The present disclosure relates generally to a monitoring system for a machine, and, more particularly, to an engine coolant monitoring system for a machine.
Earth-moving machines, for example, excavators, shovels, continuous miners, loaders, trucks, etc., include a power source that provides power for propelling the machines and for operation of one or more work tools of the machine. The power source typically includes an internal combustion engine. Operation of the engine may require a variety of fluids other than fuel. For example, the engine may require engine lubricant for lubrication of the engine moving parts. The engine lubricant may accumulate soot and/or debris generated due to wear of the engine components as the engine lubricant circulates within the engine. The engine lubricant may also burn, decompose, and/or degrade because of exposure to high temperatures in the engine. The engine may also employ an engine coolant for cooling the combustion chambers of the engine. Like the engine lubricant, the engine coolant may also accumulate debris and may degrade or decompose because of exposure to high temperatures generated in the engine.
Power may be transferred from the engine to wheels or tracked undercarriages of the machine via a transmission and gearbox system. The transmission and gear box system may employ transmission fluid and/or gear oil for lubrication. In some cases, power may be transferred to the wheels or tracked undercarriages by hydraulic pumps or motors, which may be driven by the engine, and which may direct hydraulic fluid to drive the wheels or tracked undercarriages. Further, power may be transferred from the engine to various work tools of the machine via hydraulic pumps or motors, which may direct pressurized hydraulic fluid into or out of hydraulic cylinders associated with the work tools. The transmission fluid, gear oil, and/or hydraulic fluid may also accumulate dirt and debris as the fluid circulates through various components. Furthermore, the transmission fluid, gear oil, and/or hydraulic fluid may decompose or degrade as it circulates through the pumps, motors, and/or work tools. The machines may include other fluids, for example, brake fluid used in braking systems associated with the machines. Although the different fluids in the machines typically flow through their respective closed-loop circuits, one or more of the fluids may intermingle if leaks are present in the engine, transmission, hydraulic pumps and motors, conduits carrying the various fluids etc.
The various fluids, for example, engine lubricant, coolant, transmission fluid, gear oil, brake fluid, and/or hydraulic fluid may be periodically replaced or topped off as part of a predetermined maintenance schedule. The predetermined maintenance schedule, however, may not account for the rate of debris accumulation, decomposition, and/or degradation of the one or more fluids because of the operating environment, load conditions, or wear rate of a particular machine. Thus, one or more of the fluids may need to be replaced or topped off before the predetermined maintenance period. Alternatively, the fluids may not need to be replaced according to the predetermined maintenance schedule when, for example, the machine has not been used or when the machine is new. In some cases, early failure of one or more of engine, transmission, or hydraulic components may require unscheduled maintenance, requiring the machine to be removed from service. Moreover, it may be difficult to detect the presence of leaks, which may cause the fluids to intermingle during a scheduled or unscheduled maintenance of the machine. Thus, it may be desirable to determine a fluid condition of one or more of the fluids in the machine and/or a component condition of machine components subject to wear so that maintenance activities may be scheduled with minimum disruption in the use of the machine. Further, it may be desirable to detect the presence of leaks in one or more engine systems so that appropriate repairs may be carried out before catastrophic failure of one or more engine components.
U.S. Pat. No. 8,965,625 B2 to Dvorak et al. (“the '625 patent”) that issued on Feb. 24, 2015, discloses a system for predicting a portion of used lubricant in an engine that is to be drained and replaced with fresh lubricant. The '625 patent discloses receiving a first input of an analysis characteristic value from the used lubricant. According to the '625 patent, the analysis characteristic value may consist of amounts of various elements (e.g. iron, lead, tin, etc.), water, fuel, sludge, insolubles, etc. The '625 patent also discloses receiving a second input consisting of an analysis characteristic threshold. The '625 patent discloses a process for predicting a future analysis characteristic value based on the two received inputs and historical characteristic values. The '625 patent also discloses determining whether the predicted characteristic value exceeds the characteristic threshold. Further, the '625 patent discloses determining an amount of lubricant that should be replaced to extend the lubricant life to a future predetermined service interval.
Although the '625 patent discloses the use of lubricant sample analysis, the disclosed systems and methods may still not be optimal. In particular, the systems and methods of the '625 patent rely on analysis of each analysis characteristic individually, ignoring the impact of more than one analysis characteristic on the maintenance schedule. Furthermore, the systems and methods of the '625 patent determine whether to replace or top off the lubricant when the machine has already been removed from service for maintenance. Additionally, the disclosed systems and methods do not determine whether repair or replacement of one or more machine components is required.
The engine coolant monitoring system of the present disclosure solves one or more of the problems set forth above and/or other problems in the art.
In one aspect, the present disclosure is directed to an engine coolant monitoring system for a machine. The engine coolant monitoring system may include a test device configured to test a fluid sample of an engine coolant from the machine. The engine coolant monitoring system may also include a database configured to store a test result generated by the test device, the test result including a plurality of characteristics of the fluid sample. In addition, the engine coolant monitoring system may include a controller. The controller may be configured to access a rule-set associated with the engine coolant from the database. The rule-set may include criteria associated with the characteristics. The controller may be further configured to determine whether characteristics of the fluid sample satisfy the criteria. The controller may also be configured to label the engine coolant as normal when the characteristics of the fluid sample satisfy the criteria and label the engine coolant as abnormal when the characteristics do not satisfy at least one criterion included in the rule-set.
In another aspect, the present disclosure is directed to a method of monitoring engine coolant in a machine. The method may include extracting a fluid sample of the engine coolant from the machine. The method may also include testing the fluid sample using at least one test apparatus. Further, the method may include generating a test result, including a plurality of characteristics of the fluid sample. The method may include storing the test result in a database. The method may further include accessing, using a controller, a rule-set associated with the engine coolant from the database, the rule-set including criteria associated with the characteristics. The method may also include determining whether characteristics of the fluid sample satisfy the criteria. In addition, the method may include labeling the engine coolant as normal when the characteristics of the fluid sample satisfy the criteria, and labeling the engine coolant as abnormal when the characteristics do not satisfy at least one criterion included in the rule-set.
Power source 12 may be supported by frame 22 of machine 10, and may include an engine 12 configured to produce a rotational power output and transmission 24 that converts the power output to a desired ratio of speed and torque. In addition to driving work tool 16, engine 12 may also function to propel machine 10, for example via one or more traction devices 14. In some exemplary embodiments, rotational power output from engine 12 and/or transmission 24 may be used to drive one or more pumps (not shown) that supply pressurized hydraulic fluid to lift actuators 18, tilt actuators 20, and/or to one or more hydraulic motors associated with traction devices 14. Engine 12 may be a combustion engine configured to burn a mixture of fuel and air, the amount and/or composition of which directly corresponds to the rotational power output of engine 12. Engine 12 may include engine lubricant for lubricating various engine components.
Transmission 24 may be configured to communicate the rotational power output of engine 12 to traction devices 14. Transmission 24 may take any form known in the art, for example a power shift configuration that provides multiple discrete operating ranges, a continuously variable configuration, or a hybrid configuration. Transmission 24 may include transmission oil that may lubricate various components of transmission 24. Transmission 24 may further include gear box 26, which may include gear oil for lubrication of gears (not shown) in gear box 26. In some exemplary embodiments, both transmission 24 and gear box 26 may be lubricated by the same oil, which may be transmission oil or gear oil.
Numerous different work tools 16 may be operatively attachable to a single machine 10 and driven by engine 12. Work tool 16 may include any device used to perform a particular task such as, for example, a bucket, a fork arrangement, a blade, a shovel, or any other task-performing device known in the art. Although connected in the embodiment of
Machine 10 may include console 28 that may be configured to allow operator 30 (see
Processor 42 may embody a single or multiple microprocessors, digital signal processors (DSPs), etc. Numerous commercially available microprocessors can be configured to perform the functions of processor 42. Various other known circuits may be associated with processor 42, including power supply circuitry, signal-conditioning circuitry, and communication circuitry. Storage device 44 may embody non-transitory computer-readable media, for example, Random Access Memory (RAM) devices, NOR or NAND flash memory devices, and Read Only Memory (ROM) devices, CD-ROMs, hard disks, floppy drives, optical media, solid state storage media, etc.
One or more input devices 34 may also be associated with controller 32. Controller 32 may receive inputs from operator 30 via input device 34 and may perform operations based on the received inputs. In one exemplary embodiment, input device 34 may enable operator 30 of console 28 to provide inputs to controller 32 for controlling, for example, engine 12, lift and tilt actuators 18, 20, work tool 16, transmission 24, gear box 26, etc. Input device 34 may also enable operator 30 to provide numerical, textual, graphic, or audio-visual inputs to controller 32. Input device 34 may include a physical keyboard, virtual touch-screen keyboard, mouse, joystick, stylus, etc. In certain embodiments, input device 34 may also include one or more microphones (not shown) using, for example, speech-to-text and/or voice recognition applications.
One or more display devices 36 may be associated with controller 32 and may be configured to display textual or graphical data or information in cooperation with processor 42. For example, display device 36 may be configured to display information generated by processor 42 or information received via communication device 40. Display device 36 may be a cathode ray tube (CRT) monitor, a liquid crystal display (LCD), a light emitting diode (LED) display, a projector, a projection television set, a touchscreen display, or any other kind of display device known in the art.
Alert device 38 may be associated with controller 32, and may be configured to generate an audible alert (e.g. beep or other sound), a visual alert (e.g. colored light, colored graphic or icon), or an audio-visual alert (e.g. graphic or icon accompanied by sound) based on instructions received from processor 42. Alert device 38 may be a separate device, or may be incorporated in display device 36 to provide one or more alerts to operator 30 of console 28. Communication device 40 of console 28 may be configured to wirelessly send or receive data and/or instructions. Communication device 40 may include hardware and/or software that enable the sending and/or receiving of data messages through a communications link. The communications link may include satellite, cellular, infrared, radio, and/or any other type of wireless communications. In one exemplary embodiment as illustrated in
Although, controller 32, input device 34, display device 36, alert device 38, and communication device 40 have been described separately, it is contemplated that controller 32, input device 34, display device 36, alert device 38, and communication device 40 may be integrated into a single console 28. Further, although
Test apparatus 58 may include one or more devices configured to perform a variety of tests on fluid sample 64. Test apparatus 58 may be configured to determine, for example, an amount of water, an amount of debris (e.g. precipitate, insolubles, etc.), an amount of one or more of elements (e.g. iron, aluminum, silicon, copper, chromium, sodium, potassium, lead zinc, tin, etc.), and/or an amount of compounds (e.g. oil, ammonia, glycol, etc.) present in fluid sample 64. Test apparatus 58 may also be configured to determine a color, density, opacity, transmissivity, absorptivity, viscosity, conductivity, vaporization temperature, acidity or basicity, a pH value, an amount of foam, and/or other physical characteristics of fluid sample 64 known in the art.
Test apparatus 58 may include one or more of titration instruments, liquid chromatography devices, gas chromatography devices, inductively coupled spectrometers, viscometers, light extinction particle counters, pH meters, refractometers, conductivity measurement devices, and/or other fluid property test apparatuses known in the art. One or more test apparatuses 58 may be used to determine a plurality of characteristics of fluid sample 64, which may collectively comprise a test result for fluid sample 64. For example, one or more titration instruments may be used to determine a total base number (TBN) of fluid sample 64, a total acid number (TAN) of fluid sample 64, an amount of water in fluid sample 64, etc. The total base number may provide an estimate of an amount of additives in fluid sample 64 that may be capable of neutralizing acidic components generated during combustion. Likewise, the total acid number may provide an estimate of an amount of additives in fluid sample 64 that may be capable of neutralizing acidic components generated during combustion. Other characteristics of fluid sample 64 may include an amount of fuel, oil, or glycol determined using, for example, one or more gas chromatography devices. Characteristics of fluid sample 64 may include amounts of elements such as copper (Cu), iron (Fe), chromium (Cr), lead (Pb), aluminum (Al), silicon (Si), molybdenum (Mo), magnesium (Mg), nickel (Ni), zinc (Zn), tin (Sn), sodium (Na), calcium (Ca), phosphorus (P), potassium (K), barium (Ba), boron (B), Cadmium (Cd), manganese (Mn), silver (Ag), titanium (Ti), vanadium (V), etc., which may be determined using, for example, one or more inductively coupled spectrometers. The amounts of water, fuel, oil, glycol, and various elements may be expressed in absolute units of mass or volume or in terms of a percentage based on a mass or volume of fluid sample 64. The amounts may also be expressed in terms of parts per million present in fluid sample 64.
Database 60 may include one or more logically and/or physically separate databases configured to store data and/or instructions. Data stored in database 60 may include one or more test results for one or more fluid samples 64. Test results stored in database 60 may be received from test apparatus 58, controller 32 of machine 10, analysis system 54, and/or may be provided as input using conventional methods (e.g., data entry, data transfer, data uploading, etc.) In one exemplary embodiment, database 60 may be implemented using a non-transitory computer-readable storage medium. In another exemplary embodiment, database 60 may be maintained in a network attached storage device, in a storage area network, or combinations thereof, etc. In yet another exemplary embodiment, database 60 may store the data on storage devices, which may include, for example, hard drives, RAID arrays, solid state drives, NOR or NAND flash memory devices, and/or Read Only Memory (ROM) devices. Furthermore, database 60 may be maintained and queried using numerous types of database software and programming languages, for example, SQL, MySQL, IBM DB2®, Microsoft Access®, PERL, C/C++, Java®, etc.
An identifier (numeric or alphanumeric) corresponding to fluid sample 64 may be stored in database 60. In some exemplary embodiments, database 60 may also store a model number or description, a serial number, a model year, and/or other sales or ownership related information corresponding to machine 10 from which fluid sample 64 is extracted. Database 60 may store the identifier of fluid sample 64 in association with the model number or description, the serial number, the model year, and/or other sales or ownership related information corresponding to machine 10. Database 60 may also store test results, including characteristics of fluid sample 64 determined using the one or more test apparatuses 58, in association with the identifier of fluid sample 64.
Database 60 may further store one or more rule-sets 400 (
Rule 404 of rule-set 400 may relate to a characteristic representing an amount of sodium. Rule 404 may be satisfied, for example, when an amount of sodium “Na” in fluid sample 64 is less than a sodium threshold “NaMAX.” Rule 406 of rule-set 400 may relate to a characteristic representing an amount of potassium. Rule 406 may be satisfied, for example, when an amount of potassium “K” in fluid sample 64 is less than a potassium threshold “KMAX.” Rule 408 of rule-set 400 may related to a characteristic representing a change in viscosity. Rule 408 may be satisfied when a measured viscosity change “Δμ” is less than a viscosity change threshold “ΔμMAX.” The change in viscosity Δμ may be determined by comparing a current viscosity “μcurrent” of fluid sample 64 with a previous value of viscosity “μprevious” stored in database 60. In one exemplary embodiment, μprevious may represent a historical value of viscosity of fluid samples of fluids similar to that in fluid sample 64 obtained from a particular machine 10. In another exemplary embodiment, μprevious may represent a historical value of viscosity of fluid samples 64 obtained from many machines similar to machine 10. The previous value of viscosity μprevious may be an average value, a maximum value, a minimum value, or may represent any other statistical measure known in the art.
Rules 410 and 412 of rule-set 400 may define first and second metal rules, respectively. First metal rule (rule 410) may be satisfied, for example, when one or more of Fe (an amount of iron), Al (an amount of aluminum), Si (an amount of silicon), and Cu (an amount of copper) are less than their corresponding threshold values “FeMAX,” “AlMAX,” “SiMAX,” and “CuMAX,” respectively. Second metal rule (rule 412) may be similar to rule 410 and may be satisfied when Cr (an amount of chromium) is less than a chromium threshold “CrMAX,” in addition to the criteria for the other elements specified in first metal rule 410. In one exemplary embodiment as illustrated in
In one exemplary embodiment, fluid sample 64 may be labeled “Normal,” only when a test result corresponding to fluid sample 64 satisfies each of the plurality of rules (e.g. 402-412), in rule-set 400. Fluid sample 64 may be labeled “Abnormal” when the test result for fluid sample 64 does not satisfy at least one of the rules 402-412 in rule-set 400. In another exemplary embodiment, fluid sample 64 may be labeled “Normal,” when fluid sample 64 satisfies a subset of rules selected from rule-set 400. For example, fluid sample 64 may be labeled “Normal” when a test result of fluid sample 64 satisfies rules 402-404 and at least one of first and second metal rules 410, 412, and may be labeled “Abnormal” when the test result of fluid sample 64 does not satisfy at least one of rules 402-404, 410, or 412.
As illustrated in
Rule 504 may specify conditions related to the opacity of fluid sample 64. For example, based on the measurements obtained by test apparatus 58, fluid sample 64 may be classified as being transparent, cloudy, or opaque. In one exemplary embodiment, rule 504 may be satisfied when a fluid sample 64 is transparent or cloudy, but not when fluid sample 64 is opaque. It is contemplated that rule 504 may include one or more other conditions based on opacity of fluid sample 64.
Rule 506 may specify conditions related to an amount of foam in fluid sample 64. For example, based on the measurements obtained by test apparatus 58, an amount of foam in fluid sample 64 may be classified as normal or light. Thus, for example, an amount of foam in fluid sample 64, as determined by test apparatus 58, may be deemed normal if it exceeds a foam threshold. In one exemplary embodiment, rule 506 may be satisfied when fluid sample 64 has a “normal” amount of foam. It is contemplated that rule 506 may include one or more other conditions based on the amount of foam in fluid sample 64.
Rule 508 may specify conditions related to an amount of oil in fluid sample 64. For example, the amount of oil in fluid sample 64 as determined by test apparatus 58 may be labeled “Trace,” when it is less than an oil threshold and “Present,” when the amount of oil is greater than or equal to the oil threshold. Rule 508 may be satisfied, for example, when fluid sample 64 includes “Trace” amounts of oil, but not when fluid sample 64 includes more than a “Trace” amount of oil. It is contemplated that rule 508 may include one or more other conditions based on the amount of oil in fluid sample 64.
Rule 510 may specify conditions related to an amount of ammonia in fluid sample 64. For example, the amount of ammonia in fluid sample 64 as determined by test apparatus 58 may be labeled “Trace,” when it is less than an ammonia threshold and “Present,” when the amount of ammonia exceeds the ammonia threshold. Rule 510 may be satisfied, for example, when fluid sample 64 includes “Trace” amounts of ammonia, but not when fluid sample 64 includes more than a “Trace” amount of ammonia. It is contemplated that rule 510 may include other conditions based on the amount of ammonia in fluid sample 64.
Rule 512 may specify conditions related to an amount of glycol in fluid sample 64. For example, the amount of glycol in fluid sample 64 may be determined to be in “Grange 1,” when the amount of glycol in fluid sample 64 is less than a first glycol threshold. The amount of glycol in fluid sample 64 may be determined to be in “Grange 2,” when the amount of glycol in fluid sample 64 ranges between the first glycol threshold and a second glycol threshold. Likewise the amount of glycol in fluid sample 64 may be determined to be in “Grange 3,” when the amount of glycol in fluid sample 64 ranges between the second glycol threshold and a third glycol threshold. Fewer or more ranges based on the amount of glycol may be included in rule 512. Rule 512 may be satisfied, for example, when fluid sample 64 includes glycol in ranges Grange 1 or Grange 2 but not in any of the other ranges. It is contemplated that rule 512 may include one or more other conditions based on the amount of glycol in fluid sample 64.
Rule 514 may specify conditions related to a pH value of fluid sample 64. A pH value may represent acidity or basicity of fluid sample 64. For example, a pH value of fluid sample 64 may be determined to be in range “pH1,” when the pH value is less than a first pH threshold. The pH value of fluid sample 64 may be determined to be in range “pH2,” when the pH value ranges between the first pH threshold and a second pH threshold. Likewise the pH value of fluid sample 64 may be determined to be in range “pH3,” when the pH value ranges between the second pH threshold and a third pH threshold. Fewer or more ranges based on pH value may be included in rule 514. Rule 514 may be satisfied, for example, when a pH value of fluid sample 64 lies in one of ranges pH1 or pH2, but not in the other pH ranges. It is contemplated that rule 514 may include one or more other conditions based on the pH value of fluid sample 64.
Rule 516 of rule-set 500 may relate to characteristics representing amounts of nitrates, carbonates, chlorides, or silicates in fluid sample 64. Rule 516 may be satisfied, for example, when one or more of the amounts of nitrates, carbonates, chlorides, and silicates in fluid sample 64 are less than corresponding threshold amounts of nitrates, carbonates, chlorides, and silicates, respectively.
Rule 518 may be related to characteristics representing amounts of various elements in fluid sample 64. For example, rule 518 may be satisfied when values of Fe (an amount of iron), Cu (an amount of copper), Al (an amount of aluminum), Pb (an amount of lead), Zn (an amount of zinc), and Sn (an amount of tin) are less than their corresponding threshold values “FeMAX,” “CuMAX,” “AlMAX,” “PbMAX,” “ZnMAX,” and “SnMAX,” respectively. It is contemplated that rule 518 may also include rules for fewer elements or more elements than the elements, iron, copper, aluminum, lead, zinc, and tin illustrated in
In one exemplary embodiment, an engine coolant from machine 10 may be labeled “Normal,” only when a test result corresponding to fluid sample 64 of the engine coolant satisfies each of the plurality of rules (e.g. 502-518), in rule-set 500. The engine coolant may be labeled “Abnormal” when at least one of the rules 502-518 in rule-set 500 is not satisfied by the test result corresponding to fluid sample 64. In other exemplary embodiments, engine coolant may be labeled “Normal,” when the test result of fluid sample 64 satisfies a subset of rules selected from rule-set 500. For example, in some exemplary embodiments, the engine coolant may be labeled “Normal” if the test result of fluid sample 64 satisfies rules 502, 504, at least one of rules 506-507, and at least one of rules 514 and 516.
In addition to rule-sets 400, 500, database 60 of maintenance system 50 may store historical test results collected on a plurality of fluid samples 64 obtained from one or more machines 10 over a period of time. Database 60 may also store, for example, estimates of useful life of a fluid (obtained from machine 10) or of a machine component of machine 10. Such estimates may be generated by one or more operators 86 based on the test results of fluid samples 64 obtained from machine 10 and any associated maintenance, wear, or failure information reported for machine 10. For example, the historical test data may indicate that an engine lubricant should be replaced when an amount of copper in the engine lubricant exceeds a copper threshold. Database 60 may include correlations of the values of one or more other characteristics discussed above in connection with rule-sets 400, 500, and information regarding durations after which one or more fluids of machine 10 may require replacement.
Returning to
Controller 72 may perform a variety of mathematical operations on the historical data stored in database 60 to derive correlations, regressions, numerical models, mathematical relationships, look-up tables, etc. of the one or more characteristics with time. Controller 72 may also correlate values of one or more characteristics obtained from the historical data with the fluid condition of a fluid or the component condition of a component. As used in this disclosure the phrase “fluid condition” may represent a capability of the fluid to perform its desired function in machine 10. Thus, for example, the fluid condition may indicate a degree to which the fluid in machine 10 has degraded or decomposed and whether the fluid in machine 10 should be replaced. Further, as used in this disclosure the phrase “component condition” may represent a capability of the component to perform its desired function in machine 10. Thus, for example, the component condition may indicate that a degree to which the component in machine 10 is worn out and whether the component in machine 10 should be replaced. Controller 72 may perform these mathematical operations upon receiving an input from operator 86 or autonomously on a periodic basis. For example, controller 72 may perform these mathematical operations on a daily, weekly, or monthly basis, or when database 60 receives a new set of test results. It is also contemplated that correlations, regressions, numerical models, mathematical relationships, look-up tables, etc. may be received by controller 72 by operator 86 via input device 74. Database 60 may store the correlations, regressions, numerical models, mathematical relationships, look-up tables, etc. generated by controller 72.
In one exemplary embodiment, controller 72 of maintenance system 50 may compare amounts of copper Cu1 and Cu2 of fluid samples 64 obtained from machine 10 to the correlation 606 of
Controller 72 may also compare the measured characteristics of fluid sample 64 of machine 10 to other types of correlations to determine, for example, a component condition of an engine component (e.g. piston) of machine 10.
Although exemplary correlations of amounts of copper and iron have been discussed above with respect to
In some exemplary embodiment, controller 72 may be configured to cooperate with controller 32 of machine 10 to transmit an alert to alert device 38 upon detecting that one or more of the rules in the selected rule-set are not satisfied. For example, when fluid sample 64 includes engine coolant, and controller 72 determines that a pH value of fluid sample 64 exceeds a pH threshold (e.g. first pH threshold or second pH threshold of rule 514), controller 72 may transmit an alert to alert device 38. Controller 72 may also determine an amount of water required to alter the pH value of the engine coolant to the pH threshold. Controller 72 may determine the amount of water based on information, stored in database 60, regarding an amount of engine coolant typically carried by machine 10 from which fluid sample 64 was obtained. Controller 72 may cooperate with controller 32 of machine 10 to transmit a message to operator 30 of machine 10 via alert device 38, indicating the amount of water to be added to the engine coolant in machine 10.
As another example, controller 72 may determine that an amount of precipitate in fluid sample 64 of an engine coolant from machine 10 exceeds a precipitate threshold and that the precipitate is magnetic (see rule 502 in
The maintenance system of the present disclosure may be used to perform measurements of various characteristics of fluids, for example, engine lubricant, coolant, transmission oil, gear oil, brake fluid, hydraulic fluid, etc., associated with a machine. In particular, the measured characteristics may be used to determine whether any of the fluids need to be replaced or topped off. Further, the measured characteristics may be used to determine a fluid condition of one or more of the fluids or a component condition of one or more machine components. The measured characteristics may also be used to schedule maintenance on a machine for repair or replacement with minimum disruption to scheduled operations of machine 10. Exemplary methods of operation of maintenance system 50 will be discussed below.
Method 800 may include a step of determining a type of fluid in fluid sample 64. For example, controller 72 may determine whether fluid sample 64 includes a sample of engine lubricant, transmission oil, gear oil, hydraulic fluid, brake fluid, or engine coolant. In one exemplary embodiment, controller 72 may determine the type of fluid corresponding to fluid sample 64 based on inputs received from input device 74. In another exemplary embodiment, controller 72 may determine the type of fluid based on information provided by operator 30 of machine 10. In some exemplary embodiments, controller 72 may also determine a subtype of fluid corresponding to fluid sample 64. For example, when the type of fluid in fluid sample 64 is determined to be an engine coolant, controller 72 may determine the subtype of the engine coolant. The subtype may include one of conventional coolant, diesel engine antifreeze coolant (DEAC), extended life coolant (ELC), etc. Although a subtype of fluid has been described above with respect to an engine coolant, it is contemplated that subtype of fluid may be associated with fluids such as engine lubricant, transmission oil, gear oil, hydraulic fluid, brake fluid. For example, the subtype for an engine lubricant may be based on different brands of engine lubricant, different chemical compositions of engine lubricant, etc.
Method 800 may include a step of performing tests on fluid sample 64 (Step 806). Controller 72 of maintenance system 50 may perform one or more tests on fluid sample 64 using one or more test apparatuses 58. In one exemplary embodiment, when fluid sample 64 includes one of engine lubricant, transmission oil, gear oil, hydraulic fluid, or brake fluid, controller 72 may perform tests to determine values of characteristic included in, for example, rule-set 400. In another exemplary embodiment, when fluid sample 64 includes an engine coolant, controller 72 may perform tests to determine values of characteristics included in, for example, rule-set 500. In yet another exemplary embodiment, controller 72 may command test apparatus 58 to perform tests on fluid sample 64 based on one or more inputs received from input device 74. For example, operator 86 of maintenance system 50 may specify the characteristics to be determined for fluid sample 64 using input device 74.
Controller 72 may store a test result (i.e. values of characteristics) for fluid sample 64 obtained from test apparatuses 58 in database 60 (Step 808). The test result may include the type of fluid of fluid sample 64, the subtype of fluid of fluid sample 64, and values of the characteristics for fluid sample 64. Controller 72 may store the test result in association with an identifier of fluid sample 64 in a record in database 60. Controller 72 may also store other information, for example, a model number or description, a serial number, a model year, and/or other sales or ownership related information corresponding to machine 10 from which fluid sample 64 was obtained in association with the identifier of fluid sample 64 in database 60. In addition, controller may store information such as the date and/or time when fluid sample 64 was extracted from machine 10, the date and/or time when fluid sample 64 was tested, information regarding operator 86, etc. Controller 72 may repeat steps 802 through 808 of method 800 for each fluid sample 64 received by maintenance system 50.
Method 900 may include a step of determining a type of fluid corresponding to fluid sample 64 (Step 904). Thus, for example, controller 72 may determine whether fluid sample 64 includes a sample of engine lubricant, transmission oil, gear oil, hydraulic fluid, brake fluid, or engine coolant. In one exemplary embodiment, controller 72 may determine the type of fluid from data stored in the record containing the test result for fluid sample 64. In some exemplary embodiments, controller 72 may also determine the subtype of fluid from data stored in the record containing the test result for fluid sample 64. In yet other exemplary embodiments, controller 72 may determine the type and the subtype corresponding to fluid sample 64 based on inputs received from input device 74.
Method 900 may include a step of loading rule-set 400 or 500 (Step 906). Controller 72 may access rule-set 400 or 500 from database 60 based on the type and/or subtype of fluid of fluid sample 64. For example, when fluid sample 64 includes one of engine lubricant, transmission oil, gear oil, hydraulic fluid, or brake fluid, controller 72 may access rule-set 400 from database 60. Alternatively, when fluid sample 64 includes, for example, engine coolant, controller 72 may access rule-set 500 from database 60. In some exemplary embodiments, controller 72 may select a particular rule-set 400 or 500 based on the subtype of fluid determined, for example, in step 904. In other exemplary embodiments, controller 72 may also select a subset of rules from the accessed rule-set. The subset of rules may be selected based on inputs received from operator 86 via input device 74.
Method 900 may include a step of determining whether the test result satisfies rule-set 400 or 500 (Step 908). Controller 72 may access values of the various characteristics in the test result for fluid sample 64 from the record received in, for example, step 902. Controller 72 may compare the value of the characteristics with the threshold values of those characteristics based on the criteria specified in rule-set 400 or 500. When fluid sample 64 includes engine lubricant, transmission oil, gear oil, brake fluid, or hydraulic fluid, controller 72 may compare the characteristic values of fluid sample 64 with the threshold values specified in rules 402-412. For example, controller 72 may determine whether an amount of water W in fluid sample 64 is less than a threshold amount of water WMAX as required by rule 402. Controller 72 may perform similar comparisons based on each of rules 402-412. When controller 72 determines that the characteristic values corresponding to fluid sample 64 satisfy each of rules (e.g. 402-412 or 502-518) in rule-set 400, 500 (Step 908: Yes), controller 72 may label fluid sample 64 “Normal” and proceed to step 910. In some exemplary embodiments, controller 72 may label fluid sample 64 “Normal” when the test result for fluid sample 64 satisfies each rule in the subset of rules selected, for example, in step 906. To label fluid sample 64 as “Normal,” controller 72 may add the label “Normal” to the record containing the test result for fluid sample 64 in database 60.
When controller 72 determines, however, that the characteristic values corresponding to fluid sample 64 do not satisfy at least one of rules (e.g. 402-412 or 502-518) in rule-set 400, 500 (Step 908: No), controller 72 may label fluid sample 64 “Abnormal” and proceed to step 910. In step 910, controller 72 may store the test results corresponding to fluid sample 64 together with the “Abnormal” label in database 60. Controller 72 may notify an operator 86 of maintenance system 50 that fluid sample 64 requires additional evaluation. In other exemplary embodiments, controller 72 may notify operator 86 regarding all fluid samples 64 labeled “Abnormal” after analyzing a plurality of records from database 60. When operator 86 receives a notification of abnormal samples from analysis system 54, operator 86 may review and perform further analysis on the test data for the fluid samples 64 labeled “Abnormal.” Based on such analysis, operator 86 may revise the label for one or more such samples to “Normal.” It is also contemplated that operator 86 may not change the labels of some or all such samples based on the review. When operator 86 determines that the test results are indicative of imminent failure of one or more components of machine 10, operator 86 may command controller 72, via input device 74, to issue an alert to operator 30 of machine 10. Controller 72 may proceed to step 914 to issue an alert in response to the inputs received from operator 86.
Returning to step 908, when controller 72 determines that the test data for fluid sample 64 satisfies the rule-set 400 or 500 (Step 908: Yes), controller 72 may proceed to step 912 of determining a fluid condition of fluid sample 64 or of a component of machine 10. Controller 72 may access or receive correlations related to the one or more characteristics from database 60. It is contemplated that controller 72 may access or receive the correlations from storage device 84. Controller 72 may determine the fluid condition of fluid sample 64 or the component condition of a component of machine 10 using the processes discussed above with respect to
Method 900 may also include a step of issuing an alert (Step 914). Thus, for example, controller 72 may transmit instructions and/or data via communication device 68 to console 28 of machine 10 to generate an audio alert, a visual alert, or an audio-visual alert on display 36. In one exemplary embodiment, the alert may include textual or visual information regarding the fluid condition or component condition determined in, for example, step 912. The alert may also include recommendations regarding a time when maintenance for machine 10 may be scheduled based on the fluid condition or component condition determined in, for example, step 912. In another exemplary embodiment, the alert may include textual or visual information regarding imminent failure of a machine component as determined in, for example, step 910. In some exemplary embodiments, the alert may include textual or visual information regarding remedial steps that operator 30 may take (e.g. an amount of water that should be added to the engine coolant, flushing of the engine coolant system and replacement of the engine coolant, etc.)
It will be apparent to those skilled in the art that various modifications and variations can be made to the disclosed engine coolant monitoring system without departing from the scope of the disclosure. Other embodiments of the engine coolant monitoring system will be apparent to those skilled in the art from consideration of the specification and practice of the engine coolant monitoring system disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope of the disclosure being indicated by the following claims and their equivalents.
Number | Name | Date | Kind |
---|---|---|---|
4164474 | Gallacher | Aug 1979 | A |
4434233 | Bzdula | Feb 1984 | A |
4616503 | Plungis | Oct 1986 | A |
5080815 | Fenoglio | Jan 1992 | A |
5089780 | Megerle | Feb 1992 | A |
5889200 | Centers | Mar 1999 | A |
6526335 | Treyz | Feb 2003 | B1 |
6645438 | Dubrovsky | Nov 2003 | B1 |
8965625 | Dvorak et al. | Feb 2015 | B2 |
20030173970 | Horie | Sep 2003 | A1 |
20050287677 | Bosmann | Dec 2005 | A1 |
20100300188 | Halalay | Dec 2010 | A1 |
20130303409 | Kapps | Nov 2013 | A1 |
20140365144 | Dvorak | Dec 2014 | A1 |
20170197596 | Barnes | Jul 2017 | A1 |
Entry |
---|
Beal, Engine Coolant Testing, 1993, ASTM. |
U.S. Patent Application of Thomas J. DeVenney et al., filed Apr. 13, 2016, for “Maintenance System for a Machine Using Fluid Sample Monitoring,”. |
Number | Date | Country | |
---|---|---|---|
20170298806 A1 | Oct 2017 | US |