The present invention relates to load supporting structures.
During the assembly of gas turbine engines, it is common to conduct assembly operations along an engine pack line, which resembles an assembly line. First, engine modules are built and placed on pedestals. The engine modules are then lifted into position for attachment to an engine core by cable hoists and pulleys suspended from an overhead track. As assembly operations progress, the partially assembled engine and its modules require a great deal of pick-up and moving operations with the hoists and pulleys. The pedestals can get in the way of workers. In short, these operations are time consuming and present safety issues. A key safety issue is the presence of large (about 7,257 kg or 16,000 lbs.) loads suspended in a temporary fashion from hoists and pulleys using cable, chain and hooks. This poses risks to workers around or under the engine, who can be hurt if the engine, or a part of it, falls from the hoists, pulleys, and hooks.
A production apparatus includes a generally overhead track, a vertically adjustable link assembly supported from the track by one or more trolleys, a substantially horizontally oriented build beam attached to the link assembly opposite the track, a set of first and second cross beams extending from opposite sides of the build beam, and a set of third and fourth cross beams extending from opposite sides of the build beam. A set of first and second connectors are attached to the set of first and second cross beams, respectively, and are configured for attachment to a workpiece. A set of third and fourth connectors are attached to the set of third and fourth cross beams, respectively, and are configured for attachment to a workpiece. The first, second, third and fourth cross beams are each generally perpendicular to the build beam.
The present invention relates to an engine support system and engine assembly method that utilizes a support beam assembly suspended from an overhead support assembly and pivotally attached by rigid connectors to components of an engine being assembled. Typically, the support beam assembly is suspended from an overhead track by two or more adjustable linking assemblies. The engine is supported below the support beam assembly in order to facilitate assembly operations. The support beam assembly generally remains attached to the engine throughout the assembly process. The support beam assembly includes an adjustable auxiliary beam to facilitate lifting tooling and other components relative to the engine being assembled.
The adjustable link assemblies 14 are located in a generally overhead position, and can be supported from an overhead track on trolleys (see
The central beam (or build beam) 16 is the main structure of the assembly 10, and is the part to which the adjustable link assemblies 14 are attached with bolts or other suitable fasteners. The central beam 16 is tubular in shape, and in the illustrated embodiment has an elongate, rectangular tube shape. Roller assemblies 24 are located at opposite ends of the central beam 16, having rollers positioned at the interior of the central beam 16 to support the auxiliary beam 22 in a movable relationship with respect to the central beam 16. The central beam 16, as well as the other beams of the assembly 10, can be made of a suitable metallic material (e.g., steel) to support desired loads with an adequate safety margin.
The auxiliary beam 22 is an elongate beam that extends through the interior of the central beam 16. In the illustrated embodiment, the auxiliary beam 22 is a straight, rectangular tubular member made of a metallic material (e.g., steel), although in alternative embodiments the auxiliary beam 22 can have other shapes. The auxiliary beam 22 has a pair of parallel rails 26 disposed on each side (only one pair of rails 26 is visible in
The auxiliary beam 22 can be used to support engine modules, tooling, and other items used during the assembly of engines. The hoist assemblies 27A and 27A at either end of the auxiliary beam 22 can be used to raise and lower items into desired positions. Moreover, the motor assembly 30 and drive shaft 28 can be used to horizontally position the auxiliary beam 22 with respect to the engine core 12 (or other item supported by the assembly 10) as desired. The engine core 12 and the central beam 16 can remain static while the auxiliary beam 22 is adjusted, allowing items supported by one or both hoist assemblies 27A and 27B to be horizontally repositioned for use in assembly operations. This can reduce the need to move the large, heavy engine core 12 at any components of engine modules already attached to the engine core 12 during assembly.
In the embodiment shown in
A pair of first support links (or connectors) 34 are pivotally suspended from each of the attachment brackets 32 of the first set of cross beams 18. Each first support link 34 is a rigid tubular member having an upper end 34A, a lower end 34B and a middle portion 34C, with the upper ends 34A being connected to attachment brackets 32. The middle portion 34C of the first support links 34 have a curved shape so as to provide additional space for engine components. However, the upper and lower ends 34A and 34B are substantially vertically aligned, so as not to produce any moment on engine components supported by the support beam assembly 10. Moments can stress engine components during assembly, and are generally undesired. As shown in
A pair of second support links (or connectors) 38 are pivotally suspended from the attachment brackets 32 of the second set of cross beams 20. The second support links 38 are substantially solid, rigid beams each having an upper end 38A, a lower end 38B and a middle portion 38C, and the second support links 38 each have a substantially straight shape. That straight shape substantially vertically aligns the upper and lower ends 38A and 38B, so that the second support links 38 do not to produce any moment on engine components supported by the support beam assembly 10. As shown in
The first and second pairs of support links 34 and 38 are attached to the engine core 12 at designated connection points on the engine core 12, which are typically locations on an engine case portion. That is, the engine core 12 is connected to the support beam assembly 10 at suitable locations so that the engine is balanced during assembly and so that the engine is not damaged. It should be noted that although a gas turbine engine core is supported by the support beam assembly 10 in
The support beam assembly 10 is configured to support engines having a total weight of about 7,257 kg (16,000 lbs.) with a suitable safety margin (e.g., a 5× safety margin). The engine is supported in a relatively rigid and balanced manner, and the support beam assembly 10 is configured to avoid placing any moments on the engine while being assembled. However, pivotal connections are provided with the support beam assembly 10, as described above with respect to assemblies 36 and 40, so that about 9-11° of “swing” is provided to avoid the abrupt transmission of forces that could otherwise cause damage to the engine being assembled or cause damage to the support beam assembly 10 by snapping one or more of the supports 34 and 38.
Turning first to station A, a pair of adjustable links 14 are suspended from the track 202 by conventional trolleys 204. A support beam assembly 206, like those shown and described with respect to
At stations B-G, additional assembly operations are performed. Typically, the trolleys 204 are moved along the track 202 sequentially to all the stations A-G in order to assembly the engine. Thus, the trolleys 204, the adjustable links 14, the support beam assembly 206 and attached engine core 208 are moved along the track from station A to station B, where tooling 212 is moved into place with a first hoist 214 on an auxiliary beam 216 of the support beam assembly 206. Various assembly operations are performed at station B utilizing the tooling 212. The first hoist 214 lifts relatively lightweight items while the engine core 208 is stationary along the track 202. Horizontal adjustment of the auxiliary beam 216 and vertical adjustment of the first hoist 214 allow convenient adjustment of the tooling 212 without having to move the relatively heavy engine core 208.
Next, the trolleys 204, the adjustable links 14, the support beam assembly 206 and attached engine core 208 are moved along the track 202 to station C. There, a first engine module 218 is lifted into place with the first hoist 214 and attached to the engine core 208. The auxiliary beam 216 can be adjusted horizontally to accommodate attachment of the first engine module 218 to the engine core 208, and the adjustable links 14 can likewise be adjusted vertically.
Similar assembly processes are performed at stations D-G (references number are omitted at stations D-G for simplicity). Then, when assembly is complete, the completed engine (i.e., the engine core 208 with all desired engine modules and engine components installed thereupon) is detached from the support beam assembly 206 and can be transported away from the assembly facility for eventual installation on an aircraft.
It will be understood that the present invention provides numerous advantages. For example, the support beam assembly provides a relatively fixed connection to an engine during assembly, which eliminates the need to suspend the engine from cable or chain hoists while being moved along a track. Moreover, in providing better, more secure connections to the engine through rigid members of the support beam assembly, a safer work environment is provided for workers assembling engines.
Although the present invention has been described with reference to preferred embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention. For instance, the particular size, shape and configuration of the support beam assembly according to the present invention will vary according to the particular application (e.g., the particular type of engine being assembled). In addition, it should be recognized that features such as the auxiliary support beam are optional and may be omitted in various embodiments.
This application claims priority from U.S. Provisional Patent Application Ser. No. 60/796,248, filed Apr. 28, 2006, for ADJUSTABLE LINK SYSTEM AND MULTIPURPOSE ENGINE SUPPORT/BUILD BEAM by Amir Kalantari, which is herein incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2212695 | Nash | Aug 1940 | A |
2902945 | Simon | Sep 1959 | A |
2988012 | Markley et al. | Jun 1961 | A |
3132598 | Pearson | May 1964 | A |
3313014 | Lemelson | Apr 1967 | A |
3561365 | Rooklyn | Feb 1971 | A |
3786942 | Dane, Jr. | Jan 1974 | A |
3814023 | Stantial | Jun 1974 | A |
3926303 | McCall | Dec 1975 | A |
3927760 | McCall | Dec 1975 | A |
4053189 | Novotny | Oct 1977 | A |
4069764 | Teyssedre | Jan 1978 | A |
4395180 | Magnotte | Jul 1983 | A |
4467911 | Forshee | Aug 1984 | A |
4821217 | Jackson et al. | Apr 1989 | A |
4925015 | Vaida et al. | May 1990 | A |
5119732 | Lisy | Jun 1992 | A |
5321874 | Mills et al. | Jun 1994 | A |
5361890 | McDonald et al. | Nov 1994 | A |
5363770 | Makimura et al. | Nov 1994 | A |
5819906 | Enderlein et al. | Oct 1998 | A |
6321657 | Owen | Nov 2001 | B1 |
6745454 | Grimshaw et al. | Jun 2004 | B1 |
7334527 | Waldmiller | Feb 2008 | B2 |
Number | Date | Country | |
---|---|---|---|
20090173251 A1 | Jul 2009 | US |
Number | Date | Country | |
---|---|---|---|
60796248 | Apr 2006 | US |