1. Field of the Invention
The present invention relates to an engine for a vehicle, particularly to an engine for a vehicle provided with a breather chamber.
2. Description of the Related Art
A breather chamber of an engine for a vehicle has a function of separating the air (blow-by gas) including oil mist in a crankcase into gas and liquid, returning an oil component to the interior of the engine, and discharging a gas component to the exterior of the crankcase.
Japanese Patent Application No. 2008-332653 discloses an engine for a vehicle having a breather chamber. The breather chamber is provided on the upper side of a crankcase. The crankcase is dividable into left and right crankcase members at vertical mating surfaces (division surfaces), and the breather chamber is formed by the mating surfaces of both the crankcase members.
In an engine for a vehicle provided with a crankcase dividable into upper and lower crankcase members at horizontal mating surfaces (division surfaces), a breather chamber is added onto an upper surface of the upper crankcase member, or a breather chamber is formed by the mating surfaces of the upper and lower crankcase members.
3. Problems to be Solved by the Invention
As in the former engine for the vehicle described above, when the breather chamber is formed by the mating surfaces of the left and right crankcase members, the breather chamber is arranged in a center part of width of a transmission chamber housing a gear type transmission in the crankshaft direction, so that capacity of the breather chamber is limited.
Meanwhile, as in the latter engine for the vehicle described above, when the breather chamber is added onto an upper part of the crankcase, a starter and the like to be arranged onto the upper part of the crankcase have to be arranged at higher positions, so that the total length of the engine is increased. Particularly, since a rear cylinder inclined rearward is positioned on the upper side of the crankcase in a V-type engine, capacity of the breather chamber is largely limited.
When the breather chamber is provided in the exterior of the crankcase, a case and a cover exclusive to the breather chamber are required and a pipe for retuning oil is also required. Thus, part cost is increased and man-hour for assembling the engine is also increased.
The present invention is achieved in consideration with the problems above, and an object of the present invention is to provide an engine for a vehicle capable of maintaining compact size of the engine in the up and down direction, the fore-aft direction and the left and right direction while providing a large-capacity breather chamber. Another object of the present invention is to reduce the number of parts for the breather chamber.
In order to solve the problems above, an engine for a vehicle according to the present invention includes a crankcase having a crank chamber housing a crankshaft, and a gear transmission chamber housing a gear type transmission, a V-belt transmission case housing a V-belt type continuously variable transmission (CVT) for transmitting mechanical power from the crankshaft to an input shaft of the gear type transmission, the V-belt transmission case being fastened to an attachment surface on one side of the crankcase in the crankshaft direction, and a breather chamber formed in a mating part between the attachment surface of the crankcase and an attached surface of the V-belt transmission case, the breather chamber separating the air containing oil mist in the crankcase into a gas component and an oil component, discharging the gas component to the exterior of the crankcase through an discharge port, and returning the oil component to the interior of the transmission chamber.
According to the configuration above, the breather chamber can be provided without having the crankcase projecting toward the upper side and the rear side of the engine. Thus, it is possible to maintain compact size of the engine in the fore-aft direction and height thereof while increasing capacity of the breather chamber.
Since a case and a cover exclusive for forming the breather chamber are not required, it is possible to reduce the number of the parts, part cost and manufacturing cost.
In addition to the configuration above, the present invention may preferably have the following characteristics.
(a) The gear type transmission includes a reverse gear row in the vicinity of a side wall thereof on the opposite side of the V-belt transmission case, and the breather chamber is positioned so as to face the reverse gear row seen in the crankshaft direction.
According to the configuration above, space generated on the side of the reverse gear row can be effectively utilized for the breather chamber. Thus, it is possible to prevent an increase in size of the engine in the crankshaft direction.
(b) The V-belt type continuously variable transmission includes a drive pulley positioned on the side of the crankshaft, a driven pulley positioned on the side of the input shaft, and a V belt looped over both the pulleys, and the breather chamber is positioned between the drive pulley and the driven pulley seen in the crankshaft direction.
According to the configuration above, extra space between the front and rear pulleys can be effectively utilized for the breather chamber. Thus, it is possible to provide the large-capacity breather chamber.
(c) A discharge port for discharging the gas component after separation is formed in the V-belt transmission case.
Although a rubber tube or the like is connected to the discharge port in general, according to the configuration above, the rubber tube can be placed distant from the cylinders in comparison to a case where the discharge port is formed in the crankcase, so that a thermal influence to the rubber tube can be reduced. Particularly, since the rear cylinder is inclined on the upper side of the crankcase in a V-type engine, there is a need for taking a thermal influence of the rear cylinder into account. However, by adapting the configuration above, it is possible to reduce the thermal influence.
(d) The engine further includes a clutch chamber housing a centrifugal clutch for turning ON/OFF mechanical power transmission from the crankshaft to the V-belt type continuously variable transmission on one side of the crank chamber in the crankshaft direction, and a generator chamber housing a generator on the other side, the clutch chamber, the generator chamber and the crank chamber communicating with each other through communication holes. A pre-breather chamber is formed in a center part of the crankcase in the width direction, and blow-by gas from the clutch chamber and the generator chamber is firstly gathered in the pre-breather chamber and then fed to the breather chamber.
According to the configuration above, the oil mist scattered from a clutch in the clutch chamber and the oil mist scattered in the generator chamber are not directly guided to the breather chamber. Thus, it is possible to prevent a decrease in a breather function.
(e) A front cylinder inclined forward and a rear cylinder inclined rearward can be fastened to the crankcase by V-type arrangement.
The above and other objects, features and advantages of the present invention will be become more apparent from the following description taken in connection with the accompanying drawings.
A front seat 10 formed in a bench shape or a left-right division shape is installed in a front half part in the cabin 6, a rear seat 11 formed in a bench shape or a left-right division shape is installed in a rear half part in the cabin 6, and a dashboard (an operation portion) 12 is provided in a front end of the cabin 6.
An engine room 14 is formed so as to extend from lower space of the front seat 10 to lower space of the rear seat 11 and also positioned in a substantially center part of the vehicle in the width direction. A V-type two-cylinder engine 20 is housed in this engine room 14. A V-belt transmission case 26 is attached to a right side surface of the engine 20.
The crankcase 21 has a crank chamber 31 housing a crankshaft 30 in the front half part thereof, and a transmission chamber 32 housing a gear-type transmission (only a part thereof is shown in the figure) T2 in a rear half part thereof. Further, the crankcase 21 has a generator chamber 33 covered by the generator cover 25 on the left side of a left side wall 31a of the crank chamber 31, and a generator 34 is arranged in this generator chamber 33.
A crank pin 30a of the crankshaft 30 is fitted to a pair of connection rods 36a, 36b for the front and rear cylinders. A left end of the crankshaft 30 extends into the generator chamber 33, and a rotor of the generator 34 is fixed to the left end of the crankshaft 30.
The V-belt transmission case 26 arranged on the right side of the crankcase 21 includes a case main body 40 and a case cover 41. A V-belt type continuously variable transmission T1 is housed in the V-belt transmission case 26.
A right side surface of the right crankcase member 21b is an attachment surface 21c for attachment of the V-belt transmission case 26. The attachment surface 21c mates with an attached surface 40a of the case main body 40. The case main body 40 is attached to the right crankcase member 21b by a plurality of bolts 43. The case cover 41 is attached to a right side surface of the case main body 40 by a plurality of bolts 44.
A clutch chamber 50 surrounded by a right side wall 31b of the crank chamber 31 and a concave portion 40b of the case main body 40 is provided on the right side of the crank chamber 31. A centrifugal clutch 51 is housed in the clutch chamber 50. A clutch shaft 52 on the input side of the centrifugal clutch 51 is formed integrally with the crankshaft 30. The axis of the clutch shaft 52 corresponds to the axis 01 of the crankshaft 30.
The V-belt type continuously variable transmission T1 housed in the V-belt transmission case 26 plays a role of a primary transmission, and a structure thereof is already known. Therefore, the V-belt type continuously variable transmission T1 will be briefly described. The V-belt type continuously variable transmission T1 includes a drive pulley 62 attached to a drive shaft 61, a driven pulley 64 attached to a driven shaft 63, and a V belt 65 looped over both the pulleys 62, 64. The drive shaft 61 is combined to a clutch housing on the output side of the centrifugal clutch 51, and the driven shaft 63 is formed integrally with a transmission input shaft 70 of the gear-type transmission T2. The drive pulley 62 has a fixed sheave 62a, a movable sheave 62b, and a sheave thrust force generating mechanism 66 of a flyweight type. The driven pulley 64 has a fixed sheave 64a and a moveable sheave 64b. In accordance with a change in rotation speed of the drive shaft 61, a gap between both the sheaves 62a, 62b of the drive pulley 62 and a gap between both the sheaves 64a, 64b of the driven pulley 64 are changed so as to automatically shift gears.
The gear-type transmission T2 is provided with the transmission input shaft 70, a transmission output shaft 77 (refer to
The input reverse gear 73, the reverse idle gear 75, and the output reverse gear 76 are arranged in a single row on a single vertical plane and placed as leftward as possible so as to be positioned in the vicinity of a left side wall of the transmission chamber 32.
A wall part 21d of the right crankcase member 21b facing the reverse idle gear 75 seen in the crankshaft direction is dented leftward by a fixed amount from the attachment surface 21c (one of mating surfaces M2) of the right crankcase member 21b. A wall part 40c of the case main body 40 facing the reverse idle gear 75 is dented rightward from the attached surface 40a (the other mating surface M2) of the case main body 40. The wall part 21d of the right crankcase member 21b and the wall part 40c of the case main body 40 form a main breather chamber 80 serving as a major part of the present invention. That is, the main breather chamber 80 is formed by the mating surfaces M2 of the case main body 40 and the right crankcase member 21b. This main breather chamber 80 is positioned between the drive pulley 62 and the driven pulley 64 of the V-belt continuously variable transmission T1 so as to face the reverse idle gear 75 seen in the crankshaft direction.
In
A left end of an upper part of the pre-breather chamber 91 communicates with the generator chamber 33 through a left breather passage 98, and a right end of the upper part of the pre-breather chamber 91 communicates with the clutch chamber 50 through a right breather passage 99.
A plurality of collision walls 98a, 98b spaced in the up and down direction are formed in the middle of the left breather passage 98. These collision walls 98a, 98b form a substantially S shape labyrinth or maze curved in the fore-aft direction in the left breather passage 98.
A plurality of collision walls 91a, 91b spaced in the up and down direction are also formed in the pre-breather chamber 91. These collision walls 91a, 91b form a substantially S shape labyrinth or maze curved in the left and right direction in the pre-breather chamber 91.
A right end of a lower part of the pre-breather chamber 91 communicates with the lower breather passage 83 on the lower side of the main breather chamber 80 through an intermediate passage 83a.
A discharge passage 94 for discharging an oil component after the gas-liquid separation is formed on the lower side of the pre-breather chamber 91. An upper end of the discharge passage 94 communicates with the pre-breather chamber 91 through a first oil discharge hole 93, and a second oil discharge hole 95 is formed in a lower end of the discharge passage 94.
(1) In
(2) When pressure is increased in the crank chamber 31, the blow-by gas containing oil mist flows from the crank chamber 31 into the generator chamber 33 and the clutch chamber 50 through the left and right communication holes 82, 81. It should be noted that the blow-by gas immediately after leakage from the gap between the piston and the cylinder contains a small amount of a mist component, since the contained component is almost fuel. However, when the blow-by gas passes through the crank chamber 31 and other chambers, the oil component such as lubricating oil is mixed into the blow-by gas. Thus, the blow-by gas becomes “mix gas” containing a large amount of the oil component. In the description, all the gas is called as the “blow-by gas” irrespective of a degree of oil content as described above for simplifying the description.
(3) In
(4) In
(5) Meanwhile, the blow-by gas after the separation of the part of the oil component in the pre-breather chamber 91 flows into the main breather chamber 80 from the lower side through the intermediate passage 83a and the lower breather passage 83 in
(6) In
According to the embodiment, (1) the breather chamber 80 is formed by the mating surfaces M2 of the crankcase 21 and the V-belt transmission case 26 attached to the side of the crankcase 21. Therefore, it is possible to form the breather chamber 80 without increasing size in the up and down direction, the fore-aft direction and the left and right direction of the engine. Moreover, since a case and a cover exclusive for forming the breather chamber are not required, it is possible to reduce the number of parts, part cost and manufacturing cost.
(2) The reverse idle gear 75 of the gear-type transmission T2 is placed on the opposite side of the V-belt continuously variable transmission T1, and the breather chamber 80 is arranged between the front and rear pulleys 62, 64 of the V-belt type transmission T1 so as to face the reverse idle gear 75. Therefore, it is possible to maintain compact width of the engine in the left and right direction while ensuring the large-capacity breather chamber 80.
(3) The blow-by gas discharged from the crank chamber 31 to the clutch chamber 50 and the generator chamber 33 is once gathered in the pre-breather chamber 91 formed in a center part of the crankcase 21 in the left and right direction, and then fed to the main breather chamber 80. Therefore, the oil mist scattered in the clutch chamber 50 and the generator chamber 33 does not directly enter the main breather chamber 80. Since the pre-breather chamber 91 is provided in addition to the main breather chamber 80, a gas-liquid separation function is enhanced.
(4) The gas component discharge port 80c of the main breather chamber 80 is formed in the case main body 40 of the V-belt transmission case 26, the rubber tube 86 to be connected to the gas component discharge port 80c can be placed distant from an exhaust tube of the rear cylinder 23a of the V-type engine. Thus, it is possible to reduce a thermal influence from the exhaust tube.
(5) As shown in
In the second embodiment, structures other than the breather structure are the same as the first embodiment, and in the breather structure, the structure of the main breather chamber 80 is the same as the first embodiment. The same parts and components as the first embodiment will be given the same reference numerals.
In
The two collision walls 80a, 80b spaced in the up and down direction are provided in the main breather chamber 80. The upper collision wall 80a protrudes rearward from the front wall of the breather chamber 80, and the lower collision wall 80b protrudes forward from the rear wall of the breather chamber 80. These two collision walls 80a, 80b form the substantially S shape labyrinth or maze in the breather chamber 80. The lower breather passage 83 is provided on the lower side of the main breather chamber 80, and the rear part of the lower breather passage 83 communicates with the lower end of the main breather chamber 80.
In
An intermediate passage 192 is formed on the lower side of the gas gathering chamber 191 across a lower wall 191a. A right end of the intermediate passage 192 communicates with the lower breather passage 83 of the main breather chamber 80, and a rear end of the intermediate passage 192 communicates with the transmission chamber 32 through a breather hole 193.
An oil chamber 194 is formed on the lower side of the intermediate passage 192 across a lower wall 192a. An oil discharge hole 195 is formed in the lower wall 192a, and the intermediate passage 192 communicates with the oil chamber 194 (
An oil hole 196 is formed in a right side wall of the oil chamber 194. The oil chamber 194 communicates with an oil passage 205 formed in the right crankcase member 21b shown in
The oil passage 205 is formed by the mating surfaces of the right crankcase member 21b and the V-belt transmission case (corresponding to the reference numeral 26 in
It should be noted that a passage 210 for directly discharging the blow-by gas from the crank chamber 31 to the transmission chamber 32 is also formed in
(1) As well as the first embodiment, in
(2) The blow-by gas flowing into the clutch chamber 50 and the generator chamber 33 flows into the gas gathering chamber 191 on the center through the left and right breather passages 98, 99.
(3) The blow-by gas gathered in the gas gathering chamber 191 once flows into the transmission chamber 32 through the breather hole 201 on the rear side, and then flows into the intermediate passage 192 through the breather hole 193 on the lower side. The blow-by gas directly flowing into the transmission chamber 32 from the crank chamber 31 through the passage 210 also flows into the intermediate passage 192.
(4) Part of the oil component is separated from the blow-by gas in the intermediate passage 192. The blow-by gas after the separation of the part of the oil component flows into the lower breather passage 83 of the main breather chamber 80, and the separated part of the oil component drops down to the oil chamber 194 through the oil discharge hole 195.
(5) In
(6) The oil component dropping down to the oil chamber 194 is discharged to the transmission chamber 32 through the oil hole 196, the oil passage 205 and the oil hole 206 on a lower end in
In the second embodiment, the oil passage 205 for discharging the oil component to the transmission chamber 32 is also formed by the mating surfaces M2 of the right crankcase member 21b and the V-belt transmission case 26 as well as the main breather chamber 80. Therefore, it is possible to ensure further large internal space of the crankcase 21.
(1) The present invention is not limited to the V-type engine but may be applied to a plural-cylinder inline engine or a single-cylinder inline engine. The present invention is not limited to the four-wheeled vehicle but may be utilized as an engine for a motorcycle.
(2) The present invention is not limited to the structures of the embodiments described above but includes various modifications within a scope not departing from the claims.