This application claims priority under 35 U.S.C. ยง 119(b) to Japanese Application No. 2020-219958, filed Dec. 31, 2020, the disclosure of which is incorporated herein by reference.
The present invention relates to an engine-equipped vehicle.
In a conventional engine, the engine rotation speed suddenly rises when the engine is started, and sometimes exceeds the clutch engagement rotation speed of the centrifugal clutch. In this case, when the gear transmission is put from the neutral position into the transmission operation position by the shift operation, a situation occurs in which the drive side of the transmission gear is moving but the driven side is stopped in the gear transmission, the gear is not engaged smoothly, and gear noise and gear wear may occur.
An object of the present invention is to provide an engine-equipped vehicle capable of preventing gear noise and gear wear when the engine is started.
The main configuration of the invention of the present application is as follows.
An engine-equipped vehicle including a multicylinder engine (1), a gear transmission (2), a centrifugal clutch (4), and an electronic control device (5), in which
the engine-equipped vehicle is configured so that the engine is started with a partial cylinder operation start (S6) where under control of the electronic control device (5), only some cylinders (#1) are operated and an operation of other cylinders (#2) is stopped.
Specific examples can include a two-cylinder engine as the multicylinder engine, a cylinder on an output side as the some cylinders (#1), and a cylinder on an opposite side of the cylinder on the output side as the other cylinders (#2).
In this engine-equipped vehicle, low-torque engine start with the partial cylinder operation start makes it difficult for the engine rotation speed to exceed the clutch engagement rotation speed of the centrifugal clutch, and even when the gear transmission is put from the neutral position into the transmission operation position by a shift operation, the gear is engaged smoothly, and gear noise and gear wear can be prevented.
As shown in
This multipurpose vehicle is configured as a four-wheel drive vehicle having a pair of left and right front wheels (13a) (13a) and a pair of left and right rear wheels (9a) (9a) as driving wheels.
As shown in
This engine includes two cylinders (#1) (#2). The one on the output side is a first cylinder (#1), and the one on the opposite side of the one on the output side is a second cylinder (#2).
The engine includes an intake air device (14), a fuel supply device (6), an ignition device (16), an exhaust device (not illustrated), and a start device (22).
As shown in
The throttle valve (19) is opened and closed by a valve actuator (19a) according to an accelerator position of an accelerator pedal (20) detected by an accelerator sensor (AcS). The electronic control device (5) calculates the intake air amount with a throttle opening (SO) detected by a throttle opening sensor (SS) arranged in the valve actuator (19a) and intake air pressure detected by an intake air pressure sensor (ApS) arranged on an intake air downstream side of the throttle valve (19).
The electronic control device (5) is an engine ECU. ECU is an abbreviation for an electronic control unit.
As shown in
The solenoid valves of the fuel injectors (In1) (In2) are opened and closed for a predetermined time at a predetermined timing by the electronic control device (5) according to the engine rotation speed and the engine load, and a predetermined amount of fuel is injected at a predetermined timing to each cylinder (#1) (#2).
As shown in
The engine load is calculated by the electronic control device (5) based on the deviation between a target rotation speed predicted from the position of the accelerator pedal (20) and the actual rotation speed detected by the engine rotation speed sensor (RS).
The combustion stroke of each cylinder (#1) (#2) is discriminated by the electronic control device (5) calculating a detection signal from a cam position detection disk (26) attached to a valve camshaft and a cam position sensor (CaS) that detects passage of a protrusion on the periphery of the cam position detection disk (26).
As shown in
As shown in
As shown in
The shift operation position of a transmission lever (29) includes neutral (N), low-speed forward (L), high-speed forward (H), and reverse (R).
This engine-equipped vehicle is configured so that the engine is started with a partial cylinder operation start (S6) shown in
In this engine-equipped vehicle, the low-torque engine start with the partial cylinder operation start (S6) shown in
In this embodiment, the clutch engagement rotation speed of the centrifugal clutch (4) is around 2000 rpm, and the complete explosion rotation speed and the idling rotation speed are around 1000 rpm.
As shown in
As shown in
In this engine-equipped vehicle, the engine is started with the partial cylinder operation start (S6) where the fuel supply amount is small at the time of warm start, which saves fuel consumption.
At the time of cold start, the engine is started by high-torque all-cylinder operation (S12), and therefore the success rate of starting is increased.
As shown in
In this engine-equipped vehicle, at the time of abnormality in the index temperature sensor (IS), where the index temperature (IT) cannot be detected, the engine is started by the high-torque all-cylinder operation (S12), and therefore the engine can be started reliably.
As shown in
In this engine-equipped vehicle, at the time of abnormality of the intake air temperature sensor (AS), where the intake air temperature cannot be detected, the engine is started by the high-torque all-cylinder operation (S12), and therefore the engine can be started reliably.
The intake air temperature sensor (AS) is integrated with the intake air pressure sensor (ApS).
As shown in
In this engine-equipped vehicle, at the throttle opening (SO) that is not fully closed where an external load is expected to be applied, the engine is started with the all-cylinder operation (S12) where high torque is obtained, and therefore the engine can be started reliably.
As shown in
In this engine-equipped vehicle, when the complete explosion requirement time (t1) is prolonged due to engine start with the partial cylinder operation start (S6), the partial cylinder operation is switched to high-torque (S12), and therefore a reliable engine start and a stable engine operation can be performed.
As shown in
In this engine-equipped vehicle, the complete explosion delay determination time QM is shortened in a medium and high temperature region where complete explosion is predicted to occur in a short time even with the partial cylinder operation start (S6), and at the time of start failure, the engine start is quickly switched to the all-cylinder operation (S12), and therefore the engine start is completed quickly.
In a low temperature region where it is predicted to take time to complete explosion with the partial cylinder operation start, the complete explosion delay determination time QM becomes long, and therefore the failure of the partial cylinder operation start (S6) is unlikely to occur.
As shown in
In this engine-equipped vehicle, after complete explosion of the engine start with the partial cylinder operation start (S6), through the predetermined waiting time (Jt2) after complete explosion, the engine rotation is stabilized, and then the operation is switched to the all-cylinder operation (S12). Therefore, at the time of switching to the all-cylinder operation (S12), a rapid increase in the engine rotation speed is suppressed, it is difficult for the engine rotation speed to exceed the clutch engagement rotation speed of the centrifugal clutch (4), and gear noise and gear wear in the gear transmission (2) by the shift operation can be prevented.
As shown in
In this engine-equipped vehicle, the waiting time (Jt2) after complete explosion is shortened in the medium and high temperature region where the engine rotation after the complete explosion is stabilized in a short time even with the engine start with the partial cylinder operation start (S6), and the operation is quickly switched to the all-cylinder operation after the complete explosion, and therefore the switching of operation is completed smoothly.
The waiting time (Jt2) after complete explosion becomes long in the low temperature region where it takes time to stabilize the engine rotation after engine start with the partial cylinder operation start (S6), and after the engine rotation is stabilized, the operation is switched to the all-cylinder operation (S12). Therefore, at the time of switching to the all-cylinder operation (S12), a rapid increase in the engine rotation speed is suppressed, it is difficult for the engine rotation speed to exceed the clutch engagement rotation speed of the centrifugal clutch (4), and gear noise and gear wear in the gear transmission (2) by the shift operation can be prevented.
As shown in
In this engine-equipped vehicle, partial cylinder operation is switched to high-torque all-cylinder operation (S12) at the time of transmission operation where an external load is expected to be applied, and therefore engine stall can be prevented.
The switching from the partial cylinder operation to the all-cylinder operation (S12) is performed after the engine rotation is stabilized after the predetermined waiting time (Jt3) after gear transition, and therefore, at the time of switching to the all-cylinder operation (S12), a rapid increase in the engine rotation speed is suppressed, it is difficult for the engine rotation speed to exceed the clutch engagement rotation speed of the centrifugal clutch (4), and gear noise and gear wear in the gear transmission (2) by the shift operation can be prevented.
As shown in
In this engine-equipped vehicle, the waiting time (Jt3) after gear transition is shortened in the medium and high temperature region where early stabilization of engine rotation is expected even with the partial cylinder operation, and therefore switching to the all-cylinder operation (S12) is completed quickly after gear transition.
In the low temperature region where it is predicted to take time to stabilize the engine rotation in partial cylinder operation, the waiting time (Jt3) after gear transition becomes long, and after the engine rotation is stabilized by the partial cylinder operation, the operation is switched to the all-cylinder operation (S12). Therefore, at the time of switching to the all-cylinder operation (S12), a rapid increase in the engine rotation speed is suppressed, it is difficult for the engine rotation speed to exceed the clutch engagement rotation speed of the centrifugal clutch (4), and gear noise and gear wear in the gear transmission (2) by the shift operation can be prevented.
As shown in
In this engine-equipped vehicle, the engine torque gradually increases after switching to the all-cylinder operation (S12), and therefore it is possible to prevent an impact due to a rapid increase in torque at the time of switching the operations.
As shown in
In this engine-equipped vehicle, the engine torque gradually increases after switching to the all-cylinder operation (S12), and therefore it is possible to prevent an impact due to a rapid increase in torque at the time of switching the operations.
This engine-equipped vehicle is a multipurpose vehicle.
Multipurpose vehicles include multipurpose four-wheel-drive vehicles that are exclusively for off-road use and are used in farms, ranches, parks, and the like.
Many multipurpose vehicles have the flywheel (24) that is light in weight, and the engine rotation tends to rapidly increase at the time of engine start.
The present invention becomes an effective device for preventing gear noise and gear wear for a multipurpose vehicle in which the engine rotation tends to rapidly increase at the time of engine start.
The procedure of the control by the electronic control device will be described based on the flowchart of
When the start switch (SSw) is put into the start position in step (S2) while the engine is stopped in step (S1), it is determined in step (S3) whether or not there is an abnormality in the index temperature sensor (IS) and the intake air temperature sensor (AS). In the case of a signal abnormality due to disconnection or failure, it is determined that there is an abnormality, and the engine is started with the all-cylinder operation in step (S12) without transitioning to the partial cylinder operation start in step (S6).
If there is no abnormality in the index temperature sensor (IS) and the intake air temperature sensor (AS) in step (S3), it is determined in step (S4) whether or not the index temperature (IT) is greater than or equal to the operation selection temperature (ST). If the determination is denied, that is, if the index temperature (IT) is less than the operation selection temperature (ST), the engine is started with the all-cylinder operation in step (S12) without transitioning to the partial cylinder operation start in step (S6).
If the determination is affirmed in step (S4), that is, if the index temperature (IT) is greater than or equal to the operation selection temperature (ST), it is determined in step (S5) whether or not the throttle opening (SO) is fully closed. If the determination is denied, that is, if the throttle opening (SO) is not fully closed, the engine is started with the all-cylinder operation in step (S12) without transitioning to the partial cylinder operation start in step (S6).
If the determination is affirmed in step (S5), that is, if the throttle opening (SO) is fully closed, the engine is started with the partial cylinder operation start in step (S6), and it is determined in step (S7) whether or not the complete explosion requirement time (t1) is within the complete explosion delay determination time (Jt1). If the determination is denied, that is, if the complete explosion requirement time (t1) exceeds the complete explosion delay determination time (Jt1), partial cylinder operation is switched to the all-cylinder operation in step (S12).
If the determination is affirmed in step (S7), that is, if the complete explosion requirement time (t1) is less than or equal to the complete explosion delay determination time (Jt1), it is determined in step (S8) whether or not the elapsed time (t2) after complete explosion is greater than or equal to the waiting time (Jt2) after complete explosion. If the determination is affirmed, that is, if the elapsed time (t2) after complete explosion is greater than or equal to the waiting time (Jt2) after complete explosion, partial cylinder operation is switched to the all-cylinder operation in step (S12).
If the determination is denied in step (S8), that is, if the elapsed time (t2) after complete explosion is less than the waiting time (Jt2) after complete explosion, it is determined in step (S9) whether or not the elapsed time (t3) after gear transition is greater than or equal to the waiting time (Jt3) after gear transition. If the determination is affirmed, that is, if the elapsed time (t3) after gear transition is greater than or equal to the waiting time (Jt3) after gear transition, partial cylinder operation is switched to the all-cylinder operation in step (S12).
If the determination is denied in step (S9), that is, if the elapsed time (t3) after gear transition is less than the waiting time (Jt3) after gear transition, it is determined in step (S10) whether or not a throttle operation has been performed. If the determination is affirmed, that is, if the throttle operation has been performed, partial cylinder operation is switched to the all-cylinder operation in step (S12).
If the determination is denied in step (S10), that is, if the throttle operation has not been performed, partial cylinder operation is continued in step (S11) and the process returns to step (S8).
In the case of engine start with the all-cylinder operation in step (S12), if it is determined that engine stall has occurred in step (S13) and it is determined that a restart operation has been performed in step (S14), specifically, the start switch (SSw) has been put again, the engine is restarted with the all-cylinder operation start in step (S15) without transitioning to the partial cylinder operation start in step (S6).
If the determination of engine stall is denied in step (S13), or if the determination of engine stall is affirmed in step (S13) but the determination of restart is denied in step (S14), the control ends.
Number | Date | Country | Kind |
---|---|---|---|
2020-219958 | Dec 2020 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4157084 | Wallis | Jun 1979 | A |
4494502 | Endo | Jan 1985 | A |
4844039 | Osaki | Jul 1989 | A |
4887476 | Yokoyama | Dec 1989 | A |
5083545 | Yamashita | Jan 1992 | A |
5690073 | Fuwa | Nov 1997 | A |
5992355 | Shichinohe | Nov 1999 | A |
6158218 | Herold | Dec 2000 | A |
6257207 | Inui | Jul 2001 | B1 |
6283092 | Jung | Sep 2001 | B1 |
6341659 | Ibukuro | Jan 2002 | B1 |
6389806 | Glugla | May 2002 | B1 |
6520158 | Mills | Feb 2003 | B1 |
6843225 | Ise | Jan 2005 | B1 |
6857264 | Ament | Feb 2005 | B2 |
6922986 | Rozario | Aug 2005 | B2 |
7044107 | Duty | May 2006 | B1 |
7890244 | Nishimura | Feb 2011 | B2 |
8423251 | Hartmann | Apr 2013 | B2 |
8899211 | Aso | Dec 2014 | B2 |
9511761 | Yagyu | Dec 2016 | B2 |
20030089330 | Azuma | May 2003 | A1 |
20040040550 | Someno | Mar 2004 | A1 |
20040235615 | Deguchi | Nov 2004 | A1 |
20050178130 | Van Gilder | Aug 2005 | A1 |
20070074593 | Mizuno | Apr 2007 | A1 |
20070199392 | Mizuno | Aug 2007 | A1 |
20080004158 | Carl | Jan 2008 | A1 |
20080041327 | Lewis | Feb 2008 | A1 |
20080281506 | Washio | Nov 2008 | A1 |
20090194057 | Kapinsky | Aug 2009 | A1 |
20100222989 | Nishimura | Sep 2010 | A1 |
20100307458 | Asai | Dec 2010 | A1 |
20130058373 | Sakurada | Mar 2013 | A1 |
20140113766 | Yagyu | Apr 2014 | A1 |
20170254280 | Honjo | Sep 2017 | A1 |
20180142586 | Uezu | May 2018 | A1 |
20200040863 | Klatt | Feb 2020 | A1 |
Number | Date | Country |
---|---|---|
09042038 | Feb 1997 | JP |
2002201997 | Jul 2002 | JP |
2004308628 | Nov 2004 | JP |
2010151124 | Jul 2010 | JP |
2013112149 | Jun 2013 | JP |
2017-155698 | Sep 2017 | JP |
2018155164 | Oct 2018 | JP |
Entry |
---|
Office Action dated Aug. 23, 2023 in JP Application No. 2020-219958 (with English Translation). |
Number | Date | Country | |
---|---|---|---|
20220205400 A1 | Jun 2022 | US |