Engine hood for a motor vehicle

Information

  • Patent Grant
  • 8167071
  • Patent Number
    8,167,071
  • Date Filed
    Friday, November 7, 2008
    16 years ago
  • Date Issued
    Tuesday, May 1, 2012
    12 years ago
Abstract
An engine hood for a motor vehicle has an outer planking and an inner part. Between the outer planking and the inner part, a supporting part is arranged, which reinforces the outer planking. In order to reduce the manufacturing costs for an engine hood while maintaining a favorable delay pattern in the event of a head impact, the supporting part has supporting elements which, in the event of an essentially vertical admission of force, permit a displacement of the outer planking relative to the inner part until the supporting part rests with its predominant surface against the inner part.
Description
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims priority under 35 U.S.C. §119 to German Patent Application No. 10 2007 053171.2, filed Nov. 8, 2007, the entire disclosure of which is herein expressly incorporated by reference.


BACKGROUND AND SUMMARY OF THE INVENTION

The invention relates to an engine hood for a motor vehicle having an outer planking and an inner part. Between the outer planking and the inner part, a supporting part is arranged which reinforces the outer planking.


In order for an engine hood to absorb sufficient energy in case of an impact with a pedestrian, it is known from production vehicle construction to arrange the engine hood at a sufficient distance above the assemblies arranged below the engine hood. The determination of the so-called HIC (head injury criterion) indicates whether an engine hood meets the legal requirements.


From International patent document WO 03/011660 A1, it is known to equip an outer planking or cover with a reinforcing layer. The reinforcing layer is arranged above the outer planking and is connected with the outer planking. The reinforcing layer consists of a brittle material, so that the hood has a buckling strength required for normal operation. In the case of a dynamic loading, for example, in the event of a head impact, the supporting layer will break while absorbing energy, so that a deceleration pattern occurs that is favorable for a head impact.


However, as a result of the different materials, the manufacturing expenditures are increased.


It is an object of the invention to reduce the manufacturing costs for an engine hood of a motor vehicle while maintaining a favorable deceleration pattern in the event of a head impact.


According to the invention, an engine hood for a motor vehicle has an outer planking and an inner part, between the outer planking and the inner part a supporting part being arranged which reinforces the outer planking. The supporting part has supporting elements which, in the event of an essentially vertical admission of force, permit a displacement of the outer planking relative to the inner part until the supporting part rests with its predominant surface against the inner part.


Advantageous further developments of the invention are described and claimed herein.


According to the invention, a supporting part reinforcing the outer planking is to be provided between the outer planking and an inner part, particularly in the forward region of the engine hood, which supporting part has supporting elements that, in the event of a vertical admission of force, permit a displacement of the outer planking relative to the inner part until the supporting part rests with its predominant surface against the inner part.


Within the context of the invention, supporting elements are such that, up to a certain degree, they are held in a flexible or elastic manner; that is, when the force effect is low (for example, during a normal driving operation or when opening or closing the engine hood), the supporting elements move back into their initial position; when the force exceeds a previously defined value, the supporting elements deform plastically while absorbing energy. In this case, the supporting elements can either support themselves at the inner part or the outer planking supports itself on the supporting elements. The supporting part itself together with its supporting elements can be constructed as a sheet metal part, particularly as a deep-drawn part, so that the same materials are processed together.


A reinforcement of the engine hood in the forward region can be achieved when the inner part and the outer planking at least partially form a closed hollow profile.


In order to obtain a favorable delay pattern also in the event of a pedestrian impact in the edge regions of the engine hood, the supporting part can extend essentially over almost the entire engine hood width.


The supporting part, preferably, is a flat component whose essential dimensional surface may be constructed to be planar but may also be physically curved. It is recommended that the dimensional surface of the supporting part at least partially follow the course of the outer planking. In order to implement the desired relative movement of the supporting part with the outer planking with respect to the inner part, supporting elements may project at an angle from the dimensional surface of the supporting part.


Optionally, the supporting elements may project from the supporting part in a step-shaped manner in the direction of the inner part, in which case the supporting elements may project from the longitudinal sides of the supporting part in the direction of the inner part.


In an alternative embodiment, the supporting elements may project in the direction of the outer planking, in which case several supporting elements are arranged side-by-side in the transverse direction of the vehicle distributed over the width of the engine hood.


In a longitudinal sectional view, in an alternative embodiment, the supporting part may extend in a step shape within the hollow profile. This has the advantage that, in the event of a vertical force, this step bends open while additionally absorbing energy.


This step may be defined in that the supporting part extends from an approximately horizontally extending floor wall to an approximately vertically extending rearward face wall of the inner part. Under the effect of a force, a forced movement of the supporting part is therefore made possible.


Other objects, advantages and novel features of the present invention will become apparent from the following detailed description of one or more preferred embodiments when considered in conjunction with the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a top view of an engine hood with a supporting part in a first embodiment;



FIG. 2 is a sectional view according to Line II-II in FIG. 1;



FIG. 3 is a perspective view diagonally from the rear of a second embodiment of a supporting part; and



FIG. 4 is a sectional view according to Line IV-IV in FIG. 3.





DETAILED DESCRIPTION OF THE DRAWINGS


FIGS. 1 and 2 show a first embodiment of an engine hood 1 according to the invention. In this case, the engine hood 1 includes an outer planking 2, an inner part 3, as well as a reinforcing supporting part 4. The inner part 3 and the outer planking 2 are mutually connected at the forward end edge 5 of the engine hood 1. In the further longitudinal course of the engine hood 1, the outer planking 2 can support itself on the inner part 3 on additional regions (which are not shown in detail).


The supporting part 4 is used for reinforcing the engine hood 1 in its forward region. The supporting part 4 has an essentially square construction and extends over approximately the entire engine hood width. Supporting elements 8 to 11 are shaped onto the forward longitudinal side 6 and the rearward longitudinal side 7, which supporting elements 8 to 11—in the cross-sectional view—extend in a step shape from the inner part 3 to the main dimensional plane of the supporting part 4. The main dimensional plane of the supporting part 4 extends approximately parallel to the contour of the outer planking 2. For a reinforcement in the transverse direction of the vehicle, each of the supporting elements 8 to 11 has a longitudinal bead 12 to 15.


In its main dimensional plane, the supporting part 4 is equipped with transverse beads 16, 17 and 18 in order to reinforce the outer planking 2. A recess 19 is provided in the region of the engine hood lock in the forward longitudinal side 6.


Because of the large-surface of the supporting part 4 resting against the interior side of the outer planking 2, in the event of a pedestrian impact, at first both parts, i.e., the supporting part 4 and the outer planking 2, together are displaced in the direction of the inner part 3. Under a further effect of the force according to arrow F, the supporting elements 8 to 11 will yield until the supporting part 4 rests against the inner part 3. The supporting elements yield elastically only under the effect of a slight static force. When a defined force is exceeded, the supporting elements deform plastically.


It is only when the supporting part 4 with the outer planking 2 rests predominantly on the inner part 3 that the entire forward hood region, as a whole, is displaced downward.



FIGS. 3 and 4 illustrate a second embodiment. Here also, a supporting part 40 is arranged between an inner part 30 and an outer planking 20, in which case the inner part 30 and the outer planking 20 partially form a closed hollow profile 24. For this purpose, the inner part 30 is encompassed or bordered on the forward end edge 50 of the engine hood 21 by the outer planking 20 In the rearward region 22, the inner part is fastened by means of a flange 23 on the outer planking 20.


Within the thereby formed hollow profile 24, the supporting part 40 extends in a step-shaped manner from an approximately horizontally extending floor wall 25 to an approximately vertically extending rearward face wall 26 of the inner part 30. For the support, the supporting part 40 has flanges 27, 28 on its forward longitudinal side 60 and on the rearward longitudinal side 70, by which flanges 27, 28, the supporting part 40 can support itself on the inner part 30. Several deformable supporting elements 31 in the form of sheet metal lugs 32 cut free from the supporting part 40 and bent away upward project from the step-type edge 29. The supporting part 40 is glued to the outer planking 20 only at the top side 33 of the sheet metal lugs 32. As a result, in the event of a pedestrian impact according to a force effect in the direction of the arrow F, the sheet metal lugs 32 can first be bent in elastically in the direction of their recesses 34 and, in the further course, while reducing energy, can be bent in plastically.


In the further course of the pedestrian impact, the supporting part deforms by bending open the step in the direction of the inner part 30. The flanges 27 and 28 support this bending-open in that they are not glued or otherwise fastened to the inner part 30. It is only when the supporting part 40 has a large-surface contact with the inner part 30 that the forward engine hood region as a whole—thus, the outer planking 20, the inner part 30 and the supporting part 40 together—is displaced.


The foregoing disclosure has been set forth merely to illustrate the invention and is not intended to be limiting. Since modifications of the disclosed embodiments incorporating the spirit and substance of the invention may occur to persons skilled in the art, the invention should be construed to include everything within the scope of the appended claims and equivalents thereof.

Claims
  • 1. An engine hood for a motor vehicle, comprising: an outer planking having an outer periphery, an outwardly facing surface and an inwardly facing surface;an inner part having an outer periphery connected to the outer periphery of the outer planking and an outwardly facing surface opposed to and spaced from the inwardly facing surface of the outer planking at all locations spaced from the outer peripheries of the outer planking and the inner part;a supporting part operatively arranged between the outer planking and the inner part, the supporting part reinforcing the outer planking;wherein the supporting part comprises an outer periphery, supporting elements extending from spaced apart positions on the outer periphery of the supporting part into supporting contact with the inner part, all of the supporting part other than the supporting elements being spaced from the inner part and being opposed to and substantially parallel to the outer planking, and the supporting elements permitting a displacement of the outer planking relative to the inner part in an event of an essentially vertical force applied to the outer planking until a predominant surface of the supporting part rests against the inner part.
  • 2. The engine hood according to claim 1, wherein the inner part and the outer planking at least partially formed a closed hollow profile.
  • 3. The engine hood according to claim 2, wherein the supporting part extends essentially over almost an entire engine hood width.
  • 4. The engine hood according to claim 3, wherein, in a longitudinal sectional view, the supporting part extends in a step shape inside the hollow profile.
  • 5. The engine hood according to claim 2, wherein, in a longitudinal sectional view, the supporting part extends in a step shape inside the hollow profile.
  • 6. The engine hood according to claim 5, wherein the supporting part extends from an approximately horizontally extending floor wall to an approximately vertically extending rearward face wall of the inner part.
  • 7. The engine hood according to claim 1, wherein the supporting part extends essentially over almost an entire engine hood width.
  • 8. The engine hood according to claim 7, wherein the supporting elements project at an angle from a major dimensional surface of the supporting part.
  • 9. The engine hood according to claim 8, wherein the supporting elements project in a step shape in the direction of the inner part.
  • 10. The engine hood according to claim 8, wherein the supporting elements project from longitudinal sides of the supporting part in the direction of the inner part.
  • 11. The engine hood according to claim 1, wherein the supporting elements project at an angle from a major dimensional surface of the supporting part.
  • 12. The engine hood according to claim 11, wherein the supporting elements project in a step shape in the direction of the inner part.
  • 13. The engine hood according to claim 12, wherein the supporting elements project in the direction of the outer planking.
  • 14. The engine hood according to claim 13, wherein several supporting elements are arranged side-by-side in a transverse direction of the vehicle distributed over the width of the engine hood.
  • 15. The engine hood according to claim 11, wherein the supporting elements project from longitudinal sides of the supporting part in the direction of the inner part.
  • 16. The engine hood according to claim 15, wherein the supporting elements project in the direction of the outer planking.
  • 17. The engine hood according to claim 16, wherein several supporting elements are arranged side-by-side in a transverse direction of the vehicle distributed over the width of the engine hood.
  • 18. The engine hood according to claim 11, wherein the supporting elements project in the direction of the outer planking.
  • 19. The engine hood according to claim 18, wherein several supporting elements are arranged side-by-side in a transverse direction of the vehicle distributed over the width of the engine hood.
Priority Claims (1)
Number Date Country Kind
10 2007 053 171 Nov 2007 DE national
US Referenced Citations (39)
Number Name Date Kind
4598008 Vogt et al. Jul 1986 A
4634167 Moriki et al. Jan 1987 A
5115878 Hayata May 1992 A
5124191 Seksaria Jun 1992 A
5605371 Borchelt et al. Feb 1997 A
5706908 Sakai et al. Jan 1998 A
6048022 Ishibashi et al. Apr 2000 A
7052075 Kamada et al. May 2006 B2
7055894 Ikeda et al. Jun 2006 B2
7090289 Koura Aug 2006 B2
7140673 Ito et al. Nov 2006 B2
7147273 Ikeda et al. Dec 2006 B2
7150496 Fujimoto Dec 2006 B2
7354101 Donabedian et al. Apr 2008 B2
7377580 Ekladyous May 2008 B1
7399028 Castillo et al. Jul 2008 B1
7467680 Mason Dec 2008 B2
7481488 Ikeda et al. Jan 2009 B2
7488031 Ishitobi Feb 2009 B2
7497507 Matsushima et al. Mar 2009 B2
7578548 Behr et al. Aug 2009 B2
7635157 Wang et al. Dec 2009 B2
7690720 Wang et al. Apr 2010 B2
7735908 Wang et al. Jun 2010 B2
7810877 Ishitobi Oct 2010 B2
7984943 Iwano et al. Jul 2011 B2
8016347 Uchino Sep 2011 B2
20040021342 Fujimoto Feb 2004 A1
20040182616 Mason Sep 2004 A1
20050082874 Ikeda et al. Apr 2005 A1
20060220418 Behr et al. Oct 2006 A1
20070235237 Wallman et al. Oct 2007 A1
20080007094 Ishitobi Jan 2008 A1
20080066983 Kimoto et al. Mar 2008 A1
20080122261 Seo May 2008 A1
20090025995 Wang et al. Jan 2009 A1
20090065277 Wang et al. Mar 2009 A1
20090120704 Thomas et al. May 2009 A1
20100019540 Fujimoto Jan 2010 A1
Foreign Referenced Citations (13)
Number Date Country
195 14 324 Dec 1995 DE
100 38 812 Feb 2002 DE
101 36 898 Feb 2003 DE
102 59 591 Jul 2004 DE
103 31 066 Feb 2005 DE
10 2004 048 504 Apr 2006 DE
10 2004 053 020 May 2006 DE
10 2005 050 110 Apr 2007 DE
2 434 125 Jul 2007 GB
2004-50909 Feb 2004 JP
2006-44544 Feb 2006 JP
2007-30693 Feb 2007 JP
WO 03011660 Feb 2003 WO
Related Publications (1)
Number Date Country
20090120704 A1 May 2009 US