Not Applicable
Not Applicable
Not Applicable
Not Applicable
Not Applicable
The disclosure and prior art relate to engine hoist accessory assemblies and more particularly pertain to a new engine hoist accessory assembly for hoisting a vehicle component.
An embodiment of the disclosure meets the needs presented above by generally comprising a tube, a bar, and a pair of rods. The tube has a first end that is configured to slidably insert a terminus of a boom of an engine hoist to removably couple the tube to the boom. The bar has a back face that is coupled to and extends bidirectionally and perpendicularly from a second end of the tube so that the bar is substantially parallel to a surface upon which the engine hoist is positioned. The pair of rods is coupled to and extends in parallel from a front face of the bar. The rods are configured to position under a vehicle component, positioning a user to utilize the engine hoist to selectively lift and lower the vehicle component.
There has thus been outlined, rather broadly, the more important features of the disclosure in order that the detailed description thereof that follows may be better understood, and in order that the present contribution to the art may be better appreciated. There are additional features of the disclosure that will be described hereinafter and which will form the subject matter of the claims appended hereto.
The objects of the disclosure, along with the various features of novelty which characterize the disclosure, are pointed out with particularity in the claims annexed to and forming a part of this disclosure.
The disclosure will be better understood and objects other than those set forth above will become apparent when consideration is given to the following detailed description thereof. Such description makes reference to the annexed drawings wherein:
With reference now to the drawings, and in particular to
As best illustrated in
A pair of coupling holes 26 is positioned through the tube 12 proximate to the first end 18. The coupling holes 26 are opposingly positioned on the tube 12 and thus are configured to align with a coupling channel that is positioned through the boom 22. The pair of coupling holes 26 and the coupling channel are configured to insert a coupling pin to removably couple the tube 12 to the boom 22.
The bar 14 has a back face 28 that is coupled to and extends bidirectionally and perpendicularly from a second end 30 of the tube 12 so that the bar 14 is substantially parallel to a surface upon which the engine hoist 24 is positioned. The bar 14 is hingedly coupled to the tube 12 so that the bar 14 is positioned to be partially hinged relative to the bar 14 while remaining perpendicular to the tube 12. The bar 14 is substantially rectangularly box shaped and is tubular.
A pair of hinge tabs 32 is coupled to and extends from the back face 28 the bar 14. Each of a pair of hinge holes 34 is positioned through a respective hinge tab 32. A protrusion 36 is coupled to and extends from the second end 30 of the tube 12. A hinge channel 38 is positioned through the protrusion 36 so that the protrusion 36 is insertable between the pair of hinge tabs 32 to align the hinge channel 38 with the pair of hinge holes 34. A hinge bolt 40 is positioned through the pair of hinge holes 34 and the hinge channel 38. A hinge nut 96 is coupled to the hinge bolt 40 to fixedly position the hinge bolt 40 in the pair of hinge holes 34 and the hinge channel 38 so that the bar 14 is hingedly coupled to the tube 12.
A pair of first lock tabs 42 is coupled to and extends from a bottom 44 of the bar 14. A first hinge ball 46 is rotationally coupled to and extends between the pair of first lock tabs 42. A first bolt channel 48 is positioned through the first hinge ball 46.
A pair of second lock tabs 50 is coupled to and extends from a lower face 52 of the tube 12. A second hinge ball 54 is rotationally coupled to and extends between the pair of second lock tabs 50. A second bolt channel 56 is positioned through the second hinge ball 54 so that the second bolt channel 56 is alignable with the first bolt channel 48. A ball nut 58 is coupled to the second hinge ball 54 so that the ball nut 58 is aligned with the second bolt channel 56.
A locking bolt 60 is positioned through the first bolt channel 48 and second bolt channel 56 and is threadedly inserted into the ball nut 58 so that a head 62 of the locking bolt 60 abuts the first hinge ball 46. The head 62 of the locking bolt 60 is configured to be turned, using a socket wrench of the like, to selectively tilt the pair of rods 16 relative to the tube 12 and to fixedly position the pair of rods 16 relative to the tube 12.
A first cross channel 64 is positioned through the first hinge ball 46 so that the first cross channel 64 is perpendicular to and nonintersecting with the first bolt channel 48. A pair of first holes 66 is positioned singly in the pair of first lock tabs 42 so that the first cross channel 64 is alignable with the pair of first holes 66. A first channel bolt 68 is positioned through the pair of first holes 66 and the first cross channel 64. A first channel nut 70 is coupled to the first channel bolt 68 to fixedly position the first channel bolt 68 in the pair of first holes 66 and the first cross channel 64.
A second cross channel 72 is positioned through the second hinge ball 54 so that the second cross channel 72 is perpendicular to and nonintersecting with the second bolt channel 56. A pair of second holes 74 is positioned singly in the pair of second lock tabs 50 so that the second cross channel 72 is alignable with the pair of second holes 74. A second channel bolt 76 is positioned the pair of second holes 74 and second cross channel 72. A second channel nut 78 is coupled to the second channel bolt 76 to fixedly position the second channel bolt 76 in the pair of second holes 74 and the second cross channel 72.
The pair of rods 16 is coupled to and extends in parallel from a front face 80 of the bar 14. The rods 16 are configured to position under a vehicle component, positioning a user to utilize the engine hoist 24 to selectively lift and lower the vehicle component. Utilizing the engine hoist 24 to lift the vehicle component, rather than manually lifting the vehicle component, prevents injuries to hands and a back of the user.
The rods 16 are circularly shaped when viewed longitudinally. The rods 16 are positioned singly proximate to opposing ends 82 of the bar 14. The rods 16 are separated by from 7.6 to 27.9 centimeters. The rods 16 are separated by from 12.7 to 22.9 centimeters. The rods 16 are separated by 17.8 centimeters.
The assembly 10 also comprises a chain 84 that is coupled to the bar 14 so that the chain 84 is configured to secure the vehicle component to the bar 14. A plate 86 is coupled to and extends from the bottom 44 of the bar 14. An orifice 88 is positioned in the plate. A bolt 90 is positioned through a link 92 of the chain 84 and the orifice 88. A nut 94 is coupled to the bolt so 90 that the chain 84 is bolted to the plate 86.
In use, the tube 12 is coupled to the boom 22 by inserting the terminus 20 of the boom 22 into the first end 18 of the tube 12. The head 62 of the locking bolt 60 is turned to tilt the pair of rods 16 relative to the tube 12, as desired. The locking bolt 60 fixedly positions the pair of rods 16 relative to the tube 12. The rods 16 are positioned under the vehicle component and the engine hoist 24 is used to selectively lift and lower the vehicle component.
With respect to the above description then, it is to be realized that the optimum dimensional relationships for the parts of an embodiment enabled by the disclosure, to include variations in size, materials, shape, form, function and manner of operation, assembly and use, are deemed readily apparent and obvious to one skilled in the art, and all equivalent relationships to those illustrated in the drawings and described in the specification are intended to be encompassed by an embodiment of the disclosure.
Therefore, the foregoing is considered as illustrative only of the principles of the disclosure. Further, since numerous modifications and changes will readily occur to those skilled in the art, it is not desired to limit the disclosure to the exact construction and operation shown and described, and accordingly, all suitable modifications and equivalents may be resorted to, falling within the scope of the disclosure. In this patent document, the word “comprising” is used in its non-limiting sense to mean that items following the word are included, but items not specifically mentioned are not excluded. A reference to an element by the indefinite article “a” does not exclude the possibility that more than one of the elements is present, unless the context clearly requires that there be only one of the elements.
Number | Name | Date | Kind |
---|---|---|---|
2747837 | Turner | May 1956 | A |
4705264 | Hawkins | Nov 1987 | A |
5251875 | Craychee | Oct 1993 | A |
5666747 | MacQueen | Sep 1997 | A |
5897100 | Napier | Apr 1999 | A |
6109593 | Craychee | Aug 2000 | A |
6120236 | Smith | Sep 2000 | A |
6283220 | Carter | Sep 2001 | B1 |
6659503 | Damron | Dec 2003 | B2 |
7020823 | Triplett | Jul 2006 | B2 |
D713613 | Miles | Sep 2014 | S |
9452911 | Tipton | Sep 2016 | B1 |
20020066215 | Kaczmarski | Jun 2002 | A1 |
20080105638 | Crawford | May 2008 | A1 |
20140110647 | Filipovic | Apr 2014 | A1 |
Number | Date | Country | |
---|---|---|---|
20210061618 A1 | Mar 2021 | US |