This invention relates to a unit for improving fuel economy of an engine. The invention was initially conceived for use with internal combustion engines powering motor vehicles. However, it may also be used with electric motors, especially but not exclusively if battery powered, and the invention is not restricted to being for use with vehicles. In the context of this specification, the term ‘engine’ is intended to encompass not only internal combustion engines but also electric motors, and the term ‘fuel’ is intended to encompass not only fuel substances but also electricity.
The fuel economy of a vehicle powered by an IC engine depends on a number of factors. Some of these factors cannot be varied to any great extent by the vehicle user but others can. For example, fuel economy decreases: if the vehicle is driven at excessively high speed; if too low a gear is selected for a particular road speed so that the engine speed is excessively high; if the demand on the engine is suddenly increased by flooring the accelerator pedal, in particular with a petrol engine with acceleration enrichment; if in particular a goods vehicle is driven at or near its limit of performance when lightly laden; and if an engine is allowed to idle when the vehicle is stationary.
An aim of the present invention, or at least of specific embodiments of it, is to provide a device which can result in fuel economy being improved.
In accordance with a first aspect of the invention, there is provided a fuel economy unit for an engine system comprising an engine having a demand input (such as an accelerator pedal position input of an ECU of the engine), an output member (such as a drive shaft or wheel hub) drivable by the engine, and a user-operable demand control (such as an accelerator pedal) for providing a demand signal coupled (for example by a cable or bus) to the engine demand input to control the engine output. The fuel economy unit of the first aspect of the invention comprises: means for receiving an input signal indicative of acceleration of the output member or from which acceleration of the output member can be derived; and means for modifying the coupling of the demand signal to the engine demand input in dependence upon the acceleration of the output member to limit the acceleration of the output member. Put another way, when the operation of the demand control would result in harsh acceleration, the fuel economy unit can fool the engine into thinking that less demand is being placed on it. Accordingly, the fuel economy of the engine can be expected to increase in such circumstances.
The modifying means is preferably operable to modify the demand signal to represent a lesser demand when the acceleration of the output member reaches an acceleration threshold value. In order to provide a smooth response of an engine fitted with the fuel economy unit, the modifying means is more preferably operable to modify the demand signal to represent a progressively reducing demand while the acceleration of the output member exceeds an acceleration threshold value.
The acceleration threshold value may be preset. However, when used in circumstances where the load on the engine increases considerably with increasing speed of the engine or of the output member (as in the case of a vehicle engine overcoming air drag), this may result in more than desirable limiting of acceleration at low speeds and/or less than desirable limiting of acceleration at high speeds.
Therefore, the input receiving means, or a further input receiving means, is preferably arranged to receive an input signal indicative of the speed of the output member or from which speed of the output member can be derived. In this case, the acceleration threshold value is preferably dependent on the speed of the output member. For example, the lower the output member speed, the higher the permitted acceleration of the output member.
The fuel economy unit may further include means for deriving the acceleration of the output member by differentiation with respect to time of the speed of the output member. Therefore, having received a signal indicative of speed of the output member, or having derived a speed signal from some other input signal (such as a position signal), the fuel economy unit does not need to receive any further input signals in order to determine the acceleration of the output member.
The modifying means is preferably also operable to modify the coupling of the demand signal to the engine demand input in dependence upon the speed of the output member to limit the speed of the output member. For example, the modifying means is preferably operable to modify the demand signal to represent a lesser demand when the speed of the output member reaches an output speed threshold value. In the case of a vehicle, this feature can therefore be used to limit the vehicle's road speed.
In the case where, for example, the fuel economy unit is for use with an engine system also having a variable-ratio gearbox between the engine and the output member (e.g. a manual or automatic discrete ratio or continuously variable gearbox), the fuel economy unit preferably further includes further means for receiving a further input signal indicative of the speed of the engine or from which the speed of the engine can be derived. The acceleration threshold value may then be made dependent on the speed of the engine, for example with the modifying means limiting the acceleration of the output member when the acceleration of the output member reaches a value dependent on the speed of the engine.
The modifying means may also be operable to modify the demand signal to represent a lesser demand when the speed of the engine reaches an engine speed threshold value. In order again to provide a smooth response of an engine fitted with the fuel economy unit, the modifying means is more preferably operable to modify the demand signal to represent a progressively reducing demand while the speed of the engine exceeds an engine speed threshold value.
In accordance with a second aspect of the invention, the invention also extends to an engine system comprising: an engine (such as an internal combustion engine, an electric motor, or a hybrid of the two) having a demand input; an output member drivable by the engine; a user-operable demand control for providing a demand signal coupled to the engine demand input to control the engine output a user-operable demand control; and a fuel economy unit according to the first aspect of the invention for modifying the coupling between the demand signal to the engine demand input.
In the case where the engine includes an electronic ECU having an electrical demand input acting as the engine demand input and where the user-operable demand control comprises a demand sensor for producing an electrical demand signal dependent on the position of the demand control and a connection for connecting the demand signal to a demand input of the ECU, the modifying means is preferably operable to modify the demand signal between the demand sensor and the demand input of the ECU.
In the case where the engine system includes a first sensor for producing an electrical signal indicative of acceleration of the output member or from which acceleration of the output member can be derived, it is preferably that electrical signal which is received by the signal receiving means of the fuel economy unit.
Particularly in the case where the engine system includes a variable-ratio gearbox between the engine and the output member and a second sensor for producing a further electrical signal indicative the speed of the engine or from which the speed of the engine can be derived, it is preferably that further electrical signal which is received by the further signal receiving means of the fuel economy unit.
In accordance with a fourth aspect of the invention, the invention also extends to a motor vehicle having an engine system according to the third aspect of the invention. In this case, the output member preferably has a speed which is substantially proportional to the road speed of the vehicle. For example, the output member may be a gearbox output shaft or a road wheel or its hub.
Specific embodiments of the present invention will now be described, purely by way of example, with reference to the accompanying drawings, in which:
Referring to
Referring now to
Referring to
It will therefore be appreciated that:
It will be noted that with the form of functioning described with reference to
Referring now to
The unit 30 of
It will therefore be appreciated that:
In addition to modifying the accelerator pedal signal from P1 to P2, the fuel economy unit 30 of the second embodiment of
Furthermore, in the event that any of the following criteria are met, the unit 30 is arranged to produce a stop/start signal X′ which commands the ECU 10 to restart the engine:
A stop/start over-ride switch 50 is provided in addition to the vehicle's conventional controls and is connected to the unit 30. The unit 30 is arranged to inhibit its stop/start functionality when the over-ride switch 50 is operated.
The fuel economy unit 30 may also be provided with other functionality. For example, a unit over-ride switch 52 may be provided in addition to the vehicle's conventional controls. When the unit over-ride switch 52 is operated, the unit 30 responds by directly passing the accelerator pedal input signal P1 as the accelerator pedal output signal P2. Also, a cruise-control switch 54 may be provided in addition to the vehicle's conventional controls. When the cruise-control switch 54 is operated, the unit 30 responds by storing the value of the current road speed signal S and then varying the output accelerator pedal signal P2 as required so as to maintain the road speed of the vehicle at the stored value.
The fuel economy unit 30 may be implemented by a microcontroller and associated memory storing the operating program of the microcontroller, the maximum road and engine speed constants SMax, RMax and the maximum acceleration constant AMax or the look-up table for the values of AMax as a function of engine speed R. The unit 30 may be provided with a serial port 56 so that the program can be updated and the constants and look-up table can be changed. The unit 30 may be provided with a mobile telephone GSM messaging module 58 so that the constants and look-up table can be changed remotely. The unit 30 may also be arranged, in response to a particular command received by the messaging module 58, to disable the accelerator pedal output P2 to the ECU 10 so that the vehicle can be remotely disabled for example in the event of theft. The unit 30 may also be provided with a GPS positioning module 60 so that the position of the vehicle can be reported via the messaging module 58. The unit 30 may also be provided with a status indicator 61 such as one or more LEDs which are arranged to indicate to the vehicle driver for example that the unit 30 is limiting the speed or acceleration of the vehicle or the speed of the engine.
Although the fuel economy devices 30 have been described above and shown in the drawings as being for use with a vehicle having an internal combustion engine, they may also be used with electric motor systems to modify a signal between a demand control of the electric motor system and a demand input of the system.
The fuel economy devices 30 described above can be fitted to a vehicle during manufacture, or retro-fitted after vehicle manufacture, without requiring any modification of the ECU 10. The fuel economy devices 30 may also be used with engines and motors which are not used to power vehicles.
It should be noted that the embodiments of the invention has been described above purely by way of example and that many other modifications and developments may be made thereto within the scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
1009574.3 | Jun 2010 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB11/51073 | 6/8/2011 | WO | 00 | 1/30/2013 |