The invention provides a safe, reliable system including a controller for automatically dosing fuel with a fuel additive, using a positive feed means for injecting the additive, particularly a concentrate containing fuel borne catalyst (FBC) into the fuel, wherein the amount of FBC injection is controlled as a function of predetermined fuel consumption data. The invention has particular applicability to diesel engines of the type used in vehicle, stationary or marine applications, particularly those classified as medium duty diesel engines, but it is applicable generally where dosing of FBC or other concentrate is desired.
Fuel additives, especially FBCs containing fuel soluble or suspended compounds containing releasable catalytic metals in the form of concentrates containing platinum group metals, cerium, iron, copper, manganese, magnesium and the like or combinations, can enable cleaner burning of a fuel in an engine, thereby allowing for more efficient operation of the engine. The additives can reduce pollutants as a primary measure or in combination with an after treatment device.
Many prior art systems proposed for dosing additives involve complex monitoring electronically and/or mechanically, typically with some form of feedback control, to achieve a desired concentration of active catalytic metals in the fuel. The provision of systems that require vehicle modifications are often not practical for retrofit applications due to the great variety of trucks being used commercially, even by a single fleet owner.
Among the prior art systems are those that require operator monitoring and/or intervention. However, fleet operators need the assurance that an FBC additive concentrate is being properly added to the fuel of designated vehicles without requiring a particular operator to perform any task other than his normal operations. Operator monitoring or intervention can be problematic, especially where the same vehicle is used by different operators.
Current and proposed regulations challenge manufacturers to both achieve good fuel economy and reduce emissions. While fuel additives will likely be necessary to achieve the objectives of the regulations, the art has provided no simple device capable of metering an effective additive into the fuel in a reliable manner with no operator intervention or attention.
Automatic correctly proportioned introduction of fuel additives into the fuel tanks of vehicles on a regular, consistent basis is a challenge to fuel additive suppliers and fleet owners desiring to use them. There is a current need for a safe, economical and effective answer to the problems associated with the regular dispensing additives into the fuel.
It is an objective of the invention to provide a safe, reliable additive dosing system for automatically introducing fuel additive into a fuel tank for the purpose of enhancing the operation of an internal combustion engine and/or reducing emission of pollutants.
It is another objective of the invention to maintain an effective average concentration of fuel additive in the fuel supply for a diesel engine.
It is another objective of the invention to eliminate any requirement that the vehicle operator monitor or activate any device on the vehicle so as to accomplish dosing of the fuel tank.
It is another objective of the invention to dose the fuel tank at a predetermined rate which corresponds to a predetermined average consumption rate.
It is another objective of invention to activate the system automatically when the engine is started and to stop it when the engine is turned off.
These and other objectives are accomplished by the invention which provides a system with process and apparatus aspects described below to automatically and positively feed fuel additive to fuel by positive feed means, delivering the fuel additive into the fuel based on a predetermined fuel consumption rate for a vehicle or type of vehicle.
In one aspect, the invention provides a method for automatically dosing a fuel additive into a fuel tank for supplying fuel to an engine, comprising: storing a fuel additive in a storage vessel having associated conduit means connecting the storage vessel and the fuel tank; sensing when the engine is on; and in response to the engine being on, positively feeding fuel additive from the storage vessel into the fuel tank in measured doses at regular, predetermined intervals and continuing introducing timed, measured doses for the time the engine is on.
In another aspect, the invention provides an apparatus for automatically dosing a fuel additive into a fuel tank for supplying fuel to an engine, comprising: storage means for storing a fuel additive; conduit means for carrying fuel additive from the storage means to a fuel tank associated with the engine; positive feed means in communication with said conduit means to feed measured amounts of said fuel additive into said conduit means; sensing means to determine when the engine is on; and means for controlling the positive feed means in response to the engine being on to deliver measured doses of additive into the fuel for the engine at regular, predetermined intervals and continuing the operation of the positive feed means for the time the engine is on.
In a preferred embodiment, the FBC is introduced into the fuel system via a typical fuel tank vent line, thereby avoiding the need to make special modifications of the tank. The invention automatically and reliably maintains an effective additive concentration in the fuel.
Preferred aspects of the invention will be described below.
The invention will be better understood and its advantages will become more apparent when the following description is read in light of the accompanying drawings, wherein:
The invention provides a safe, reliable system for automatically dosing diesel fuel tanks used in vehicle, stationary or marine applications with fuel additive, particularly a concentrate containing fuel borne catalyst (FBC) using a positive feed means as the driving force for introduction into the fuel. In the preferred form of the invention, control is achieved by sensing when the engine is started and starting a positive displacement pump at that time to deliver measured doses of additive into the fuel for the engine at regular, predetermined intervals and continuing the operation of the positive displacement pump for the time the engine is on. The delivery of pulsed doses is highly effective for maintaining desired in-tank concentrations. The measured doses and the frequency of their introduction are predetermined based on the typical fuel consumption rate for a given vehicle to maintain an average concentration in the fuel within a predetermined range, e.g., from about 1 to about 20 ppm.
The apparatus of the invention is shown in one preferred form in
The FBC is held in a supply vessel 14 as a concentrate in a suitable chemical form and with suitable solvents and other additives, such as described in U.S. Pat. No. 6,003,303 and the references cited therein. In one preferred form, the concentrate will have sufficient FBC to for one gallon of concentrate to treat 1500 gallons of fuel to achieve a total catalyst metal concentration in the treated fuel of abut 8 ppm, the preferred concentration.
The positive displacement pump 18 is preferably of the type including (or can be so modified) control for the length of piston stroke and/or frequency of operation. According to the preferred form of the invention, the pump will be calibrated to provide the desired, predetermined flow rates as necessary to maintain an effective concentration of FBC in the fuel. In general, the concentration for effective operation of the additive with an after treatment device such as any of those identified in U.S. Pat. Nos. 6,003,303, 5,501,714, EP 1 262 641, or the like, will be from about 1 to about 20 ppm, e.g. from about 4 to about 10 ppm, of active catalytic metal in the fuel for the preponderance of engine operation time. While the optimum dosage will not always be present, it is a feature of the invention that maintenance of the positive feed to within these guides can very effectively enhance the operation of the aftertreatment device.
The invention has particular utility in the operation of fleet vehicles, which are brought to a central location for refueling at regular intervals, e.g., daily.
The positive displacement pump 18 is preferably a piston pump but can be of any other type, such as a peristaltic pump or the like, and is actuated by a control signal from controller 22 in response to a suitable control signal, e.g., from a sensor indicating that the engine (not shown) is on. Representative of suitable pumps are those provided, for example, by H. Daugbjerg, Denmark, as an “FBC METERING SYSTEM KIT TH-910A”, but such a system would preferably be modified to introduce the FBC directly into the fuel tank 12 via line 19, as described above, not into the fuel return line. Such FBC metering pumps can include dip switches to aid programming to the desired pump stroke and frequencies based on the data on fuel consumption rate for an individual vehicle. One skilled in the art could use the description of the device as set out herein in modification of the manufacturer's directions to achieve the ends of this invention.
As an added aid, we provide
When the positive displacement pump 18 is actuated to cycle, the FBC concentrate is caused by the pump 18 to flow to fuel tank 12 by positive, measured flow through supply line 19 and preferred T-fitting 20, which has an outlet or port 21 to the tank 12 and a vent valve 23. When the positive displacement pump 18 is actuated to be in the off position, no FBC concentrate flows to the tank. Preferably, the positive displacement pump 18 is suitably biased to be in a normally off position. That way, there must be a positive signal to operate the positive displacement pump and cause the additive to flow through lines 18 and 19 through T-fitting 20 to tank 12.
In a preferred mode of operation, once the engine is started, the pump 18 begins metering the FBC into the fuel tank 12. Average fuel consumption is known and the pump is operated at a rate effective to maintain a desired, predetermined concentration of FBC in the tank 12. Time and amount are adjustable based on typical fuel consumption. The timing and rate of injection can be controlled responsive to a control signal from an ignition key switch 27 or other indicator that the engine is running. In response to the engine being on, positive displacement pump 18 or other means will positively feed fuel additive from the storage vessel into the fuel tank in measured doses at regular, predetermined intervals and continuing introducing timed, measured doses for the time the engine is on. This type of pulsed introduction is highly effective. The system will operate effectively to supply FBC additives to other vehicles as well, but this description is described in connection with diesel trucks as the preferred use of the invention.
The FBC is introduced into the fuel system via a typical, e.g., truck, fuel tank vent line port 21. The port 21 where the fuel tank vent line is typically threaded into is fitted with a “T” type pipe fitting 20. The vent valve 23 is then threaded into the top of the T and the additive line 19 is threaded into the side of the T. This simplified arrangement allows for a positive or a gravity feed means feed of the FBC and does not require a dosing pump injecting additive into the pressurized fuel return line which is more difficult, but typical to other dosing systems.
The invention has particular utility in the operation of fleet vehicles, which are brought to a central location for refueling at regular intervals, e.g., daily.
The frequency and amount of doses will be predetermined based on providing a predetermined amount of additive to the fuel based on a predetermined estimated rate of consumption. It is an advantage of the invention that predictions can be made fairly effectively and that real time monitoring has been found to be unnecessary. In the preferred case mentioned, it has been found that sufficient FBC additive concentrate can automatically flow by gravity or a positive feed means into a 66 gallon tank to provide an average fuel to concentrate weight ratio of about 1500:1 using a preferred platinum and cerium additive combination as described in U.S. Pat. No. 6,003,303, to provide a platinum concentration of about 0.15 ppm and a cerium concentration of about 8 ppm. These doses are highly effective in providing significant improvements in fuel economy for delivery trucks and to permit diesel particulate traps (DPT's) and other after treatment devices used with them to continuously operate for long periods of time to reduce particulate emissions from such trucks.
The size of the vessel 14 is desirably large enough to hold additive sufficient for a plurality of fueling stops and to run for at least a full day of operation. With a target of at least a days driving, e.g., at least about 750 miles traveled for a medium duty delivery truck, about two quart capacity will permit the vehicle operator to be free of any concern with the dispenser and for maintenance personnel to refill the vessel 14 on a daily basis. It has been found advantageous to provide a reservoir large enough to hold a supply of FBC concentrate sufficient for at least about a week of operation, and more preferably for from about 2 to about 4 weeks of operation. Other design criteria will work as well.
It is an advantage of the invention that the system can provide for gravity feed also, such as where the positive feed means is inactive. In this feature of the invention, fuel additive can be fed to fuel by gravity, utilizing a timer and a solenoid valve. In one example, once the engine is started, an optional timer means begins measuring the amount of time the engine is run. Engine operating time is used as an indictor of fuel consumption. Once the “run time” reaches a programmed value, e.g., 20 minutes, a solenoid valve will open and a preset amount of additive will be injected into the fuel. A controller can be included, which includes timer means and also includes a memory means, which will remember the run time of the engine since the last addition, so that each dose of fuel additive will be after the same predetermined period of engine run time, even if the engine is shut down one or more times before the programmed value is completed. In a preferred embodiment, an FBC or other additive is introduced into the fuel system via a typical fuel tank vent line, thereby avoiding the need to make special modifications of the tank.
The above description is for the purpose of teaching the person of ordinary skill in the art how to practice the present invention, and it is not intended to detail all of those obvious modifications and variations of it which will become apparent to the skilled worker upon reading this description. It is intended, however, that all such obvious modifications and variations be included within the scope of the present invention which is defined by the following claims. The claims cover the indicated components and steps in all arrangements and sequences which are effective to meet the objectives intended for the invention, unless the context specifically indicates the contrary.
This patent application claims priority to U.S. Provisional Patent Application Ser. No. 60/639,207, filed Dec. 23, 2004, the disclosure of which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
4945880 | Gonze et al. | Aug 1990 | A |
5195466 | Schulte et al. | Mar 1993 | A |
5331994 | Bryan et al. | Jul 1994 | A |
20040231615 | Vincent et al. | Nov 2004 | A1 |
20050150479 | Persson | Jul 2005 | A1 |
20060259230 | Waters et al. | Nov 2006 | A1 |
20060272597 | Burrington et al. | Dec 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20060254535 A1 | Nov 2006 | US |
Number | Date | Country | |
---|---|---|---|
60639207 | Dec 2004 | US |