The present invention relates to an engine system with a reformer.
In a system in which a fuel is reformed by an endothermic reaction so that a reformed gas including hydrogen, etc. is produced to be supplied to an engine as a fuel, by reforming the fuel in the endothermic reaction using an engine waste heat, a waste heat is recovered, and an improvement in efficiency is expected. Also, when a hydrocarbon fuel, such as gasoline, etc., is reformed so as to supply a reformed gas including hydrogen to the engine, a pumping loss reduction, a combustion efficiency improvement, and a combustion rate improvement are enabled, and an improvement in efficiency of the engine is expected. When the reformer is attached to an exhaust pipe of the engine, an exhaust gas temperature of the engine varies according to an operating status of the engine. Therefore, according to conditions, a reforming efficiency varies. Also, when a gas including hydrogen is produced by a reforming reaction, the lower the reaction pressure, the higher the reaction efficiency.
For example, as described in a patent document 1, a conventional engine system with a reformer has a configuration in which the reformer is attached to an exhaust pipe at a position apart from the engine by a predetermined distance, and a reformed gas produced by the reformer is supplied to a suction pipe together with an exhaust gas.
In the system described in the patent document 1, for example, when the engine is in a low-power operating condition such as an idling condition or a low speed condition, a temperature of the exhaust gas supplied to the reformer is low. Therefore, it is difficult to increase the reforming efficiency. Also, since a reformed fuel is supplied to the suction pipe of the engine together with the exhaust gas of the engine, the reformed fuel is supplied into the engine together with the exhaust gas at normal temperatures. For this reason, there is a problem that a combustion temperature falls at the time of engine combustion, an exhaust gas temperature falls, resulting in a decrease in reforming efficiency.
An object of the present invention is to provide an engine system, in which an amount of recovered waste heat and a combustion efficiency of an engine are improved by improving a reforming efficiency of a reformer, and thereby resulting in an excellent system efficiency.
The present invention provides an engine system, comprising: a reformer by which a pre-reformed fuel is reformed to produce a reformed fuel as one of fuels so as to drive an engine; a pre-reformed fuel supply adjustment unit which adjusts a supply amount of the pre-reformed fuel to be supplied to the reformer and is connected to the reformer; and a reformed fuel supply adjustment unit which adjusts a supply amount of the reformed fuel to be supplied to the engine and is connected to the reformer, in which the reformer is installed adjacent to an engine combustion chamber via the reformed fuel supply adjustment unit. Also, the reformer is attached to an exhaust pipe of the engine so that the reformed fuel supply adjustment unit is an exhaust valve of the engine.
By installing the reformer adjacent to the combustion chamber of the engine and supplying the reformed fuel to the engine via the reformed fuel supply adjustment unit, a combustion temperature rises at the time of engine combustion. A temperature of an exhaust gas supplied to the reformer rises, and a recovery efficiency of an exhaust gas energy increases. Also, by supplying the reformed fuel from the reformer to the engine using a negative pressure during a suction stroke of the engine, a pressure in the reformer can be lowered. Further, since the reformed fuel is supplied to the engine together with the exhaust gas at high temperature, lowering of the combustion temperature associated with an increase in supply amount of the reformed fuel is suppressed, resulting in suppression of lowering of the exhaust gas temperature. For this reason, the reforming efficiency of the reformer is improved.
According to the present invention, an engine system, in which an amount of recovered waste heat and a combustion efficiency of an engine are improved by improving a reforming efficiency of a reformer, and thereby resulting in an excellent system efficiency, can be provided.
Hereinafter, an embodiment of the present invention will be explained with reference to the accompanying drawings.
The exhaust valve 7 also functions as a reformed fuel supply adjustment unit to supply the reformed fuel into the engine cylinder 10. Normally, since an accidental fire, and decrease in engine efficiency are caused by supplying the exhaust gas into the engine by more than a predetermined amount, supplying the exhaust gas into the engine cylinder 10 by more than the predetermined amount will become a problem. In order to solve this problem, a backflow preventer 12 is installed at a downstream side of the exhaust gas of the reformer 1. This prevents the exhaust gas of the exhaust pipe at a downstream side of the reformer 1 from being supplied to the engine cylinder 10 when the reformed fuel is supplied from the exhaust valve 7 into the engine cylinder 10. For this reason, when the reformed fuel is supplied to the engine cylinder 10, the exhaust gas is supplied not more than the predetermined amount. An open/close valve can be used for the backflow preventer 12. At this time, when the pre-reformed fuel is supplied to the reformer 1, the open/close valve is closed so as to prevent the reformed fuel from being exhausted to a downstream.
A fuel supplying unit 13 to supply the pre-reformed fuel 3 is installed at the a suction pipe 8 of the engine so that the pre-reformed fuel can be supplied to the engine cylinder 10 without passing through the reformer 1. In addition, an oxygen concentration detecting unit 17 to detect an oxygen concentration in the exhaust gas is installed at the exhaust pipe 9 of the engine. An excess coefficient of the engine is controlled based on the oxygen concentration detected by the oxygen concentration detecting unit 17. An air flow adjustment unit 18 to adjust an air amount is installed at the suction pipe 8 of the engine. In addition, operations of the suction valve 6, the air flow adjustment unit 18, the exhaust valve 7, the pre-reformed fuel supply adjustment units 11 and 13, the open/close valve, and a pump 4, etc. are controlled by an electric controlling unit (not shown).
Also, a pressure detecting unit 15 to detect a pressure in the engine cylinder 10 is installed. The pressure detecting unit 15 may be an axial torque sensor of the engine, or a detecting unit using an ion current, which can estimate the pressure in the engine cylinder 10. Also, a pressure sensor 14 to measure a pressure in the exhaust pipe is installed at a downstream side of the reformer 1 of the exhaust pipe 9. Since both of the exhaust gas and the pre-reformed fuel pass through the reformer 1, a contact surface area with the exhaust gas is increased by using a honeycomb structure as shown in
By using the system configuration as shown in
1. By using the water vapor in the exhaust gas for reforming, hydrogen in the water vapor can be used as the fuel,
2. A high temperature exhaust gas can be supplied to the reformer,
3. A high temperature EGR and the reformed fuel can be supplied into the engine cylinder,
4. A negative pressure during a suction stroke of the engine can be used for the reforming reaction,
5. There is no need to add a line for the reformed fuel, and
6. The reformed fuel never liquefies partially.
With respect to the effect 1, for example, assuming that the pre-reformed fuel is a gasoline, C8H18 (normal octane), which is one of components in the gasoline, can cause a water vapor reforming reaction as follows.
C8H18+8H2O→17H2+8CO−1303 kJ (1)
The above reforming reaction is an endothermic reaction, and hydrogen in the water vapor can be used as a fuel. Therefore, it is found that a heat value of the reformed fuel is larger than that of the pre-reformed fuel by 1303 kJ. Since the heat value of the pre-reformed fuel is 5075 kJ and that of the reformed fuel is 6378 kJ, the heat value of the reformed fuel is more improved than that of the pre-reformed fuel by 25.7%. That is, it means that the reforming reaction improves a heat efficiency by 25.7% with reference to C8H18.
With respect to the effect 2,
With respect to the effect 3, an explanation will be given. By using the configuration shown in
With respect to the effect 4,
With respect to the effects 5 and 6, in such a configuration disclosed in the patent document 1, since the reformed fuel is supplied from the reformer 1 to the suction pipe 8, it is necessary to newly install a pipe used for the reformed fuel. Also, by installing the pipe used for the reformed fuel, the gasoline which was not reformed in the reformed fuel is cooled at the midway of the pipe and may liquefy partially. As opposed to the above, by using the configuration shown in
Next, a controlling method in the first configuration diagram will be explained. In a first configuration, the engine is controlled so that the engine is operated near the excess coefficient of about 1.
Next, an open/close timing of the exhaust valve and a supply timing of the pre-reformed fuel will be explained.
ΔP=pressure in engine cylinder−exhaust pipe pressure
During an exhaust gas stroke of the engine, the exhaust valve 7 is lifted, an exhaust gas in the engine cylinder 10 is exhausted to the exhaust pipe 9, the exhaust gas is supplied to the reformer 1, and the reformer 1 is warmed. After that, during a suction stroke of the engine, when the ΔP becomes a negative pressure, the exhaust valve 7 is opened again, and a supply instructing signal is input to the pre-reformed fuel supply adjustment unit 11. By controlling as described above, since ΔP is the negative pressure, the pre-reformed fuel is supplied from the pre-reformed fuel supply adjustment unit 11 to the reformer 1, the pre-reformed fuel is reformed in the reformer 1, and the reformed fuel is supplied to the engine cylinder 10 via the exhaust valve 7 together with the exhaust gas. At that time, since there is a time lag in supplying of the reformed fuel from the reformer 1 to the engine cylinder 10, supplying of the pre-reformed fuel from the pre-reformed fuel supply adjustment unit 11 to the reformer 1 is stopped during a suction stroke before the exhaust valve 7 is closed. Also, the suction valve 6 is opened after the exhaust valve 7 is closed. This is because the reforming reaction can be occurred in the reformer 1 at low pressure by opening only the exhaust valve 7 so as to supply the reformed fuel, and the reforming efficiency is improved.
Next, an operating method without supplying the pre-reformed fuel to the reformer 1 will be explained. Since the reforming temperature in the reformer 1 is low at the time of starting or warming-up of the engine, the reforming efficiency is lowered as shown in
Next,
Compared to the first configuration, a second configuration does not need the pre-reformed fuel supply adjustment unit or the electric controlling unit, and the pre-reformed fuel can be supplied to the reformer 1 mechanically. Therefore, the number of parts and cost of the system are reduced, and the reformed fuel can be supplied from the exhaust valve 7 to the engine cylinder 10 reliably. In the second configuration, when a ratio of a supply amount of the pre-reformed fuel supplied to the engine cylinder 10 to a suction air amount is adjusted, by adjusting the open/close timing or the open/close lift amount in addition to the supply amount of the pre-reformed fuel and a throttle opening of the exhaust valve 7, a reformed fuel supply amount to the air amount supplied to the engine cylinder 10 becomes to be adjustable.
Next,
Compared to the first configuration, by using the third configuration, there is no need to modify the engine drastically, and the number of parts can be reduced. Also, since the reformer 1 is provided in the engine cylinder 10, the reformed fuel can surely be supplied to the engine cylinder 10. Specifically, in the controlling method, since the reaction pressure at the time of reforming can be lowered by supplying the pre-reformed fuel to the reformer 1 during the suction stroke, the reforming efficiency is improved (see
Number | Date | Country | Kind |
---|---|---|---|
2008-169780 | Jun 2008 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2009/061992 | 6/30/2009 | WO | 00 | 3/18/2011 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2010/001907 | 1/7/2010 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3915125 | Henkel et al. | Oct 1975 | A |
4003343 | Lee | Jan 1977 | A |
4086877 | Henkel et al. | May 1978 | A |
4131095 | Ouchi | Dec 1978 | A |
4321942 | Duggan | Mar 1982 | A |
7703445 | Haga | Apr 2010 | B2 |
7770545 | Morgenstern | Aug 2010 | B2 |
20010054309 | Ohmori et al. | Dec 2001 | A1 |
20020062641 | Shiino et al. | May 2002 | A1 |
20030168024 | Qian et al. | Sep 2003 | A1 |
20050081514 | Nakada | Apr 2005 | A1 |
20080022983 | Martindale | Jan 2008 | A1 |
20080081230 | Takahashi et al. | Apr 2008 | A1 |
Number | Date | Country |
---|---|---|
6323211 | Nov 1994 | JP |
11223122 | Aug 1999 | JP |
2003-074395 | Mar 2003 | JP |
2007138781 | Jun 2007 | JP |
2008-169780 | Jul 2008 | JP |
WO 2007026558 | Mar 2007 | WO |
WO 2007123669 | Nov 2007 | WO |
Entry |
---|
Notice of Reasons for Rejection dispatched from Japan Patent Office, for Japanese Patent Application No. 2011-280689 on Dec. 18, 2012. |
Number | Date | Country | |
---|---|---|---|
20110265736 A1 | Nov 2011 | US |