The present invention is directed to a system and method for actuating an engine valve. More particularly, the present invention is directed to a system and method for actuating the valves in an internal combustion engine.
An internal combustion engine, such as, for example, a diesel, gasoline, or natural gas engine, typically includes a series of intake and exhaust valves. These valves may be actuated, or selectively opened and closed, to control the amount of intake and exhaust gases that flow to and from the combustion chambers of the engine. Typically, the actuation of the engine valves is timed to coincide with the reciprocating movement of a series of pistons. For example, the intake valves associated with a particular combustion chamber may be opened when the respective piston is moving through an intake stroke. The exhaust valves associated with the particular combustion chamber may be opened when the respective piston is moving through an exhaust stroke.
The combustion process of an internal combustion engine may generate undesirable emissions, such as, for example, particulates and oxides of nitrogen (NOx). These emissions are generated when a fuel, such as, for example, diesel, gasoline, or natural gas, is combusted within the combustion chambers of the engine. If no emission reduction systems are in place, the engine will exhaust these undesirable emissions to the environment.
An engine may include many different types of emission reduction systems to reduce the amount of emissions exhausted to the environment. For example, the engine may include an engine gas recirculation system and/or an aftertreatment system. Unfortunately, while these emission reduction systems may effectively reduce the amount of emissions exhausted to the environment, these systems typically result in a decrease in the efficiency of the engine.
Efforts are currently being focused on improving engine efficiency to counterbalance the effect of emission reduction systems. One such approach to improving engine efficiency involves adjusting the actuation timing of the engine valves. For example, the actuation timing of the intake and exhaust valves may be modified to implement a variation on the typical diesel or Otto cycle known as the Miller cycle. In a “late intake” type Miller cycle, the intake valves of the engine are held open during a portion of the compression stroke of the piston.
The engine valves in an internal combustion engine are typically driven by a cam arrangement that is operatively connected to the crankshaft of the engine. The rotation of the crankshaft results in a corresponding rotation of a cam that drives one or more cam followers. The movement of the cam followers results in the actuation of the engine valves. The shape of the cam governs the timing and duration of the valve actuation. As described in U.S. Pat. No. 6,237,551, a “late intake” Miller cycle may be implemented in such a cam arrangement by modifying the shape of the cam to overlap the actuation of the intake valve with the start of the compression stroke of the piston.
One problem with implementing a Miller cycle in an engine is that the resulting reduced air flow and compression ratio may negatively impact the performance of the engine under certain operating conditions, such as, for example, when the engine is starting or operating under heavy loads. In these types of conditions, engine performance may be enhanced by switching the operation of the engine to a convention diesel cycle. This may be accomplished with a variable valve actuation system, such as the system described in U.S. Pat. No. 6,237,551. As described, the variable valve actuation system may include a valve that is operable to selectively enable and disable a Miller cycle.
While the selective enabling of a Miller cycle may improve the performance of an engine, the variable valve actuation system may also increase the amount of required maintenance on the engine. If, for example, a variable valve actuation system were to fail and cause an engine to continuously operate in a conventional diesel cycle, the resulting increased compression ratio in each cylinder may eventually damage the engine.
The engine valve actuation system and method of the present invention solves one or more of the problems set forth above.
One aspect of the present invention is directed to an engine valve actuation system that includes an engine valve moveable between a closed position and an open position. A spring is operatively connected to the engine valve to bias the engine valve towards the closed position. An actuator is operatively connected to the engine valve and is operable to selectively engage the engine valve to prevent the engine valve from returning to the closed position and to release the engine valve to allow the engine valve to return to the closed position. A sensor is configured to provide information related to the operation of the actuator. A controller is configured to transmit a signal to the actuator to engage the engine valve to prevent the engine valve from returning to the closed position and to release the engine valve to the allow the engine valve to return to the closed position. The controller is further configured to receive a signal from said sensor and to identify when the actuator fails to engage the engine valve in response to the transmitted signal or when the actuator fails to release the engine valve.
In another aspect, the present invention is directed to a method of controlling an engine valve. A cam assembly is operated to move an engine valve between a closed position and an open position. A signal is transmitted to engage an actuator with the engine valve when the engine valve is at least partially open to prevent the engine valve from returning to the closed position and to release the engine valve to allow the engine valve to return to the closed position. An identification is made when the actuator fails to engage the engine valve in response to the transmitted signal or when the actuator fails to release the engine valve.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate exemplary embodiments of the invention and together with the description, serve to explain the principles of the invention. In the drawings:
Reference will now be made in detail to exemplary embodiments of the invention, which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
An exemplary embodiment of an engine system 10 is illustrated in
Engine 20 may be an internal combustion engine as illustrated in
As illustrated in
As also shown in
Engine 20 also includes a cylinder head 30. Cylinder head 30 defines an intake passageway 41 that leads to at least one intake port 36 for each cylinder 22. Cylinder head 30 may further define two or more intake ports 36 for each cylinder 22.
An intake valve 32 is disposed within each intake port 36. Intake valve 32 includes a valve element 40 that is configured to selectively block intake port 36. As described in greater detail below, each intake valve 32 may be actuated to lift valve element 40 to thereby open the respective intake port 36. The intake valves 32 for each cylinder 22 may be actuated in unison or independently.
Cylinder head 30 also defines at least one exhaust port 38 for each cylinder 22. Each exhaust port 38 leads from the respective cylinder 22 to an exhaust passageway 43. Cylinder head 30 may further define two or more exhaust ports 38 for each cylinder 22.
An exhaust valve 34 is disposed within each exhaust port 38. Exhaust valve 34 includes a valve element 48 that is configured to selectively block exhaust port 38. As described in greater detail below, each exhaust valve 34 may be actuated to lift valve element 48 to thereby open the respective exhaust port 38. The exhaust valves 34 for each cylinder 22 may be actuated in unison or independently.
Similarly, cylinder head 30 may define two or more exhaust ports 38 (only one of which is illustrated in
As also shown in
In the exemplary embodiment of
Valve actuation assembly 44 also includes a rocker arm 64. Rocker arm 64 is configured to pivot about a pivot 66. One end 68 of rocker arm 64 is connected to bridge 54. The opposite end of rocker arm 64 is connected to a cam assembly 52. In the exemplary embodiment of
Valve actuation assembly 44 may be driven by cam 60. Cam 60 is connected to crankshaft 27 so that a rotation of crankshaft 27 induces a corresponding rotation of cam 60. Cam 60 may be connected to crankshaft 27 through any means readily apparent to one skilled in the art, such as, for example, through a gear reduction assembly (not shown). As one skilled in the art will recognize, a rotation of cam 60 will cause cam follower 62 and associated push rod 61 to periodically reciprocate between an upper and a lower position.
The reciprocating movement of push rod 61 causes rocker arm 64 to pivot about pivot 66. When push rod 61 moves in the direction indicated by arrow 58, rocker arm 64 will pivot and move bridge 54 in the opposite direction. The movement of bridge 54 causes each intake valve 32 to lift and open intake ports 36. As cam 60 continues to rotate, springs 56 will act on bridge 54 to return each intake valve 32 to the closed position.
In this manner, the shape and orientation of cam 60 controls the timing of the actuation of intake valves 32. As one skilled in the art will recognize, cam 60 may be configured to coordinate the actuation of intake valves 32 with the movement of piston 24. For example, intake valves 32 may be actuated to open intake ports 36 when piston 24 is withdrawing within cylinder 22 to allow air to flow from intake passageway 41 into cylinder 22.
A similar valve actuation assembly 44 may be connected to exhaust valves 34. A second cam (not shown) may be connected to crankshaft 27 to control the actuation timing of exhaust valves 34. Exhaust valves 34 may be actuated to open exhaust ports 38 when piston 24 is advancing within cylinder 22 to allow exhaust to flow from cylinder 22 into exhaust passageway 43.
As shown in
A fluid line 80 is connected to actuator chamber 76. Pressurized fluid may be directed through fluid line 80 into actuator chamber 76 to move actuator piston 74 within actuator cylinder 72. Movement of actuator piston 74 causes actuator rod 78 to engage end 68 of rocker arm 64. Fluid may be introduced to actuator chamber 76 when intake valves 32 are in the open position to move actuator rod 78 into engagement with rocker arm 64 to thereby hold intake valves 32 in the open position. Alternatively, fluid may be introduced to actuator chamber 76 when intake valves 32 are in the closed position to move actuator rod 78 into engagement with rocker arm 64 and pivot rocker arm 64 about pivot 66 to thereby open intake valves 32.
As illustrated in
A fluid supply system 79 connects source of hydraulic fluid 84 with fluid actuator 70. In the exemplary embodiment of
As illustrated in
A directional control valve 88 may be disposed in each fluid line 80. Each directional control valve 88 may be opened to allow pressurized fluid to flow between fluid rail 86 and actuator chamber 76. Each directional control valve 88 may be closed to prevent pressurized fluid from flowing between fluid rail 86 and actuator chamber 76. Directional control valve 88 may be normally biased into a closed position and actuated to allow fluid to flow through directional control valve 88. Alternatively, directional control valve 88 may be normally biased into an open position and actuated to prevent fluid from flowing through directional control valve 88. One skilled in the art will recognize that directional control valve 88 may be any type of controllable valve, such as, for example a two coil latching valve.
One skilled in the art will recognize that fluid supply system 79 may have a variety of different configurations and include a variety of different components. For example, fluid supply system 79 may include a check valve (not shown) placed in parallel with directional control valve 88 between control valve 82 and fluid actuator 70. In addition, fluid supply system 79 may include a source of high pressure fluid. Fluid supply system 79 may also include a snubbing valve to control the rate of fluid flow from fluid actuator 70 and a damping system, which may include an accumulator and a restricted orifice, to prevent pressure oscillations in actuator chamber 76 and fluid line 80.
As shown in
Controller 100 may be programmed to control one or more aspects of the operation of engine 20. For example, controller 100 may be programmed to control valve actuation assembly 44, the fuel injection system, and any other engine function commonly controlled by an electronic control module. Controller 100 may control engine 20 based on the current operating conditions of the engine and/or instructions received from an operator.
Controller 100 may control valve actuation assembly 44 by transmitting a signal, such as, for example, a current, to directional control valve 88. The transmitted signal may result in the selective opening and closing of directional control valve 88. If directional control valve 88 is a normally closed valve, the transmitted signal may open the valve to allow hydraulic fluid to flow to and/or from fluid actuator 70. If directional control valve 88 is a normally opened valve, the transmitted signal may close the valve to prevent fluid from flowing to and/or from fluid actuator 70. An exemplary signal 92 is illustrated in
As illustrated in
As illustrated in
As also shown in
As further shown in
As further shown in
As shown in
As illustrated in
Industrial Applicability
Controller 100 may operate each valve actuation assembly 44 to selectively implement a late intake Miller cycle for each cylinder 22 of engine 20. Under normal operating conditions, implementation of the late intake Miller cycle will increase the overall efficiency of the engine 20. Under some operating conditions, such as, for example, when engine 20 is cold, controller 100 may operate engine 20 on a conventional diesel cycle.
When engine 20 is operating under normal operating conditions, controller 100 implements a late intake Miller cycle by selectively actuating fluid actuator 70 to hold intake valve 32 open for a first portion of the compression stroke of piston 24. This may be accomplished by transmitting a signal to move control valve 82 and directional control valve 88 to the open positions when piston 24 starts an intake stroke. This allows pressurized fluid to flow from source of hydraulic fluid 84 through fluid rail 86 and into actuator chamber 76. The force of the fluid entering actuator chamber 76 moves actuator piston 74 so that actuator rod 78 follows end 68 of rocker arm 64 as rocker arm 64 pivots to open intake valves 32. The distance and rate of movement of actuator rod 78 will depend upon the configuration of actuator chamber 76 and fluid supply system 79. When actuator chamber 76 is filled with fluid and rocker arm 64 returns intake valves 32 from the open position to the closed position, actuator rod 78 will engage end 68 of rocker arm 64.
When actuator chamber 76 is filled with fluid, directional control valve 88 may be closed. This prevents fluid from escaping from actuator chamber 76. As cam 60 continues to rotate and springs 56 urge intake valves 32 towards the closed position, actuator rod 78 will engage end 68 of rocker arm and prevent intake valves 32 from closing. As long as directional control valve 88 remains in the closed position, the trapped fluid in actuator chamber 76 will prevent springs 56 from returning intake valves 32 to the closed position. Thus, fluid actuator 70 will hold intake valves 32 in the open position, independently of the action of cam assembly 52.
Controller 100 may close intake valves 32 by opening directional control valve 88. This allows the pressurized fluid to flow out of actuator chamber 76. The force of springs 56 forces the fluid from actuator chamber 76, thereby allowing actuator piston 74 to move within actuator cylinder 72. This allows rocker arm 64 to pivot so that intake valves 32 are moved to the closed position. A snubbing valve may restrict the rate at which fluid exits actuator chamber 76 to reduce the velocity at which intake valves 32 are closed. This may prevent valve elements 40 from being damaged when closing intake ports 36.
When engine 20 is operating in a conventional diesel cycle, a greater compression ratio will be experienced within each cylinder 22. A prolonged exposure to this increased pressure condition may damage engine 20. This damage may be avoided by identifying a condition where fluid actuator 70 is not properly functioning to implement the late intake Miller cycle.
Controller 100 is programmed to monitor at least one parameter that is affected by the operation of fluid actuator 70. Controller 100 analyzes the information provided by the sensors to identify a situation where the engine should be operating on a Miller cycle, but is actually operating on a conventional diesel cycle. This situation may be experienced due to a failure in valve actuation assembly 44. When such a situation is identified, controller 100 may provide an indication, such as, for example, illuminating a warning light, that prompt maintenance is required. Controller 100 may also terminate future fuel injections to the particular cylinder.
Controller 100 may identify this situation through a variety of techniques, examples of which are described in greater detail below. It should be understood, however, that many combinations, variations, and alternatives to the described techniques may be apparent to one skilled in the art and are considered to be within the scope of the present invention.
For example, controller 100 may monitor the current applied to directional control valve 88 through current sensor 101. As shown in
Controller 100 may also monitor one or more engine parameters through engine sensor 18. For example, controller 100 may monitor the rotational speed of crankshaft 27, the torque exerted by engine 20, and/or the pressure within one or more cylinders 22. An increase in one or more of these parameters may indicate that engine 20 is operating in a conventional diesel cycle. If controller 100 senses an unexpected increase in one of these parameters when engine 20 should be operating in a Miller cycle, controller 100 should issue a warning that maintenance may be required and/or terminate future fuel injections to the particular cylinder 22.
Controller 100 may also monitor and analyze a combination of engine parameters to identify when the Miller cycle is not implemented. For example, controller 100 may monitor the pressure within cylinder 22 as a function of the crankshaft 27 angle and/or piston 24 position. Controller 100 may also determine an estimated cylinder pressure as a function of piston position for the current engine operating conditions. Controller 100 may compare the monitored cylinder pressure to the predicted cylinder pressure at different piston positions. A significant difference between the predicted cylinder pressure and the monitored cylinder pressure may indicate that valve actuator 70 is not functioning properly. A situation where the monitored cylinder pressure is significantly greater than the predicted cylinder pressure may be indicative of valve actuator 70 failing to implement the Miller cycle. Alternatively, a situation where the monitored cylinder pressure is significantly less than the predicted cylinder pressure may be indicative of valve actuator 70 failing to release intake valve 32. The failure of valve actuator 70 to release intake valve 32 may lead to inadequate compression ratios for auto ignition and/or to an increase in unburned hydrocarbons being dumped to the environment. Accordingly, if controller 100 detects either situation, controller 100 may issue a warning that maintenance is required and/or terminate future fuel injections to the particular chamber 22.
Controller 100 may also monitor the motion of actuator rod 78 and/or actuator piston 74. When engine 20 is operating in a Miller cycle, hydraulic fluid will enter actuator chamber 72 to move actuator piston 74 and actuator rod 78. Accordingly, if engine 20 should be operating in a Miller cycle and controller 100 does not detect motion of either actuator piston 74 or actuator rod 78, controller 100 should issue a warning that maintenance may be required and/or terminate future fuel injections to the particular cylinder 22.
Controller 100 may also monitor the pressure of the hydraulic fluid within actuator chamber 72 or within fluid system 79 through fluid sensor 90. When engine 20 is operating in a Miller cycle, the pressure of fluid within actuator chamber 72 will increase when actuator rod 78 engages end 68 of rocker arm 64. The pressure of the hydraulic fluid within fluid supply system 79 will periodically fluctuate as hydraulic fluid flows into and out of actuator chamber 72. Accordingly, if engine 20 should be operating in a Miller cycle and controller 100 determines that the pressure within actuator chamber 72 and/or fluid supply system 79 remains constant, controller 100 should issue a warning that maintenance may be required and/or terminate future fuel injections to the particular cylinder 22.
Controller 100 may also monitor the flow of intake air into engine 20 through intake sensor 16. An unexpected increase in either the intake air pressure or the intake air mass flow may indicate that engine 20 has switched from the Miller cycle to a conventional diesel cycle. Accordingly, if engine 20 should be operating on the Miller cycle and controller 100 identifies an unexpected increase in either the intake air pressure of the intake air mass flow rate, controller 100 should issue a warning that maintenance may be required and/or terminate future fuel injections to the particular cylinder 22.
Controller 100 may also monitor the performance of turbocharger 12 through turbocharger sensor 17. An unexpected increase in the speed of turbocharger 12 may indicate that engine 20 has switched from the Miller cycle to a conventional diesel cycle. Accordingly, if engine 20 should be operating on the Miller cycle and controller 100 identifies an unexpected increase in the speed of turbocharger 12, controller 100 should issue a warning that maintenance may be required. Controller 100 may also take corrective action to prevent damage to engine 20. For example, controller 100 may reduce the amount of fuel delivered to each cylinder 22. In addition, controller 100 may modify the performance of turbocharger to reduce the pressure of the intake air. For example, controller 100 may adjust the position of a wastegate.
As will be apparent from the foregoing description, the present invention provides a method and system for identifying a potential problem in an engine valve actuation system. The controller may identify a condition where the engine should be operating in a Miller cycle, but the performance characteristics of the engine indicate that the engine is actually operating in a conventional diesel cycle. When this condition is identified, the controller may issue a warning indicating that the engine valve actuation system requires maintenance to prevent further damage to the engine. The controller may also take corrective action such as stopping fuel delivery or reducing the quantity of fuel delivered to one or all of the combustion cylinders or actuating a wastegate or similar device to reduce pressure of air delivered to the combustion chamber.
It will be apparent to those skilled in the art that various modifications and variations can be made in the engine valve actuation system and method of the present invention without departing from the scope or spirit of the invention. Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims and their equivalents.
This is a continuation of application Ser. No. 10/144,065, filed May 14, 2002, now U.S. Pat. No. 6,807,929 which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3250068 | Vulliamy | May 1966 | A |
4227494 | Uitvlugt | Oct 1980 | A |
4424790 | Curtil | Jan 1984 | A |
4561253 | Curtil | Dec 1985 | A |
4726332 | Nishimura et al. | Feb 1988 | A |
4742806 | Tart et al. | May 1988 | A |
4815423 | Holmer | Mar 1989 | A |
4869222 | Klassen | Sep 1989 | A |
4996954 | Seki | Mar 1991 | A |
5042437 | Sakuragi et al. | Aug 1991 | A |
5408979 | Backlund et al. | Apr 1995 | A |
5445128 | Letang et al. | Aug 1995 | A |
5544626 | Diggs et al. | Aug 1996 | A |
5576963 | Ribbens et al. | Nov 1996 | A |
5596956 | Ogawa et al. | Jan 1997 | A |
5682854 | Ozawa | Nov 1997 | A |
5697333 | Church et al. | Dec 1997 | A |
5730102 | Arnold et al. | Mar 1998 | A |
5787855 | Mueller et al. | Aug 1998 | A |
5816216 | Egashira et al. | Oct 1998 | A |
5908015 | Kreuter | Jun 1999 | A |
5992390 | Moyer | Nov 1999 | A |
6021758 | Carey et al. | Feb 2000 | A |
6026786 | Groff et al. | Feb 2000 | A |
6082328 | Meistrick et al. | Jul 2000 | A |
6170441 | Haldeman et al. | Jan 2001 | B1 |
6209516 | Yamashita | Apr 2001 | B1 |
6237551 | Macor et al. | May 2001 | B1 |
6267107 | Ward | Jul 2001 | B1 |
6273076 | Beck et al. | Aug 2001 | B1 |
6279550 | Bryant | Aug 2001 | B1 |
6301887 | Gorel et al. | Oct 2001 | B1 |
6301889 | Gladden et al. | Oct 2001 | B1 |
6302076 | Bredy | Oct 2001 | B1 |
6378473 | Yamaki et al. | Apr 2002 | B1 |
6390041 | Nakamura et al. | May 2002 | B1 |
6425355 | Van Der Staay | Jul 2002 | B1 |
6460337 | Olofsson | Oct 2002 | B1 |
6467452 | Duffy et al. | Oct 2002 | B1 |
6571765 | Kuboshima et al. | Jun 2003 | B1 |
6651618 | Coleman et al. | Nov 2003 | B1 |
6688280 | Weber et al. | Feb 2004 | B1 |
20020179027 | Jankovic et al. | Dec 2002 | A1 |
Number | Date | Country |
---|---|---|
05106415 | Apr 1993 | JP |
2000120457 | Apr 2000 | JP |
2000-145484 | May 2000 | JP |
2000145484 | May 2000 | JP |
WO 9802653 | Jan 1998 | WO |
Number | Date | Country | |
---|---|---|---|
20050051119 A1 | Mar 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10144065 | May 2002 | US |
Child | 10969957 | US |