The present application is based upon Japanese priority application No. 2005-44078, filed Feb. 21, 2005, which is hereby incorporated in its entirety herein by reference.
1. Field of the Invention
The present invention relates to an improvement of an engine decompression system in which a decompression cam shaft is provided on a valve operating cam shaft equipped with a valve operating cam for opening and closing an engine valve or is provided on a rotating member integrally connected to the valve operating cam shaft. The decompression cam shaft is capable of rotating between an operating position in which a decompression cam projects above a base face of the valve operating cam so as to slightly open the engine valve during an engine compression stroke, and a release position in which the decompression cam is withdrawn beneath the base face so as to allow the engine valve to close. A centrifugal mechanism is connected to the decompression cam shaft to maintain the decompression cam shaft at the operating position in an engine starting rotational region, and to rotate the decompression cam shaft to the release position in a normal running region.
2. Description of the Related Art
Engine decompression systems are already known as disclosed in, for example, Japanese Utility Model Registration Publication No. 51-41974. In such a conventional engine decompression system, rotation of a decompression cam shaft from an operating position to a release position is proportionally controlled according to an increase in the rotational speed of the valve operating cam shaft.
However, in the engine decompression system, in order to minimize the cranking load when starting the engine, it is desirable that the projection height of a decompression cam from a base face of a valve operating cam is relatively large, and also in order to stabilize a complete combustion state in the engine, it is desirable that the projection height of the decompression cam is decreased, so that it is difficult for the conventional centrifugal mechanism to satisfy such decompression characteristics.
The present invention has been accomplished under such circumstances, and it is an object thereof to provide an engine decompression system that can secure a projecting height of a decompression cam from a base face of a valve operating cam to be relatively large in an engine starting rotational region, and maintain a state in which the projection height is decreased in a complete combustion rotational region of the engine.
In order to achieve the above object, according to a first feature of the present invention, there is provided an engine decompression system in which a decompression cam shaft is provided on a valve operating cam shaft equipped with a valve operating cam for opening and closing an engine valve or is provided on a rotating member integrally connected to the valve operating cam shaft. The decompression cam shaft is capable of rotating between an operating position in which a decompression cam projects above a base face of the valve operating cam so as to slightly open the engine valve during an engine compression stroke, and a release position in which the decompression cam is withdrawn beneath the base face so as to allow the engine valve to close. A centrifugal mechanism is connected to the decompression cam shaft to maintain the decompression cam shaft at the operating position in an engine starting rotational region, and to rotate the decompression cam shaft to the release position in a normal running region. The centrifugal mechanism is arranged so that, in a complete combustion rotational region between the engine starting rotational region and the normal running region, the decompression cam shaft is maintained at a middle position in which the projection height of the decompression cam above the base face is less than the projection height at the operating position.
Further, in addition to the first feature, according to a second feature of the present invention, the centrifugal mechanism comprises: a first weight that is connected to the decompression cam shaft via an arm and maintains the decompression cam shaft at the middle position by means of centrifugal force acting on the first weight in the complete combustion rotational region of the engine; a second weight that is axially supported on the valve operating cam shaft or the rotating member integrally connected thereto and rotates the decompression cam shaft from the middle position to the release position by means of centrifugal force acting on the second weight in the normal running region of the engine, wherein an extremity part of the second weight is connected to the first weight; and a return spring that urges the first weight or the second weight in a direction to the operating position of the decompression cam shaft and maintains the decompression cam at the operating position in the engine starting rotational region.
Furthermore, in addition to the second feature, according to a third feature of the present invention, the rotating member is a driven timing gear integrally connected to the valve operating cam shaft; the decompression cam shaft is rotatably supported on the driven timing gear; the first weight connected to the decompression cam shaft is disposed on one side of the driven timing gear; the second weight is disposed on the other side thereof; and an extremity part of the second weight is connected to the first weight through a long hole provided in the driven timing gear.
With the first feature of the present invention, since in the complete combustion rotational region of the engine, the decompression cam shaft is maintained at the middle position in which the projection height of the decompression cam above the base face of the valve operating cam is made less than the projection height at the operating position, it is possible to stabilize the complete combustion state, thus improving the starting characteristics under load. Furthermore, owing to this arrangement, in the engine starting rotational region, the projection height of the decompression cam can be set at a level higher than that of the conventional arrangement and this enables the pressure within a cylinder bore during a compression stroke to be sufficiently decreased and, therefore, not only can the starting operational load be greatly reduced, but it is also possible to prevent dieseling effectively when stopping the engine.
Furthermore, with the second feature of the present invention, by means of the simple arrangement formed from the first weight, the second weight, and the return spring, it is possible to obtain appropriate two-stage decompression characteristics in which the projection height of the decompression cam is made to differ between the starting rotational region and the complete combustion rotational region.
Furthermore, with the third feature of the present invention, the decompression cam shaft and the first and second weights can be supported by utilizing the driven timing gear, and the decompression system can be made compact by disposing the first and second weights on opposite sides of the driven timing gear.
Referring first to
A valve operating mechanism 20 is provided on the cylinder head 3 to cause the intake valve 10 and the exhaust valve 11 to open and close. This valve operating mechanism 20 is explained by reference to
The valve operating mechanism 20 includes a support shaft 21 that is mounted on the cylinder head 3 in parallel to the crankshaft 5, and a valve operating cam shaft 22 rotatably supported on the support shaft 21. The valve operating cam shaft 22 has a valve operating cam 22a at one end part and a driven timing gear 24 formed integrally with the other end part. A timing belt 25 is wound around the driven timing gear 24 and a drive timing gear 23 secured to the crankshaft 5. The crankshaft 5 drives the valve operating cam shaft 22 at a reduction ratio of 1/2 via the drive timing gear 23, timing belt 25, and driven timing gear 24.
Further, an intake rocker arm 26 and an exhaust rocker arm 27 are swingably mounted on the cylinder head 3 via a pair of rocker shafts 35 and 36, the intake rocker arm 26 and the exhaust rocker arm 27 being disposed symmetrically on radially opposite sides of the valve operating cam shaft 22. These intake and exhaust rocker arms 26 and 27 are hook-shaped, and include: valve head gap adjustment bolts 29 and 30 screwed in their one ends so as to abut against head parts of the intake and exhaust valves 10 and 11; and slippers 26a and 27a formed on the other end of the rocker arms so as to slidably contact on an outer peripheral face of the valve operating cam 22a. The intake and exhaust rocker arms 26 and 27 swing by rotation of the valve operating cam 22a, and open and close the intake and exhaust valves 10 and 11 respectively in cooperation with the valve springs 12 and 13.
A flywheel 33 integrally includes a generator rotor 31 and a cooling fan 32, and is secured to one end part of the crankshaft 5. A known recoil type starter 34 (see
A decompression system 40 of the present invention is provided on the valve operating cam shaft 22, and extends from the valve operating cam 22a to the driven timing gear 24.
The decompression system 40 is explained by reference to
In
As shown in
The centrifugal mechanism 43 comprises: a first weight 46 that predominantly rotates the decompression cam shaft 42 from the operating position O to the middle position M by means of centrifugal force acting on itself; a second weight 47 predominantly rotates the decompression cam shaft 42 from the middle position M to the release position N by means of centrifugal force acting on itself; and a return spring 48 that urges the first weight 46 or the second weight 47 toward the operating position O of the decompression cam shaft 42.
The first weight 46 is integrally connected, via an arm 49, to an outer end part of the first decompression cam shaft 42 projecting on the outer side of the driven timing gear 24. When the decompression cam shaft 42 is at the operating position O, the center of gravity G1 of the first weight 46 deviates from a radius line R of the driven timing gear 24 running through the axis of the decompression cam shaft 42; and when the decompression cam shaft 42 rotates to the predetermined middle position M between the operating position O and the release position N, the center of gravity G1 lies on the radius line R. The center of gravity G1 of the first weight 46 lying on the radius line R means that a distance L1 from the axis of the valve operating cam shaft 22 to the center of gravity G1 becomes a maximum.
In the second weight 47, a shaft-shaped base portion 47a is rotatably fitted into a support hole 44 of the driven timing gear 24, and a pin-shaped extremity part 47b is slidably engaged with a long coupling hole 50 formed so as to extend from the arm 49 to the first weight 46. In this way, the first and second weights 46 and 47 are operatively connected to each other throughout the entire rotational range from the operating position O to the release position N of the decompression cam shaft 42.
The second weight 47 is formed from a single steel wire, curved like a bow so as to surround half of the periphery of the valve operating cam shaft 22 on the inner side of the driven timing gear 24, and gives a torque toward the release position N, via the first weight-46, to the decompression cam shaft 42 by means of centrifugal force acting on the center of gravity G2 of the second weight 47. The release position N of the decompression cam shaft 42 is defined by the second weight 47 swinging radially outward to abut against the inner peripheral face of a rim portion 24a of the driven timing gear 24.
The weight of the second weight 47 is set to be smaller than that of the first weight 46, and the distance L1 from the axis of the valve operating cam shaft 22 to the center of gravity G1 of the first weight 46 is always smaller than the distance L2 from the same axis to the center of gravity G2 of the second weight 47.
In the illustrated example, the return spring 48 is provided in a tensioned state, with a predetermined set load, between the second weight 47 and the driven timing gear 24, thereby urging the second weight 47 toward the operating position o of the decompression cam shaft 42.
As described above, the first and second weights 46 and 47, which are disposed on the inner and outer sides of the driven timing gear 24, are housed on the inner peripheral side of the rim portion 24a of the gear driven timing gear 24. In order to enable these weights 46 and 47 to be operatively connected to each other, the driven timing gear 24 is provided with an arc-shaped long hole 51 with the support hole 44 as its center, and the pin-shaped extremity part 47b of the second weight 47 is engaged with the coupling hole 50 of the first weight 46 through the long hole 51.
In
The operation of this embodiment is now explained.
As shown in
When the recoil type starter 34 is manually operated to crank the crankshaft 5 in order to start the engine E, the decompression cam 42a pushes the slipper 27a of the exhaust rocker arm 27 to slightly open the exhaust valve 11 in a compression stroke, so that part of the compressed gas within the cylinder bore 2a is released into the exhaust port 9 and the increase in pressure of the cylinder bore 2a is relieved. Consequently, the cranking load is reduced, thereby performing a starting operation with ease.
On the other hand, since the second weight 47 is lighter than the first weight 46, the rotational torque of the decompression cam shaft 42 due to the centrifugal force of the second weight 47 increases in response to an increase in the engine rotational speed far more slowly than that due to the first weight 46 as shown by line B, but until the engine rotational speed reaches the complete combustion rotational region, the decompression cam shaft 42 is rotated, as shown by line C, toward the middle position M by means of the sum of the rotational torques acting on the decompression cam shaft 42 provided by the centrifugal forces of the first and second weights 46 and 47.
However, since the rotational torque of the decompression cam shaft 42 due to the centrifugal force of the second weight 47 does not catch up with the maintaining torque, due to the centrifugal force of the first weight 46, maintaining the decompression cam shaft 42 at the middle position M even when the engine rotational speed reaches the complete combustion rotational region, the decompression cam shaft 42 is maintained at the middle position M by means of the centrifugal force of the first weight 46 in the complete combustion state.
In this way, when the decompression cam shaft 42 is maintained at the middle position M, the projection height of the decompression cam 42a is maintained in a decreased state as shown in
About the time when the engine rotational speed exceeds the complete combustion rotational region, by virtue of the changing lever ratio as well as the effect of the distance L2 between the axis of the valve operating cam shaft 22 and the center of gravity G2 of the second weight 47 being larger than the distance between the same axis and the center of gravity G1 of the first weight 46, the rotational torque of the decompression cam shaft 42 due to the centrifugal force of the second weight 47 exceeds the torque, due to the centrifugal force of the first weight 46, maintaining the decompression cam shaft 42 at the middle position M. Accordingly, the decompression cam shaft 42 is rotated again toward the release position N as shown by line C in
When the engine rotational speed exceeds the complete combustion rotational region and as a result the decompression cam shaft 42 rotates from the middle position M to the release position N, the first weight 46 correspondingly further rotates so that the center of gravity G1 deviates from the radius line R. Thus, the centrifugal force acting on the center of gravity G1 generates a rotational torque (see dotted line part of line A) that attempts to return the decompression cam shaft 42 in the opposite direction, but since the rotational torque of the decompression cam shaft 42 due to the centrifugal force of the second weight 47 in this state far exceeds the above-mentioned rotational torque in the opposite direction, the decompression cam shaft 42 can be reliably rotated to the release position N. Therefore, the centrifugal force of the second weight 47 dominates the rotation of the decompression cam shaft 42 from the middle position M to the release position N.
Under normal running conditions following idling of the engine, the valve operating cam 22a can appropriately open and close the intake and exhaust valves 10 and 11 in accordance with the natural cam profile without interference from the decompression cam 42a.
In this way, by the simple arrangement formed from the first weight 46, second weight 47, and return spring 48, it is possible to obtain appropriate two-stage decompression characteristics, that is, the projection height of the decompression cam 42a is made to differ between the starting rotational region and the complete combustion rotational region.
Moreover, the decompression cam shaft 42 as well as the first and second weights 46 and 47 are supported by utilizing the driven timing gear 24, and the first and second weights 46 and 47 are disposed on opposite sides of the driven timing gear 24 and on the inner peripheral side of the rim portion 24a, thereby making the decompression system compact.
In the above-mentioned embodiment, the decompression cam 42a acts on the exhaust rocker arm 27 alone, but it may act on both the intake and exhaust rocker arms 26 and 27 or on the intake rocker arm 26 alone. In this case, since the valve opening lift and the valve opening period of the intake valve 10 decrease at the middle position M of the decompression cam shaft 42 during the compression stroke, backfiring can be effectively suppressed. Further, in the valve operating mechanism 20 of the illustrated example, the valve operating cam 22a acts on both the intake and exhaust valves 10 and 11 in common, but intake and exhaust cams may be provided so as to correspond to each of the valves 10 and 11. In this case, it is desirable for the decompression cam 42a to be disposed so as to be adjacent to the exhaust cam. Furthermore, the return spring 48 may be provided in a tensioned state between the first weight 46 and the driven timing gear 24.
The present invention is not limited to the above-mentioned embodiment, and the design thereof can be modified in a variety of ways without departing from the subject matter thereof.
Number | Date | Country | Kind |
---|---|---|---|
2005-044078 | Feb 2005 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
3381676 | Campen | May 1968 | A |
3511219 | Esty | May 1970 | A |
4892068 | Coughlin | Jan 1990 | A |
4977868 | Holschuh | Dec 1990 | A |
5711264 | Jezek et al. | Jan 1998 | A |
5943992 | Kojima et al. | Aug 1999 | A |
6269786 | Snyder et al. | Aug 2001 | B1 |
6394054 | Rado et al. | May 2002 | B1 |
6439187 | Dietz et al. | Aug 2002 | B1 |
6895918 | Hiraga | May 2005 | B1 |
20020108595 | Gracyalny | Aug 2002 | A1 |
20030188707 | Takada et al. | Oct 2003 | A1 |
20060272607 | Grybush | Dec 2006 | A1 |
Number | Date | Country |
---|---|---|
0 407 699 | Jan 1991 | EP |
0 411 238 | Feb 1991 | EP |
51-41974 | Oct 1976 | JP |
Number | Date | Country | |
---|---|---|---|
20060185638 A1 | Aug 2006 | US |