The present invention relates generally to the field of engine nozzles, and more particularly to a nozzle synchronization system.
With parenthetical reference to the corresponding parts, portions or surfaces of the disclosed embodiments, merely for purposes of illustration and not by way of limitation, an actuator synchronization system (15) is provided comprising a control valve (18) in fluid communication with a plurality of actuators (16a-16d), each of the actuators comprising an input stage element in fluid communication with the control valve and having an input member (21) movably mounted along an input axis (61), and configured to be moved from a first input position (
The control valve may comprise a servo valve. The respective fixed drive axes of the actuators may be aligned and the mechanical connector may comprise a shaft extending between the respective input stage elements and/or the respective drive links. The respective fixed drive axes of the actuators may not be aligned and the mechanical connector may comprise a cable or universal joint extending between the respective input stage elements and/or the respective drive links.
The input member may comprise an input piston (21) moveably mounted in an input chamber (25) in fluid communication with the control valve. The input piston may comprise a portion having a slot (24) bounded by substantially-parallel walls and the drive link may comprise a rounded marginal end portion (41) engaging the slot walls. The output member may comprise an output piston (26) moveably mounted in an output chamber (35) in fluid communication with the port of the main valve. The feedback linkage may comprise a first link (45) engaging the valve member at a first connection and a second link (49) engaging the output piston at a second connection. The valve member may comprise a slot (30) bounded by substantially-parallel walls and the first link of the feedback linkage may comprise a rounded marginal end portion (42) contacting the slot walls to form the first connection. The output piston may comprise a contoured surface (27) and the second link of the feedback linkage may comprise a rolling marginal end portion (51) configured to contact the contoured surface of the output piston to form the second connection. The feedback linkage may comprise a third link (48) connected to the first link at a third connection (52) and connected to the second link at a fourth connection (53). The first link and the third link may be rotationally coupled at the third connection and the second link and the third link may be rotationally coupled at the fourth connection. The second link may be configured to rotate about a fixed feedback axis (50) and the fourth connection (53) may be off-set a distance from the fixed feedback axis such that selective motion of the output piston between the first output position and the second output position along the output axis causes the fourth connection of the feedback linkage to rotate about the feedback axis. The feedback linkage may be configured to move the valve member from the null position to the off-null position with selective rotation of the drive link about the drive axis. The feedback linkage may be configured to move the valve member from the off-null position back to the null position with selective rotation about the feedback axis.
The main valve may comprise a second port (P2); the output member may comprise an output piston (26) moveably mounted in an output chamber in fluid communication with the port of the main valve; the output chamber may comprise a first chamber (33) and a second chamber (34); the first port may be flow connected to the first chamber and the second port may be flow connected to the second chamber; and the output piston may be adapted to be moved from the first position to the second position along the output axis as a function of a hydraulic pressure differential between the first chamber and the second chamber.
Each of the respective actuators may further comprise a bias mechanism (60) configured to bias one or more of the valve member, the drive link and the feedback linkage. The second link may be configured to rotate about a fixed feedback axis (50) and the bias mechanism may comprise a first bias element (60a) configured to bias the valve member along the main valve axis, a second bias element (60b) configured to bias the output member about the feedback axis and a third bias element (60c) configured to bias the drive link about the drive axis. The first bias element may comprise a compression spring and the third bias element may comprise a torsional spring.
The valve member may comprise a valve spool.
At the outset, it should be clearly understood that like reference numerals are intended to identify the same structural elements, portions or surfaces consistently throughout the several drawing figures, as such elements, portions or surfaces may be further described or explained by the entire written specification, of which this detailed description is an integral part. Unless otherwise indicated, the drawings are intended to be read (e.g., crosshatching, arrangement of parts, proportion, degree, etc.) together with the specification, and are to be considered a portion of the entire written description of this invention. As used in the following description, the terms “horizontal”, “vertical”, “left”, “right”, “up” and “down”, as well as adjectival and adverbial derivatives thereof (e.g., “horizontally”, “rightwardly”, “upwardly”, etc.), simply refer to the orientation of the illustrated structure as the particular drawing figure faces the reader. Similarly, the terms “inwardly” and “outwardly” generally refer to the orientation of a surface relative to its axis of elongation, or axis of rotation, as appropriate.
Referring now to
As shown, servo valve 18 has operative connections Ps, Pr, C1 and C2 with actuators 16a-16d to supply pressure Ps and fluid return Pr and provide controls C1 and C2, respectively. While valve 18 in this embodiment is a four-way servo valve, it should be clearly understood that the embodiments are not limited to four-way valves, but could be readily adapted to some other form, as desired.
As shown in
As shown in
Spool 29 of servo valve 20 has a plurality of lands and grooves along its longitudinal extent in the usual manner, and is adapted to be selectively and controllably shifted either leftwardly or rightwardly, as desired, within cylinder 28 from the null position shown in
Closed loop feedback linkage 22 generally comprises input crank 40, input link 45, feedback link 48 and elbow link 49. As shown, input crank 40 is configured to rotate about fixed axis 44 and includes quill 41 and cable attachment 43. Quill 41 has a rounded distal end portion received in notched end 24 of pilot piston 21. Flexible cable 17 is attached at cable attachment 43 and synchronizes the low force/low friction input cranks 40 of each of actuators 16a-16d. Crank 40 is rotationally connected at pivot joint 47 to input link 45.
The top end of input link 45 includes quill 42, which has a rounded distal end portion received in notched end 30 of spool 29. The other end of input link 45 is rotationally connected at pivot joint 52 to the left end of feedback link 48. The right end of feedback link 48 is in turn rotationally connected at pivot joint 53 to the bottom left end of elbow link 49.
Elbow link 49 is configured to rotate about fixed axis 50. Output piston 26 includes an inwardly and leftwardly-facing frusto-conical inner tapered bore 27, as shown. The right upper end of elbow link 49 includes cam roller 51, which bears against and rolls along the inner tapered surface 27 of piston 26. Pivot joints 47, 52 and 53 are said to be floating pivot joints since their axis of rotation is not fixed relative to the actuator body. Axes 44 and 50 are not floating.
As shown in
This controlled flow and hydraulic pressure in turn causes output piston 26 to move to the right on axis 63. As shown in
The nozzle position is fed back to the system to control the electro-hydraulic servo valve 18 command to the input pilot piston 21 of each actuator 16. As a result, the system will operate with higher loop gain and provide more accuracy. Each actuator is closed loop position servo to input.
While the presently preferred form of the system has been shown and described, and several modifications thereof discussed, persons skilled in this art will readily appreciate that various additional changes and modifications may be made without departing from the scope of the invention, as defined and differentiated by the following claims.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2015/033724 | 6/2/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/187655 | 12/10/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2346418 | Dodson | Apr 1944 | A |
2657539 | Geyer | Nov 1953 | A |
3398646 | Baltus | Aug 1968 | A |
3956971 | Meulendyk | May 1976 | A |
3977300 | Sherman | Aug 1976 | A |
4598626 | Walters | Jul 1986 | A |
Number | Date | Country |
---|---|---|
0 831 027 | Mar 1998 | EP |
Entry |
---|
International Preliminary Report on Patentability and Written Opinion of the International Searching Authority (8 pages) dated Dec. 15, 2016. |
International Search Report and Written Opinion of the International Searching Authority (9 pages) dated Aug. 31, 2015. |
Number | Date | Country | |
---|---|---|---|
20170089364 A1 | Mar 2017 | US |
Number | Date | Country | |
---|---|---|---|
62007402 | Jun 2014 | US |