The present application generally pertains to internal combustion engines and more particularly to an internal combustion engine including pre-chamber ignition.
It is known to experiment with internal combustion engines having a combustion pre-chamber, separate from a main combustion chamber or piston cylinder. See, for example, U.S. Pat. No. 10,161,296 entitled “Internal Combustion Engine” which issued to common inventor Schock et al. on Dec. 25, 2018; and PCT International Patent Publication No. WO 2019/027800 entitled “Diesel Engine with Turbulent Jet Ignition” which was commonly invented by Schock et al. Both of these are incorporated by reference herein. While these prior turbulent jet ignition configurations are significant improvements in the industry, additional improvements are desired to ease assembly and replacement, and to more concisely package the components, while achieving improved fuel efficiencies.
In accordance with the present invention, an engine ignition system employs a pre-assembled and/or removable cartridge. In another aspect, an ignitor, a fuel injector and a pre-chamber air inlet valve are all accessible from a top of a cartridge even after assembly of the cartridge to an engine cylinder head. A further aspect positions centerlines of an ignitor, a fuel injector and an air inlet valve angularly offset from each other and also angularly offset from a vertical centerline of a cartridge to which they are mounted.
In yet another aspect, an engine turbulent jet ignition system includes a preassembled cartridge having a generally triangular top view shape. A further aspect of an engine ignition system includes a cartridge, removably attachable to an engine, where the cartridge has multiple intersecting air passageways, entirely located in a body of the cartridge, which are straight and offset angled relative to each other. Moreover, a combustion pre-chamber includes a pre-chamber aperture having an offset angle allowing back-flowing of charge air from the main piston chamber during the compression stroke to create a swirling movement in the pre-chamber to assist with causing remaining fuel evaporation within the pre-chamber which beneficially deters soot production and other undesired combustion timing issues.
The present system is advantageous over conventional devices. For example, the present cartridge allows for pre-assembly of components at a different location than where the cartridge is assembled to the engine cylinder head. Furthermore, the present system makes component replacement easier since the components are accessible from a top of the cartridge. Fastening of the present cartridge is also faster and easier to access while the present cartridge is more commercially practical to fit within various engine cylinder head configurations. Additional advantageous and features of the present system and method will become apparent from the following description and appended claims, taken in conjunction with the accompanying drawings.
Referring to
Referring now to
Turbulent jet ignition cartridge 41 includes an ignitor 81 such as a spark plug, glow plug or the like. Ignitor 81 has a middle section removably secured within an elongated opening 83 of body 51, and a distal end 85 located within pre-chamber 55 for providing a spark or other heat ignition source for a fuel-rich, fuel-air mixture within pre-chamber 55. An optional pre-chamber pressure transducer or indicator can be part of ignitor 81. It is also envisioned that an optional electrical resistance heater 90 may be internally located within pre-chamber 53.
A longitudinally elongated and generally cylindrical fuel injector 91 has a middle section removably disposed within another elongated opening 93 through body 51 such that a distal end 95 of the fuel injector is located within pre-chamber 55. Furthermore, the exemplary embodiment illustrates an uppermost proximal end 97 of fuel injector 91 coupled to crossing brace 63 which is, in turn, removably fastened to covers 45 of cylinder head 23 by way of threaded bolt fasteners 99. Alternately, the fuel injector can be located upstream of the pre-chamber air intake valve and/or both combined together.
A pre-chamber air inlet valve 101 has a middle section located within another elongated opening 103 through body 51, with an air valve seat 105 at a distal end thereof located within pre-chamber 55, and with a proximal end section 107 located within a generally cylindrical collar 109 integrally upstanding from body 51. Air inlet valve 101 includes a helically coiled spring 111 and a securing cap 113 retaining the spring to a longitudinally elongated shaft 115. Air inlet valve 101 is preferably a poppet valve type which is moved by a rocker arm 121 driven by cam shaft 47. Pre-chamber air inlet valve 101 is separate from a main piston chamber air intake valve. Alternately, the poppet valve may instead be a pintal or rotary valve.
A fresh air conduit 131 is externally connected to a top surface 133 of cartridge 41 by way of a threaded fitting 135. An inline heater 137 is positioned adjacent air conduit 131. Heater 137 can be a primarily external heater (as shown in
Furthermore, a vertically elongated air passageway 139 intersects with a horizontally elongated air passageway 140 internal to body 51 of the cartridge. An upper end of passageway 139 is coupled to air conduit 131 and an innermost end of passageway 140 intersects opening 103 within which moves air inlet valve 101. Passageways 139 and 140 are preferably straight and a majority of these incoming air passageways are laterally overhanging and spaced further from a longitudinal centerline 73 of pre-chamber housing 53 as compared to an outside lateral surface 123 of pre-chamber housing 53 (as can best be observed in
Air inlet valve 101 advantageously serves a duel synergistic purpose: to supply air into the pre-chamber for combustion therein, and also to provide an additional air flow into the pre-chamber before and/or after the combustion therein in order to purge out combustion residuals. Moreover, a primary direction of the main chamber air enters the pre-chamber during piston compression back through one or more apertures 71 which are three-dimensionally angled along a length thereof relative to centerline 73. This occurs when piston 27 upwardly strokes toward pre-chamber 53, such that some compressed combustion charge is forced back through apertures 71. The offset angle(s) of the apertures induce a swirling fluid flow effect within the pre-chamber which beneficially assists in evaporating any remaining fuel located in corners of the pre-chamber after combustion therein, thereby reducing soot production in the pre-chamber and other undesired characteristics.
Proximal upper ends of ignitor 81, fuel injector 91 and air inlet valve 101 are all accessible from an upper top surface 133 of cartridge 41. Furthermore, a longitudinal centerline 141 of ignitor 81 is offset angled by approximately 13° from longitudinal and vertical centerline 73 of pre-chamber housing 53. Furthermore, a longitudinal centerline 143 of air inlet valve 101 is offset angled by approximately 15° relative to longitudinal and vertical centerline 73 of pre-chamber housing 53. Similarly, a longitudinal centerline 145 of fuel injector 91 is offset angled by approximately 5° relative to longitudinal and vertical centerline 73 of the pre-chamber. Thus, centerlines 141, 143 and 145 are also offset angled from each other and define a triangularly oriented relationship between holes 147 which receive fasteners 59. Moreover, mounting flange 149, which includes holes 147 extending therethrough, of cartridge 41 has a generally triangular top view shape (as can be observed in
It noteworthy that body 51 of cartridge 41 has a lateral dimension 151 (see
Cartridge 41 is preferably manufactured independently of cylinder head 23. An exterior of the cartridge is machined from aluminum or steel, with the passageways internally machined therein. Thereafter, the body of the cartridge is furnace brazed or diffusion welded if the body is cast or machined as two separate parts. Alternately, the cartridge body and/or pre-chamber may be made from a ceramic or other low thermal conductivity material. A tapered and annular seal 200, preferably made from copper, internally contacts pre-chamber housing 53 and seals between it and the threaded mating of the bottom end of body 51, when they are screwed together. The ignitor, fuel injector and air valve are thereafter assembly to the body, such as by threaded screwing in of the components or as otherwise fastened.
While various feature of the present invention have been disclosed, it should be appreciated that other variations may be employed. For example, different air valve actuator configurations and positions can be employed, although various advantages of the present system may not be realized. As another example, the cartridge flange can have a vertical or diagonal section, but certain benefits may not be obtained. Additionally, alternate fuel-air passageways, conduits, openings and ports may be provided in the cartridge, although some advantages may not be achieved. Alternately, variations in the fuel-air mixture can be used, but performance may suffer. For example, various alternate liquid or gaseous fuels may be used in place of gasoline. Moreover, while the presently illustrated cartridge is best suited for an overhead cam engine, differently shaped and sized cartridges may be employed for differently configured engines such as for an inline-type of engine. In another variation, if the fuel injector and pre-chamber air inlet valve are combined, then only two openings (one for each) may be needed in the pre-chamber cartridge. Variations are not to be regarded as a a departure from the present disclosure, and all such modifications are intended to be included within the scope and spirit of the present invention.
This application claims the benefit of U.S. Provisional Application 62/950,511, filed Dec. 19, 2019, which is incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
62950511 | Dec 2019 | US |