soot directly rather than using an (unreliable) AFR estimation to infer potential smoke. Particulate matter (PM) and NOx sensor readings may be used for fuel injection control in diesel engines. The NOx and PM may both be regulated emissions for diesel engines. Reduction of both NOx and PM would be favorable. There may be a fundamental tradeoff between NOx and PM such that for most changes made to a diesel engine, reducing the engine-out PM is typically accompanied by an increase in engine-out NOx and vice versa. In FIG. 1, the abscissa indicates a magnitude of PM and the ordinate indicates a magnitude of NOx in an engine exhaust gas. An engine's PM and NOx emissions may be indicated with a curve 11. An area 12 represents the maximum emissions for an engine exhaust gas. A PM sensor may be good for characterizing the PM part of the curve 11 (typically associated with a rich combustion, high exhaust gas recirculation (EGR) rates, or otherwise). A NOx sensor may be well suited to characterize the “other extreme” of curve 11 representing a diesel engine combustion (typically associated with lean, hot burn, low EGR, and the like). The present invention may incorporate the notion that a diesel emissions control problem requires both ends of the diesel combustion to be covered by emissions sensing. NOx and PM sensors may give information that is synthesized into an understanding of the diesel combustion. This is important since both NOx and PM are increasingly tightly legislated emissions in many countries.


Some fuel injection handles or parameters may have certain impacts on NOx and PM emissions. Examples may include an early start of the injection which may result in good brake specific fuel consumption (bsfc), low PM and high NOx. High rail pressure may result in increased NOx, low PM and slightly improved fuel consumption. A lean air-fuel ratio (AFR), achieved by reducing the total fuel quantity, may result in increased NOx and decreased PM. A rich air-fuel ratio (AFR) achieved by changing the total fuel quantity may result in decreased NOx and increased PM.



FIG. 3 shows a fuel control system 10 for engine 13 based at least partially on engine exhaust 14 emissions. A pedal input 15 may be connected to a speed map 16 for controlling the speed of engine 13 output that may be used for driving a vehicle or some other mechanism. The speed of the engine output 17 may be detected by a speed sensor 18. Sensor 18 may provide an indication 19 of the speed to the speed map 16. The speed map 16 may combine the pedal signal 15 and the speed signal 19 to provide a fuel control signal 21 to a fuel rate limiter, fuel controller or other controller 22.


An NOx sensor 23, situated in exhaust 14, may provide a signal 25 indicating an amount of NOx sensed in exhaust 14. A PM sensor 24 may be situated in the exhaust 14 and provide a signal 26 indicating an amount of PM sensed in exhaust 14. The controller 22 may process signals 21, 25 and 26 into an output signal 27 to an actuator 28, such as a fuel injector and/or other actuator, of engine 13. Signal 27 may contain information relating to engine 13 control such as timing of fuel provisions, quantities of fuel, multiple injection events, and so forth. Signal 27 may go to an engine control unit 26, which in turn may sense and control various parameters of engine 11 for appropriate operation. Other emissions sensors, such as SOx sensors, may be utilized in the present system 10 for fuel control, emissions control, engine control, and so forth.


Fuel injection systems may be designed to provide injection events, such as the pre-event 35, pilot event 36, main event 37, after event 38 and post event 39, in that order of time, as shown in the graph of injection rate control in FIG. 2. After-injection and post-injection events 38 and 39 do not contribute to the power developed by the engine, and may be used judiciously to simply heat the exhaust and use up excess oxygen. The pre-catalyst may be a significant part of the present process because all of the combustion does not take place in the cylinder.


In FIG. 3, signals 25 and 26 may indicate NOx and PM amounts in exhaust 14 to the fuel rate limiter, fuel controller or controller 22. The controller 22 may attempt to adjust or control fuel injection or supply, and/or other parameter, to the engine 13 so as to control or limit the NOx and PM emissions in the exhaust 14. The emissions may be maintained as represented by a portion 31 of the curve 11 in FIG. 1. The tradeoff between NOx and PM typically means that a reduction in PM may be accompanied by an increase in NOx and vice versa. The PM sensor 24 may be relied on for information at portion 32 of curve 11. The NOx sensor 23 may be relied on for sensing information at portion 33 of curve 11. Both sensors 23 and 24 may provide information in combination for attaining an emissions output of the exhaust 14 in the portion 31 of curve 11.


The PM sensor 24 may appropriately characterize the PM portion 32 of the curve 11 which typically may be associated for example with a rich combustion or a high exhaust recirculation rate. The NOx sensor 23 may be better suited to characterize the other extreme of the combustion which typically may be associated for example with a lean or hot burn and a low exhaust combustion rate.


In some cases, the controller 22 may be a multivariable model predictive Controller (MPC). The MPC may include a model of the dynamic process of engine operation, and provide predictive control signals to the engine subject to constraints in control variables and measured output variables. The models may be static and/or dynamic, depending on the application. In some cases, the models may produce one or more output signals y(t) from one or more input signals u(t). A dynamic model typically contains a static model plus information about the time response of the system. Thus, a dynamic model is often of higher fidelity than a static model.


In mathematical terms, a linear dynamic model has the form:

y(t)=B0*u(t)+B1*u(t−1)+ . . . +Bn*u(t−n)+A1*y(t−1)+ . . . +Am*y(t−m)

where B0 . . . Bn, and A1 . . . Am are constant matrices. In a dynamic model, y(t) which is the output at time t, may be based on the current input u(t), one or more past inputs u(t−1), . . . , u(t−n), and also on one or more past outputs y(t−1) . . . y(t−m).


A static model may be a special case where the matrices B1= . . . =Bn=0, and A1= . . . =Am=0, which is given by the simpler relationship:

y(t)=B0u(t)

A static model as shown is a simple matrix multiplier. A static model typically has no “memory” of the inputs u(t−1), u(t−2) . . . or outputs y(t−1) . . . and the like. As a result, a static model can be simpler, but may be less powerful in modeling some dynamic system parameters.


For a turbocharged diesel system, the system dynamics can be relatively complicated and several of the interactions may have characteristics known as “non-minimum phase”. This is a dynamic response where the output y(t), when exposed to a step in input u(t), may initially move in one direction, and then turn around and move towards its steady state in the opposite direction. The soot (PM) emission in a diesel engine is just one example. In some cases, these dynamics may be important for optimal operation of the control system. Thus, dynamic models are often used, at least when modeling some control parameters.


In one example, the MPC may include a multivariable model that models the effect of changes in one or more actuators of the engine (e.g., fueling rate, and the like) on each of one or more parameters (e.g., engine speed 19, NOx 26, PM 25), and the multivariable controller may then control the actuators to produce a desired response in the two or more parameters. Likewise, the model may, in some cases, model the effects of simultaneous changes in two or more actuators on each of one or more engine parameters, and the multivariable controller may control the actuators to produce a desired response in each of the one or more parameters.


For example, an illustrative state-space model of a discrete time dynamical system may be represented using equations of the form:

x(t+1)=Ax(t)+Bu(t)
y(t)=Cx(t)

The model predictive algorithm involves solving the problem:

u(k)=arg min {J}

Where the function J is given by,






J
=





x
^



(


t
+

N
y


|
t

)


T


P



x
^



(


t
+

N
y


|
t

)



+




k
=
0



N
y

-
1




[





x
^



(


t
+
k

|
t

)


T


Q



x
^



(


t
+
k

|
t

)



+



u


(

t
+
k

)


T



Ru


(

t
+
k

)




]








Subject to Constraints

ymin≦ŷ(t+k|t)≦ymax
umin≦u(t+k)≦umax
x(t|t)=x(t)
{circumflex over (x)}(t+k°1|t)=A{circumflex over (x)}(t+k|t)+Bu(t+k)
ŷ(t+k|t)=C{circumflex over (x)}(t+k|t)

In some examples, this is transformed into a quadratic programming (QP) problem and solved with standard or customized tools.


The variable “y(k)” may contain the sensor measurements (for the turbocharger problem, these include but are not limited to engine speed, NOx emissions, PM emissions, and so forth). The variables ŷ(k+t|t) denote the outputs of the system predicted at time “t+k” when the measurements “y(t)” are available. They may be used in the model predictive controller to choose the sequence of inputs which yields the “best” (according to performance index J) predicted sequence of outputs.


The variables “u(k)” are produced by optimizing J and, in some cases, are used for the actuator set points. For the fuel controller problem these signals 27 may include, but are not limited to, the timing, quantity, multiple injection events, and so forth. The variable “x(k)” is a variable representing an internal state of the dynamical state space model of the system. The variable {circumflex over (x)}(t+k|t) indicates the predicted version of the state variable k discrete time steps into the future and may be used in the model predictive controller to optimize the future values of the system.


The variables ymin and ymax are constraints and may indicate the minimum and maximum values that the system predicted measurements ŷ(k) are permitted to attain. These often correspond to hard limits on the closed-loop behavior in the control system. For example, a hard limit may be placed on the PM emissions such that they are not permitted to exceed a certain number of grams per second at some given time. In some cases, only a minimum ymin or maximum ymax constraint is provided. For example, a maximum PM emission constraint may be provided, while a minimum PM emission constraint may be unnecessary or undesirable.


The variables umin and umax are also constraints, and indicate the minimum and maximum values that the system actuators û(k) are permitted to attain, often corresponding to physical limitations on the actuators. For example, the fuel quantity may have a minimum value and a maximum value corresponding to the maximum fuel rate achievable by the actuator. Like above, in some cases and depending on the circumstances, only a minimum umin or maximum umax constraint may be provided. Also, some or all of the constraints (e.g. ymin, ymax, umin, umax) may vary in time, depending on the current operating conditions. The state and actuator constraints may be provided to the controller 22 via an interface.


The constant matrices P, Q, R are often positive definite matrices used to set a penalty on the optimization of the respective variables. These may be used in practice to “tune” the closed-loop response of the system.



FIG. 4 is a schematic view of an illustrative model predictive controller. In this example, the MPC 22 may include a state observer 41 and a MPC controller 42. The MPC Controller 84 provides a number of control outputs “u” to actuators or the like of the engine 13. Illustrative control outputs 27 include, for example, the timing, quantity, multiple injection events, and so forth. The MPC controller may include a memory for storing past values of the control outputs u(t), u(t−1), u(t−2), and the like.


The state observer 41 may receive a number of inputs “y”, a number of control outputs “u”, and a number of internal variables “x”. Illustrative inputs “y” include, for example, the engine speed signal 19, the NOx sensor 23 output 26, and/or the PM sensor 24 output 25. It is contemplated that the inputs “y” may be interrogated constantly, intermittently, or periodically, or at any other time, as desired. Also, these input parameters are only illustrative, and it is contemplated that more or less input signals may be provided, depending on the application. In some cases, the state observer may receive present and/or past values for each of the number of inputs “y”, the number of control outputs “u”, and a number of internal state variables “x”, depending on the application.


The state observer 41 may produce a current set of state variables “x”, which are then provided to the MPC controller 42. The MPC controller 42 may then calculate new control outputs “u”, which are presented to actuators or the like on the engine 13. The control outputs “u” may be updated constantly, intermittently, or periodically, or at any other time, as desired. The engine system 44 may operate using the new control outputs “u”, and produces new inputs “y”.


In one illustrative example, the MPC 22 may be programmed using standard quadratic programming (QP) and/or linear programming (LP) techniques to predict values for the control outputs “u” so that the engine system 44 produces inputs “y” that are at a desired target value, within a desired target range, and/or do not violate any predefined constraints. For example, by knowing the impact of the fuel quantity and timing, on the engine speed, NOx and/or PM emissions, the MPC 22 may predict values for the control outputs 27 fuel quantity and timing so that future values of the engine speed 19, NOx 24 and/or PM 23 emissions are at or remain at a desired target value, within a desired target range, and/or do not violate current constraints.


The MPC 22 may be implemented in the form of online optimization and/or by using equivalent lookup tables computed with a hybrid multi-parametric algorithm. Hybrid multi-parametric algorithms may allow constraints on emission parameters as well as multiple system operating modes to be encoded into a lookup table which can be implemented in an engine control unit (ECU) of an engine. The emission constraints may be time-varying signals which enter the lookup table as additional parameters. Hybrid multi-parametric algorithms are further described by F. Borrelli in “Constrained Optimal Control of Linear and Hybrid Systems”, volume 290 of Lecture Notes in Control and Information Sciences, Springer, 2003, which is incorporated herein by reference.


Alternatively, or in addition, the MPC 22 may include one or more proportional-integral-derivative (PID) control loops, one or more predictive constrained control loops—such as a Smith predictor control loop, one or more multiparametric control loops, one or more multivariable control loops, one or more dynamic matrix control loops, one or more statistical processes control loop, a knowledge based expert system, a neural network, fuzzy logic or any other suitable control mechanism, as desired. Also, the MPC may provide commands and/or set points for lower-level controllers that are used to control the actuators of the engine. In some cases, the lower level controllers may be, for example, single-input-single-output (SISO) controllers such as PID controllers.


The PM sensor 24 may have a spark-plug-like support 62 as shown in FIG. 5. The PM sensor may provide an output based on the PM formed on the probe. The sensor or probe may be placed in a path of the exhaust of the engine 13. The length 63 and diameter 64 of a probe electrode 65 may vary depending on the parameters of the sensing electronics and the engine. The probe electrode 65 may be passivated with a very thin conductive coating or layer 66 on it. This coating or layer 66 may prevent electrical shorting by the soot layer accumulated by the probe during the operation of engine 13. The passivation material 66 may be composed of SiN4, cerium or other oxide, and/or the like. The thickness of the passivation layer 66 on the probe electrode 65 may be between 0.001 and 0.020 inch. A nominal thickness may be about 0.01 inch. The passivation layer 66 may be achieved with the probe electrode 65 exposed to high exhaust temperatures or may be coated with a layer via a material added to the engine's fuel.


Sensor or probe 24 may have various dimensions. Examples of an electrode 65 length dimension 63 may be between 0.25 and 12 inches. A nominal value of the length 63 may be about 3 to 4 inches. Examples of a thickness or diameter dimension 64 may be between 1/32 inch and ⅜ inch. A nominal thickness may be about ⅛ inch.


An example of the probe may include a standard spark plug housing 62 that has the outside or ground electrode removed and has a 4 to 6 inch metal extension of about ⅛ inch thickness or diameter welded to a center electrode. The sensor 24 may be mounted in the exhaust stream near an exhaust manifold or after a turbocharger, if there is one, of the engine 13. The sensing electrode 65 may be connected to an analog charge amplifier of a processing electronics. The charge transients from the electrode 65 of probe 24 may be directly proportional to the soot (particulate) concentration in the exhaust stream. The extended electrode 65 may be passivated with a very thin non-conducting layer 66 on the surface of the electrode 65 exposed to the exhaust gas of the engine 13. For an illustrative example, a 304 type stainless steel may grow the passivating layer 66 on the probe electrode 65 spontaneously after a few minutes of operation in the exhaust stream at temperatures greater than 400 degrees C. (750 degrees F.). However, a passivating layer 66 of cerium oxide may instead be grown on the probe electrode 65 situated in the exhaust, by adding an organometallic cerium compound (about 100 PPM) to the fuel for the engine 13.


Other approaches of passivating the probe or electrode 65 with a layer 66 may include sputter depositing refractory ceramic materials or growing oxide layers in controlled environments. Again, the purpose of growing or depositing the passivating layer 66 on electrode 65 situated in the exhaust is to prevent shorts between the electrode and the base of the spark-plug like holder 62 due to PM buildups, so that sensor or probe 24 may retain its image charge monitoring activity of the exhaust stream. If the electrode 65 did not have the passivating layer 66 on it, probe 24 may fail after a brief operating period because of an electrical shorting of the electrode 65 to the support base 62 of the sensor due to a build-up of soot or PM on the electrode.


In summary, the controller may have one or more look-up tables (e.g., incorporating a multi-parametric hybrid algorithm), time-varying emission control restraints, proportional-integral-derivative (ND) control loops, predictive constrained control loops (e.g., including a Smith predictor), multi-parametric control loops, model-based predictive control loops, dynamic matrix control loops, statistical processes control loops, knowledge-based expert systems, neural networks, and/or fuzzy logic schemes.


In the present specification, some of the matter may be of a hypothetical or prophetic nature although stated in another manner or tense.


Although the invention has been described with respect to at least one illustrative example, many variations and modifications will become apparent to those skilled in the art upon reading the present specification. It is therefore the intention that the appended claims be interpreted as broadly as possible in view of the prior art to include all such variations and modifications.

Claims
  • 1. An engine controller for controlling at least part of an engine of a vehicle, the engine controller comprising: two or more inputs for receiving two or more different sensor input signals from two or more different engine sensors;one or more outputs for providing one or more control signals to one or more actuators that control one or more inputs to the engine, wherein each of the one or more inputs to the engine has an effect on the two or more sensor input signals from the two or more engine sensors; anda controller configured to receive the two or more different sensor input signals from the two or more different engine sensors and to provide the one or more control signals to the one or more actuators via the one or more outputs, the controller configured to adjust the one or more actuators of the engine to achieve a predicted response in each of the two or more different sensor input signals such that a performance index that references the predicted response of each of the two or more different sensor input signals is optimized.
  • 2. The engine controller of claim 1, wherein the controller is configured to adjust the one or more actuators of the engine to achieve the predicted response in each of the two or more sensor input signals using a multi-parameter model, wherein the multi-parameter model models the effects of changes in the one or more actuators on each of the two or more sensor input signals.
  • 3. The engine controller of claim 1, wherein: the two or more sensor input signals from the two or more engine sensors includes an engine emission sensor input signal; andthe one or more control signals effecting a change in one or more fuel properties of a fuel injection event.
  • 4. The engine controller of claim 3, wherein the one or more fuel properties that are affected by the one or more control signals include a fuel injection quantity.
  • 5. The engine controller of claim 3, wherein the one or more fuel properties that are affected by the one or more control signals include a fuel injection event start time.
  • 6. The engine controller of claim 3, wherein the one or more fuel properties that are affected by the one or more control signals include a post fuel injection event start time.
  • 7. The engine controller of claim 3, wherein the one or more fuel properties that are affected by the one or more control signals include a pre fuel injection event start time.
  • 8. The engine controller of claim 3, wherein the one or more fuel properties that are affected by the one or more control signals include a pilot fuel injection event start time.
  • 9. The engine controller of claim 3, wherein the one or more fuel properties that are affected by the one or more control signals include an after fuel injection event start time.
  • 10. The engine controller of claim 3, wherein one of the one or more fuel properties that are affected by the one or more control signals is a fuel rail pressure.
  • 11. The engine controller of claim 1, wherein the controller includes one or more predictive control loops.
  • 12. The engine controller of claim 11, wherein the one or more predictive control loops include one or more constraints.
  • 13. An engine controller for controlling at least part of an engine of a vehicle, the engine controller comprising: one or more inputs for receiving one or more sensor input signals from one or more engine sensors, wherein at least one of the one or more sensor input signals includes an engine emission sensor input signal from an engine emissions sensor;one or more outputs for providing one or more control signals to the engine to control one or more inputs to the engine, wherein each of the one or more inputs to the engine has an effect on each of the one or more sensor input signals, including the at least one engine emission sensor input signal; anda controller configured to receive the one or more sensor input signals from the one or more engine sensors and to provide the one or more control signals via the one or more outputs to effect a change in one or more fuel properties of a fuel injection event of the engine to achieve a predicted response in one or more of the sensor input signals and the engine emission sensor input signal, wherein a predicted response of the one or more control signals on the engine emission sensor input signal is opposite in sign to a predicted response of the one or more control signals on a different one of the one or more sensor input signals.
  • 14. The engine controller of claim 13, wherein the one or more fuel properties that are affected by the one or more control signals include a fuel injection quantity.
  • 15. The engine controller of claim 13, wherein the one or more fuel properties that are affected by the one or more control signals include a fuel injection event start time.
  • 16. The engine controller of claim 13, wherein the one or more fuel properties that are affected by the one or more control signals include a post fuel injection event start time.
  • 17. The engine controller of claim 13, wherein one of the one or more fuel properties that are affected by the one or more control signals is a fuel rail pressure.
  • 18. An apparatus, comprising: a memory storing a control algorithm for an engine controller, the control algorithm comprising:two or more input parameters for representing two or more engine sensor input signals;one or more output parameters for representing one or more control signals, the one or more control signals for controlling one or more actuators of an engine that control one or more inputs to the engine, wherein each of the one or more inputs to the engine has an effect on each of the two or more engine sensor input signals; anda model configured to receive the two or more sensor input parameters and to provide the one or more output parameters, wherein the output parameters are configured to adjust the one or more actuators of the engine to keep a predicted response in each of the two or more sensor input signals within a corresponding predetermined range of values.
  • 19. The apparatus of claim 18, wherein at least one of the engine sensor input signals correspond to an emission sensor.
  • 20. The apparatus of claim 19, wherein the one or more actuators of the engine include a fuel injection actuator.
Parent Case Info

This application is a continuation of U.S. application Ser. No. 12/973,704, filed Dec. 20, 2010, entitled, “ENGINE CONTROLLER”, which is a continuation of U.S. application Ser. No. 12/144,445 filed Jun. 23, 2008, entitled, “EMISSIONS SENSORS FOR FUEL CONTROL IN ENGINES”, now U.S. Pat. No. 7,878,178, which is a continuation of U.S. application Ser. No. 11/206,404 filed Aug. 18, 2005, entitled, “EMISSIONS SENSORS FOR FUEL CONTROL IN ENGINES”, now U.S. Pat. No. 7,389,773.

US Referenced Citations (389)
Number Name Date Kind
3744461 Davis Jul 1973 A
4005578 McInerney Feb 1977 A
4055158 Marsee Oct 1977 A
4206606 Yamada Jun 1980 A
4252098 Tomczak et al. Feb 1981 A
4359991 Stumpp et al. Nov 1982 A
4383441 Willis et al. May 1983 A
4426982 Lehner et al. Jan 1984 A
4438497 Willis et al. Mar 1984 A
4440140 Kawagoe et al. Apr 1984 A
4456883 Bullis et al. Jun 1984 A
4485794 Kimberley et al. Dec 1984 A
4601270 Kimberley et al. Jul 1986 A
4616308 Morshedi et al. Oct 1986 A
4653449 Kamei et al. Mar 1987 A
4671235 Hosaka Jun 1987 A
4677559 Van Bruck Jun 1987 A
4735181 Kaneko et al. Apr 1988 A
4947334 Massey et al. Aug 1990 A
4962570 Hosaka et al. Oct 1990 A
5044337 Williams Sep 1991 A
5076237 Hartman et al. Dec 1991 A
5089236 Clerc Feb 1992 A
5094213 Dudek et al. Mar 1992 A
5095874 Schnaibel et al. Mar 1992 A
5108716 Nishizawa Apr 1992 A
5123397 Richeson Jun 1992 A
5150289 Badavas Sep 1992 A
5186081 Richardson et al. Feb 1993 A
5233829 Komatsu Aug 1993 A
5270935 Dudek et al. Dec 1993 A
5273019 Matthews et al. Dec 1993 A
5282449 Takahashi et al. Feb 1994 A
5293553 Dudek et al. Mar 1994 A
5349816 Sanbayashi et al. Sep 1994 A
5365734 Takeshima Nov 1994 A
5394322 Hansen Feb 1995 A
5394331 Dudek et al. Feb 1995 A
5398502 Watanabe Mar 1995 A
5408406 Mathur et al. Apr 1995 A
5431139 Grutter et al. Jul 1995 A
5452576 Hamburg et al. Sep 1995 A
5477840 Neumann Dec 1995 A
5560208 Halimi et al. Oct 1996 A
5570574 Yamashita et al. Nov 1996 A
5598825 Neumann Feb 1997 A
5609139 Ueda et al. Mar 1997 A
5611198 Lane et al. Mar 1997 A
5690086 Kawano et al. Nov 1997 A
5692478 Nogi et al. Dec 1997 A
5697339 Esposito Dec 1997 A
5704011 Hansen et al. Dec 1997 A
5746183 Parke et al. May 1998 A
5765533 Nakajima Jun 1998 A
5771867 Amstutz et al. Jun 1998 A
5785030 Paas Jul 1998 A
5788004 Friedmann et al. Aug 1998 A
5842340 Bush et al. Dec 1998 A
5846157 Reinke et al. Dec 1998 A
5893092 Driscoll Apr 1999 A
5942195 Lecea et al. Aug 1999 A
5964199 Atago et al. Oct 1999 A
5970075 Wasada Oct 1999 A
5974788 Hepburn et al. Nov 1999 A
5995895 Watt et al. Nov 1999 A
6029626 Bruestle Feb 2000 A
6035640 Kolmanovsky et al. Mar 2000 A
6048620 Zhong Apr 2000 A
6048628 Hillmann et al. Apr 2000 A
6055810 Borland et al. May 2000 A
6058700 Yamashita et al. May 2000 A
6067800 Kolmanovsky et al. May 2000 A
6076353 Fruedenberg et al. Jun 2000 A
6105365 Deeba et al. Aug 2000 A
6122555 Lu Sep 2000 A
6134883 Kato et al. Oct 2000 A
6153159 Engeler et al. Nov 2000 A
6161528 Akao et al. Dec 2000 A
6170259 Boegner et al. Jan 2001 B1
6171556 Burk et al. Jan 2001 B1
6178743 Hirota et al. Jan 2001 B1
6178749 Kolmanovsky et al. Jan 2001 B1
6208914 Ward et al. Mar 2001 B1
6216083 Ulyanov et al. Apr 2001 B1
6233922 Maloney May 2001 B1
6236956 Mantooth et al. May 2001 B1
6237330 Takahashi et al. May 2001 B1
6242873 Drozdz et al. Jun 2001 B1
6263672 Roby et al. Jul 2001 B1
6273060 Cullen Aug 2001 B1
6279551 Iwano et al. Aug 2001 B1
6312538 Latypov et al. Nov 2001 B1
6314724 Kakuyama et al. Nov 2001 B1
6321538 Hasler Nov 2001 B2
6327361 Harshavardhana et al. Dec 2001 B1
6338245 Shimoda et al. Jan 2002 B1
6341487 Takahashi et al. Jan 2002 B1
6347619 Whiting et al. Feb 2002 B1
6360159 Miller et al. Mar 2002 B1
6360541 Waszkiewicz et al. Mar 2002 B2
6360732 Bailey et al. Mar 2002 B1
6363715 Bidner et al. Apr 2002 B1
6363907 Arai et al. Apr 2002 B1
6379281 Collins et al. Apr 2002 B1
6389803 Surnilla et al. May 2002 B1
6425371 Majima Jul 2002 B2
6427436 Allansson et al. Aug 2002 B1
6431160 Sugiyama et al. Aug 2002 B1
6445963 Blevins et al. Sep 2002 B1
6446430 Roth et al. Sep 2002 B1
6453308 Zhao et al. Sep 2002 B1
6463733 Asik et al. Oct 2002 B1
6463734 Tamura et al. Oct 2002 B1
6466893 Latwesen et al. Oct 2002 B1
6470682 Gray, Jr. Oct 2002 B2
6470862 Isobe et al. Oct 2002 B2
6470886 Jestrabek-Hart Oct 2002 B1
6494038 Kobayashi et al. Dec 2002 B2
6502391 Hirota et al. Jan 2003 B1
6512974 Houston et al. Jan 2003 B2
6513495 Franke et al. Feb 2003 B1
6532433 Bharadwaj et al. Mar 2003 B2
6546329 Bellinger Apr 2003 B2
6550307 Zhang et al. Apr 2003 B1
6553754 Meyer et al. Apr 2003 B2
6560528 Gitlin et al. May 2003 B1
6560960 Nishimura et al. May 2003 B2
6571191 York et al. May 2003 B1
6579206 Liu et al. Jun 2003 B2
6591605 Lewis Jul 2003 B2
6594990 Kuenstler et al. Jul 2003 B2
6601387 Zurawski et al. Aug 2003 B2
6612293 Schweinzer et al. Sep 2003 B2
6615584 Ostertag Sep 2003 B2
6625978 Eriksson et al. Sep 2003 B1
6629408 Murakami et al. Oct 2003 B1
6637382 Brehob et al. Oct 2003 B1
6644017 Takahashi et al. Nov 2003 B2
6647710 Nishiyama et al. Nov 2003 B2
6647971 Vaughan et al. Nov 2003 B2
6651614 Flamig-Vetter et al. Nov 2003 B2
6662058 Sanchez Dec 2003 B1
6666198 Mitsutani Dec 2003 B2
6666410 Boelitz et al. Dec 2003 B2
6671603 Cari et al. Dec 2003 B2
6672052 Taga et al. Jan 2004 B2
6672060 Buckland et al. Jan 2004 B1
6679050 Takahashi et al. Jan 2004 B1
6687597 Sulatisky et al. Feb 2004 B2
6688283 Jaye Feb 2004 B2
6694244 Meyer et al. Feb 2004 B2
6694724 Tanaka et al. Feb 2004 B2
6705084 Allen et al. Mar 2004 B2
6718254 Hashimoto et al. Apr 2004 B2
6718753 Bromberg et al. Apr 2004 B2
6725208 Hartman et al. Apr 2004 B1
6736120 Surnilla May 2004 B2
6739122 Kitajima et al. May 2004 B2
6742330 Genderen Jun 2004 B2
6743352 Ando et al. Jun 2004 B2
6748936 Kinomura et al. Jun 2004 B2
6752131 Poola et al. Jun 2004 B2
6752135 McLaughlin et al. Jun 2004 B2
6758037 Terada et al. Jul 2004 B2
6760631 Berkowitz et al. Jul 2004 B1
6760657 Katoh Jul 2004 B2
6760658 Yasui et al. Jul 2004 B2
6770009 Badillo et al. Aug 2004 B2
6772585 Iihoshi et al. Aug 2004 B2
6779344 Hartman et al. Aug 2004 B2
6779512 Mitsutani Aug 2004 B2
6788072 Nagy et al. Sep 2004 B2
6789533 Hashimoto et al. Sep 2004 B1
6792927 Kobayashi Sep 2004 B2
6804618 Junk Oct 2004 B2
6814062 Esteghlal et al. Nov 2004 B2
6817171 Zhu Nov 2004 B2
6823667 Braun et al. Nov 2004 B2
6823675 Brunell et al. Nov 2004 B2
6826903 Yahata et al. Dec 2004 B2
6827060 Huh Dec 2004 B2
6827061 Nytomt et al. Dec 2004 B2
6827070 Fehl et al. Dec 2004 B2
6834497 Miyoshi et al. Dec 2004 B2
6839637 Moteki et al. Jan 2005 B2
6849030 Yamamoto et al. Feb 2005 B2
6874467 Hunt et al. Apr 2005 B2
6879906 Makki et al. Apr 2005 B2
6904751 Makki et al. Jun 2005 B2
6911414 Kimura et al. Jun 2005 B2
6915779 Sriprakash Jul 2005 B2
6920865 Lyon Jul 2005 B2
6925372 Yasui Aug 2005 B2
6925796 Nieuwstadt et al. Aug 2005 B2
6928362 Meaney Aug 2005 B2
6928817 Ahmad Aug 2005 B2
6931840 Strayer et al. Aug 2005 B2
6934931 Plumer et al. Aug 2005 B2
6941744 Tanaka Sep 2005 B2
6945033 Sealy et al. Sep 2005 B2
6948310 Roberts, Jr. et al. Sep 2005 B2
6953024 Linna et al. Oct 2005 B2
6965826 Andres et al. Nov 2005 B2
6968677 Tamura Nov 2005 B2
6971258 Rhodes et al. Dec 2005 B2
6973382 Rodriguez et al. Dec 2005 B2
6978744 Yuasa et al. Dec 2005 B2
6996975 Radhamohan et al. Feb 2006 B2
7000379 Makki et al. Feb 2006 B2
7013637 Yoshida Mar 2006 B2
7016779 Bowyer Mar 2006 B2
7028464 Rosel et al. Apr 2006 B2
7039475 Sayyarrodsari et al. May 2006 B2
7047938 Flynn et al. May 2006 B2
7052434 Makino et al. May 2006 B2
7055311 Beutel et al. Jun 2006 B2
7059112 Bidner et al. Jun 2006 B2
7063080 Kita et al. Jun 2006 B2
7069903 Surnilla et al. Jul 2006 B2
7082753 Dalla Betta et al. Aug 2006 B2
7085615 Persson et al. Aug 2006 B2
7106866 Astorino et al. Sep 2006 B2
7107978 Itoyama Sep 2006 B2
7111450 Surnilla Sep 2006 B2
7111455 Okugawa et al. Sep 2006 B2
7113835 Boyden et al. Sep 2006 B2
7117046 Boyden et al. Oct 2006 B2
7124013 Yasui Oct 2006 B2
7149590 Martin et al. Dec 2006 B2
7151976 Lin Dec 2006 B2
7152023 Das Dec 2006 B2
7155334 Stewart et al. Dec 2006 B1
7165393 Betta et al. Jan 2007 B2
7165399 Stewart Jan 2007 B2
7168239 Ingram et al. Jan 2007 B2
7182075 Shahed et al. Feb 2007 B2
7184845 Sayyarrodsari et al. Feb 2007 B2
7184992 Polyak et al. Feb 2007 B1
7188637 Dreyer et al. Mar 2007 B2
7194987 Mogi Mar 2007 B2
7197485 Fuller Mar 2007 B2
7200988 Yamashita Apr 2007 B2
7204079 Audoin Apr 2007 B2
7275374 Stewart et al. Oct 2007 B2
7275415 Rhodes et al. Oct 2007 B2
7292926 Schmidt et al. Nov 2007 B2
7302937 Ma et al. Dec 2007 B2
7321834 Chu et al. Jan 2008 B2
7323036 Boyden et al. Jan 2008 B2
7328577 Stewart et al. Feb 2008 B2
7337022 Wojsznis et al. Feb 2008 B2
7349776 Spillane et al. Mar 2008 B2
7357125 Kolavennu Apr 2008 B2
7375374 Chen et al. May 2008 B2
7376471 Das et al. May 2008 B2
7389773 Stewart et al. Jun 2008 B2
7392129 Hill et al. Jun 2008 B2
7398149 Ueno et al. Jul 2008 B2
7400967 Ueno et al. Jul 2008 B2
7413583 Langer et al. Aug 2008 B2
7415389 Stewart et al. Aug 2008 B2
7418372 Nishira et al. Aug 2008 B2
7430854 Yasui et al. Oct 2008 B2
7433743 Pistikopoulos et al. Oct 2008 B2
7444191 Caldwell et al. Oct 2008 B2
7444193 Cutler Oct 2008 B2
7447554 Cutler Nov 2008 B2
7467614 Stewart et al. Dec 2008 B2
7469177 Samad et al. Dec 2008 B2
7493236 Mock et al. Feb 2009 B1
7515975 Stewart Apr 2009 B2
7522963 Boyden et al. Apr 2009 B2
7536232 Boyden et al. May 2009 B2
7542842 Hill et al. Jun 2009 B2
7577483 Fan et al. Aug 2009 B2
7587253 Rawlings et al. Sep 2009 B2
7591135 Stewart Sep 2009 B2
7599749 Sayyarrodsari et al. Oct 2009 B2
7599750 Piche Oct 2009 B2
7627843 Dozorets et al. Dec 2009 B2
7630868 Turner et al. Dec 2009 B2
7634323 Vermillion et al. Dec 2009 B2
7634417 Boyden et al. Dec 2009 B2
7650780 Hall Jan 2010 B2
7668704 Perchanok et al. Feb 2010 B2
7698004 Boyden et al. Apr 2010 B2
7702519 Boyden et al. Apr 2010 B2
7743606 Havlena et al. Jun 2010 B2
7752840 Stewart Jul 2010 B2
7765792 Rhodes et al. Aug 2010 B2
7793489 Wang et al. Sep 2010 B2
7798938 Matsubara et al. Sep 2010 B2
7826909 Attarwala Nov 2010 B2
7831318 Bartee et al. Nov 2010 B2
7840287 Wojsznis et al. Nov 2010 B2
7844351 Piche Nov 2010 B2
7844352 Vouzis et al. Nov 2010 B2
7846299 Backstrom et al. Dec 2010 B2
7850104 Havlena et al. Dec 2010 B2
7856966 Saitoh Dec 2010 B2
7860586 Boyden et al. Dec 2010 B2
7862771 Boyden et al. Jan 2011 B2
7877239 Grichnik et al. Jan 2011 B2
7878178 Stewart et al. Feb 2011 B2
7904280 Wood Mar 2011 B2
7905103 Larsen et al. Mar 2011 B2
7907769 Sammak et al. Mar 2011 B2
7930044 Attarwala Apr 2011 B2
7933849 Bartee et al. Apr 2011 B2
7958730 Stewart Jun 2011 B2
7987145 Baramov Jul 2011 B2
7996140 Stewart et al. Aug 2011 B2
8019911 Dressler et al. Sep 2011 B2
8025167 Schneider et al. Sep 2011 B2
8032235 Sayyar-Rodsari Oct 2011 B2
8060290 Stewart et al. Nov 2011 B2
8078291 Pekar et al. Dec 2011 B2
8109255 Stewart et al. Feb 2012 B2
20020116104 Kawashima et al. Aug 2002 A1
20030089102 Colignon et al. May 2003 A1
20030150961 Boelitz et al. Aug 2003 A1
20040006973 Makki et al. Jan 2004 A1
20040034460 Folkerts et al. Feb 2004 A1
20040086185 Sun May 2004 A1
20040117766 Mehta et al. Jun 2004 A1
20040118107 Ament Jun 2004 A1
20040165781 Sun Aug 2004 A1
20040199481 Hartman et al. Oct 2004 A1
20040221889 Dreyer et al. Nov 2004 A1
20040226287 Edgar et al. Nov 2004 A1
20050143952 Tomoyasu et al. Jun 2005 A1
20050171667 Morita Aug 2005 A1
20050187643 Sayyar-Rodsari et al. Aug 2005 A1
20050193739 Brunell et al. Sep 2005 A1
20050209714 Rawlings et al. Sep 2005 A1
20050210868 Funabashi Sep 2005 A1
20060047607 Boyden et al. Mar 2006 A1
20060111881 Jackson May 2006 A1
20060168945 Samad et al. Aug 2006 A1
20060265203 Jenny et al. Nov 2006 A1
20060282178 Das et al. Dec 2006 A1
20070142936 Denison et al. Jun 2007 A1
20070144149 Kolavennu et al. Jun 2007 A1
20070156259 Baramov et al. Jul 2007 A1
20070275471 Coward Nov 2007 A1
20080071395 Pachner Mar 2008 A1
20080097625 Vouzis et al. Apr 2008 A1
20080103747 Macharia et al. May 2008 A1
20080103748 Axelrud et al. May 2008 A1
20080104003 Macharia et al. May 2008 A1
20080109100 Macharia et al. May 2008 A1
20080125875 Stewart et al. May 2008 A1
20080132178 Chatterjee et al. Jun 2008 A1
20080183311 MacArthur et al. Jul 2008 A1
20080208778 Sayyar-Rodsari et al. Aug 2008 A1
20080244449 Morrison et al. Oct 2008 A1
20090005889 Sayyar-Rodsari Jan 2009 A1
20090008351 Schneider et al. Jan 2009 A1
20090043546 Srinivasan et al. Feb 2009 A1
20090131216 Matsubara et al. May 2009 A1
20090182518 Chu et al. Jul 2009 A1
20090198350 Thiele Aug 2009 A1
20090240480 Baramov Sep 2009 A1
20090254202 Pekar et al. Oct 2009 A1
20090287320 MacGregor et al. Nov 2009 A1
20090312998 Berckmans et al. Dec 2009 A1
20100017094 Stewart et al. Jan 2010 A1
20100038158 Whitney et al. Feb 2010 A1
20100050607 He et al. Mar 2010 A1
20100122523 Vosz May 2010 A1
20100204808 Thiele Aug 2010 A1
20100268353 Crisalle et al. Oct 2010 A1
20100300070 He et al. Dec 2010 A1
20100305719 Pekar et al. Dec 2010 A1
20100327090 Havlena et al. Dec 2010 A1
20110006025 Schneider et al. Jan 2011 A1
20110010073 Stewart et al. Jan 2011 A1
20110029235 Berry Feb 2011 A1
20110046752 Piche Feb 2011 A1
20110060424 Havlena Mar 2011 A1
20110066308 Yang et al. Mar 2011 A1
20110071653 Kihas Mar 2011 A1
20110087420 Stewart et al. Apr 2011 A1
20110104015 Boyden et al. May 2011 A1
20110125293 Havlena May 2011 A1
20110167025 Danai et al. Jul 2011 A1
20110270505 Chaturvedi et al. Nov 2011 A1
20110301723 Pekar et al. Dec 2011 A1
20120010732 Stewart et al. Jan 2012 A1
Foreign Referenced Citations (21)
Number Date Country
19628796 Oct 1997 DE
10219832 Nov 2002 DE
0301527 Feb 1989 EP
0950803 Apr 1999 EP
1134368 Mar 2001 EP
1180583 Feb 2002 EP
1221544 Jul 2002 EP
1245811 Oct 2002 EP
1686251 Aug 2006 EP
2107439 Oct 2009 EP
2146258 Jan 2010 EP
59190443 Oct 1984 JP
2010282618 Dec 2010 JP
0232552 Apr 2002 WO
WO 02101208 Dec 2002 WO
03048533 Jun 2003 WO
WO 03065135 Aug 2003 WO
WO 03078816 Sep 2003 WO
WO 2004027230 Apr 2004 WO
2008033800 Mar 2008 WO
2008115911 Sep 2008 WO
Non-Patent Literature Citations (78)
Entry
“SCR, 400-csi Coated Catalyst,” Leading NOx Control Technologies Status Summary, 1 page prior to Feb. 2, 2005.
Advanced Petroleum-Based Fuels-Diesel Emissions Control (APBF-DEC) Project, “Quarterly Update,” No. 7, 6 pages, Fall 2002.
Allanson, et al., “Optimizing the Low Temperature Performance and Regeneration Efficiency of the Continuously Regenerating Diesel Particulate Filter System,” SAE Paper No. 2002-01-0428, 8 pages, Mar. 2002.
Amstuz, et al., “EGO Sensor Based Robust Output Control of EGR in Diesel Engines,” IEEE TCST, vol. 3, No. 1, 12 pages, Mar. 1995.
Bemporad, et al., “Explicit Model Predictive Control,” 1 page, prior to Feb. 2, 2005.
Bertsekas, “On the Goldstein-Levitin-Polyak Gradient Projection Method,” IEEE Transactions on Automatic Control, vol. AC-21, No. 2, pp. 174-184, Apr. 1976.
Bertsekas, “Projected Newton Methods for Optimization Problems with Simple Constraints,” SIAM J. Control and Ostimization, vol. 20, No. 2, pp. 221-246, Mar. 1982.
Borrelli, “Constrained Optimal Control of Linear and Hybrid Systems,” Lecture Notes in Control and Information Sciences, vol. 290, 2003.
Catalytica Energy Systems, “Innovative NOx Reduction Solutions for Diesel Engines,” 13 pages, 3rd Quarter, 2003.
Chatterjee, et al. “Catalytic Emission Control for Heavy Duty Diesel Engines,” JM, 46 pages, prior to Feb. 2, 2005.
De Schutter et al., “Model Predictive Control for Max-Min-Plus-Scaling Systems,” Proceedings of the 2001 American Control Conference, Arlington, Va, pp. 319-324, Jun. 2001.
Delphi, Delphi Diesel NOx Trap (DNT), 3 pages, Feb. 2004.
Diehl et al., “Efficient Numerical Methods for Nonlinear MPC and Moving Horizon Estimation,” Int. Workshop on Assessment and Future Directions of NMPC, 24 pages, Pavia, Italy, Sep. 5-9, 2008.
GM “Advanced Diesel Technology and Emissions,” powertrain technologies—engines, 2 pages, prior to Feb. 2, 2005.
Guerreiro et al., “Trajectory Tracking Nonlinear Model Predictive Control for Autonomous Surface Craft,” Proceedings of the European Control Conference, Budapest, Hungary, 6 pages, Aug. 2009.
Guzzella, et al., “Control of Diesel Engines,” IEEE Control Systems Magazine, pp. 53-71, Oct. 1998.
Havelena, “Componentized Architecture for Advanced Process Management,” Honeywell International, 42 pages, 2004.
Hiranuma, et al., “Development of DPF System for Commercial Vehicle—Basic Characteristic and Active Regeneration Performance,” SAE Paper No. 2003-01-3182, Mar. 2003.
Honeywell, “Profit Optimizer a Distributed Quadratic Program (DQP) Concepts Reference,” 48 pages, prior to Feb. 2, 2005.
http://www.not2fast.wryday.com/turbo/glossary/turbo—glossary.shtml, “Not2Fast: Turbo Glossary,” 22 pages, printed Oct. 1, 2004.
http://www.tai-cwv.com/sb1106.0.html, “Technical Overview—Advanced Control Solutions,” 6 pages, printed Sep. 9, 2004.
Jonsson, “Fuel Optimized Predictive Following in Low Speed Conditions,” Master's Thesis, 46 pages, Jun. 28, 2003.
Kelly, et al., “Reducing Soot Emissions from Diesel Engines Using One Atmosphere Uniform Glow Discharge Plasma,” SAE Paper No. 2003-01-1183, Mar. 2003.
Kolmanovsky, et al., “Issues in Modeling and Control of Intake Flow in Variable Geometry Turbocharged Engines”, 18th IFIP Conf. System Modeling and Optimization, pp. 436-445, Jul. 1997.
Kulhavy, et al. “Emerging Technologies for Enterprise Optimization in the Process Industries,” Honeywell, 12 pages, Dec. 2000.
Locker, et al., “Diesel Particulate Filter Operational Characterization,” Corning Incorporated, 10 pages, prior to Feb. 2, 2005.
Lu, “Challenging Control Problems and Engineering Technologies in Enterprise Optimization,” Honeywell Hi-Spec Solutions, 30 pages, Jun. 4-6, 2001.
Mehta, “The Application of Model Predictive Control to Active Automotive Suspensions,” 56 pages, May 17, 1996.
Moore, “Living with Cooled-EGR Engines,” Prevention Illustrated, 3 pages, Oct. 3, 2004.
Murayama et al., “Speed Control of Vehicles with Variable Valve Lift Engine by Nonlinear MPC,” ICROS-SICE International Joint Conference, pp. 4128-4133, 2009.
National Renewable Energy Laboratory (NREL), “Diesel Emissions Control-Sulfur Effects Project (DECSE) Summary of Reports,” U.S. Department of Energy, 19 pages, Feb. 2002.
Salvat, et al., “Passenger Car Serial Application of a Particulate Filter System on a Common Rail Direct Injection Engine,” SAE Paper No. 2000-01-0473, 14 pages, Feb. 2000.
Shamma, et al. “Approximate Set-Valued Observers for Nonlinear Systems,” IEEE Transactions on Automatic Control, vol. 42, No. 5, May 1997.
Soltis, “Current Status of NOx Sensor Development,” Workshop on Sensor Needs and Requirements for PEM Fuel Cell Systems and Direct-Injection Engines, 9 pages, Jan. 25-26, 2000.
Stefanopoulou, et al., “Control of Variable Geometry Turbocharged Diesel Engines for Reduced Emissions,” IEEE Transactions on Control Systems Technology, vol. 8, No. 4, pp. 733-745, Jul. 2000.
Storset, et al., “Air Charge Estimation for Turbocharged Diesel Engines,” vol. 1 Proceedings of the American Control Conference, 8 pages, Jun. 28-30, 2000.
The MathWorks, “Model-Based Calibration Toolbox 2.1 Calibrate complex powertrain systems,” 4 pages, prior to Feb. 2, 2005.
The MathWorks, “Model-Based Calibration Toolbox 2.1.2,” 2 pages, prior to Feb. 2, 2005.
Theiss, “Advanced Reciprocating Engine System (ARES) Activities at the Oak Ridge National Lab (ORNL), Oak Ridge National Laboratory,” U.S. Department of Energy, 13 pages, Apr. 14, 2004.
Van Basshuysen et al., “Lexikon Motorentechnik,” (Dictionary of Automotive Technology) published by Vieweg Verlag, Wiesbaden 039936, p. 518, 2004. (English Translation).
Van Den Boom et al., “MPC for Max-Plus-Linear Systems: Closed-Loop Behavior and Tuning,” Proceedings of the 2001 American Control Conference, Arlington, Va, pp. 325-330, Jun. 2001.
Van Keulen et al., “Predictive Cruise Control in Hybrid Electric Vehicles,” World Electric Vehicle Journal vol. 3, ISSN 2032-6653, pp. 1-11, 2009.
Wang et al., “Fast Model Predictive Control Using Online Optimization,” Proceedings of the 17th World Congress, the International Federation of Automatic Control, Seoul, Korea, pp. 6974-6979, Jul. 6-11, 2008.
Wang et al., “PSO-Based Model Predictive Control for Nonlinear Processes,” Advances in Natural Computation, Lecture Notes in Computer Science, vol. 3611/2005, 8 pages, 2005.
Zavala et al., “The Advance-Step NMPC Controller: Optimality, Stability, and Robustness,” Automatica, vol. 45, pp. 86-93, 2009.
Zeilinger et al., “Real-Time MPC—Stability Through Robust MPC Design,” Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference, Shanghai, P.R. China, pp. 3980-3986, Dec. 16-18, 2009.
Zenlenka, et al., “An Active Regeneration as a Key Element for Safe Particulate Trap Use,” SAE Paper No. 2001-0103199, 13 pages, Feb. 2001.
Zhu, “Constrained Nonlinear Model Predictive Control for Vehicle Regulation,” Dissertation, Graduate School of the Ohio State University, 125 pages, 2008.
“Model Predictive Control Toolbox Release Notes,” The Mathworks, 24 pages, Oct. 2008.
“MPC Implementation Methods for the Optimization of the Response of Control Valves to Reduce Variability,” Advanced Application Note 002, Rev. A, 10 pages, 2007.
Bemporad et al., “Model Predictive Control Toolbox 3, User's Guide,” Matlab Mathworks, 282 pages, 2008.
Bemporad et al., “The Explicit Linear Quadratic Regulator for Constrained Systems,” Automatica, 38, pp. 3-20, 2002.
Bemporad, “Model Predictive Control Based on Linear Programming—The Explicit Solution,” IEEE Transactions on Automatic Control, vol. 47, No. 12, pp. 1974-1984, Dec. 2002.
Bemporad, “Model Predictive Control Design: New Trends and Tools,” Proceedings of the 45th IEEE Conference on Decision & Control, pp. 6678-6683, Dec. 13-15, 2006.
Boom et al., “MPC for Max-Plus-Linear Systems: Closed-Loop Behavior and Tuning”, Jun. 2001, Proceedings of the 2001 American Control Conference, Arlington, VA, pp. 325-300.
Borrelli et al., “An MPC/Hybrid System Approach to Traction Control,” IEEE Transactions on Control Systems Technology, vol. 14, No. 3, pp. 541-553, May 2006.
Borrelli, “Discrete Time Constrained Optimal Control,” A Dissertation Submitted to the Swiss Federal Institute of Technology (ETH) Zurich, Diss. ETH No. 14666, 232 pages, Oct. 9, 2002.
Bunting, “Increased Urea Dosing Could Cut SCR Truck Running Costs”, http://www.automotiveworld.com/article/85897-increased-urea-dosing-could-cut-scr-truck-running-costs, Automotive World, 3 pages, Feb. 24, 2011, printed Mar. 2, 2011.
International Application Status Report for WO 2008/033800.
U.S. Appl. No. 13/236,217.
U.S. Appl. No. 13/290,012.
Johansen et al., “Hardware Architecture Design for Explicit Model Predictive Control,” Proceedings of ACC, 6 pages, 2006.
Johansen et al., “Hardware Synthesis of Explicit Model Predictive Controllers,” IEEE Transactions on Control Systems Technology, vol. 15, No. 1, Jan. 2007.
Keulen et al., “Predictive Cruise Control in Hybrid Electric Vehicles”, May 2009, World Electric Journal, vol. 3, ISSN 2032-6653.
Maciejowski, “Predictive Control with Constraints,” Prentice Hall, Pearson Education Limited, 4 pages, 2002.
Mariethoz et al., “Sensorless Explicit Model Predictive Control of the DC-DC Buck Converter with Inductor Current Limitation,” IEEE Applied Power Electronics Conference and Exposition, pp. 1710-1715, 2008.
Marjanovic, “Towards a Simplified Infinite Horizon Model Predictive Controller,” 6 pages, Proceedings of the 5th Asian Control Conference, 6 pages, Jul. 20-23, 2004.
Mayne et al., “Constrained Model Predictive Control: Stability and Optimality,” Automatica, vol. 36, pp. 789-814, 2000.
Ortner et al., “MPC for a Diesel Engine Air Path Using an Explicit Approach for Constraint Systems,” Proceedings of the 2006 IEEE Conference on Control Applications, Munich Germany, pp. 2760-2765, Oct. 4-6, 2006.
Ortner et al., “Predictive Control of a Diesel Engine Air Path,” IEEE Transactions on Control Systems Technology, vol. 15, No. 3, pp. 449-456, May 2007.
Pannocchia et al., “Combined Design of Disturbance Model and Observer for Offset-Free Model Predictive Control,” IEEE Transactions on Automatic Control, vol. 52, No. 6, 6 pages, 2007.
Qin et al., “A Survey of Industrial Model Predictive Control Technology,” Control Engineering Practice, 11, pp. 733-764, 2003.
Rawlings, “Tutorial Overview of Model Predictive Control,” IEEE Control Systems Magazine, pp. 38-52, Jun. 2000.
Schauffele et al., “Automotive Software Engineering Principles, Processes, Methods, and Tools,” SAE International, 10 pages, 2005.
Schutter et al., “Model Predictive Control for Max-Min-Plus-Scaling Systems”, Jun. 2001, Proceedings of the 2001 American Control Conference, Arlington, VA, pp. 319-324.
Stewart et al., “A Model Predictive Control Framework for Industrial Turbodiesel Engine Control,” Proceedings of the 47th IEEE Conference on Decision and Control, 8 pages, 2008.
Stewart et al., “A Modular Model Predictive Controller for Turbodiesel Problems,” First Workshop on Automotive Model Predictive Control, Schloss Muhldorf, Feldkirchen, Johannes Kepler University, Linz, 3 pages, 2009.
Tondel et al., “An Algorithm for Multi-Parametric Quadratic Programming and Explicit MPC Solutions,” Automatica, 39, pp. 489-497, 2003.
Related Publications (1)
Number Date Country
20120116649 A1 May 2012 US
Continuations (3)
Number Date Country
Parent 12973704 Dec 2010 US
Child 13353178 US
Parent 12144445 Jun 2008 US
Child 12973704 US
Parent 11206404 Aug 2005 US
Child 12144445 US