Engine with a direct passage from the oil reservoir to the oil pump

Information

  • Patent Grant
  • 6257193
  • Patent Number
    6,257,193
  • Date Filed
    Thursday, September 16, 1999
    25 years ago
  • Date Issued
    Tuesday, July 10, 2001
    23 years ago
Abstract
The present invention describes an engine having an oil pan (100) with a pick-up tube (140) for moving oil from an oil reservoir (105) to an oil pump (130). An engine crankcase (110) is connected to a front cover (120) having a front half (122) and a back half (124). The oil pan (100) is connected to the crankcase (110) and the front cover (120). A pick-up tube (140) is disposed along the oil pan (100) and connects the oil reservoir (105) to an inlet path (128) formed by the front half (122). A nipple (150) connects to the pick-up tube (140) to the front half by being inserted into an opening (129) of the inlet path (128). A gasket (160) is disposed adjacent to the nipple (150) and between the pick-up tube (140) and the front half (122). An alternate embodiment omits the nipple (150).
Description




FIELD OF THE INVENTION




The present invention relates generally to hydraulic systems for engines. More particularly, the present invention relates to internal combustion engines having a pick-up tube in the oil pan for pumping oil from the oil reservoir outside the crankcase to the oil pump inlet.




BACKGROUND OF THE INVENTION




New vehicle designs and additional accessories require an engine to deliver more horsepower. However, the engine needs a larger crankshaft to provide the additional horsepower. A larger crankshaft requires larger main bearing caps for stabilization. To operate the engine properly, the larger crankshaft and bearing caps must be placed lower in the crankcase. This placement eliminates the previously available space for the oil pump inlet tube.




In a typical engine configuration, an oil pump connects to an inlet tube outside the crankcase. The inlet tube connects to the pick-up tube inside the crankcase or inside the oil pan. The pick-up tube is positioned in the oil pan for pumping oil from the oil reservoir formed by the oil pan. When the engine is operating, oil is pumped from the oil reservoir, through the pick-up tube, through the inlet tube, and into the oil pump.




When the inlet tube is moved outside the crankcase, there are more opportunities for leaks to develop. Leaks also may develop from improperly connected pick-up and inlet tubes. Leaks may develop because the oil pan extends beyond the crankcase. Leaks also may develop because the oil pump inlet tube or the pick-up tube extends through a passage formed in the oil pan. In the later two cases, a gap may form along an edge of the oil pan. This scenario is especially true when the oil pan extends to connect to the engine'front cover. In assembly operations, it is extremely difficult to consistently match the edges of the front cover and crankcase from engine to engine. If the edges of the front cover and the crankcase are uneven, a gap will form when the oil pan is attached.




Leaks also are a greater concern when the oil pump inlet tube is moved outside the crankcase. While no leak is desirable, a leak inside the crankcase at the connection of the inlet and pick-up tubes is less consequential. Such a leak would cause oil to leak into the inlet tube or into the crankcase or oil pan. These leaks would have less impact because the crankcase and oil pan are full of oil during engine operation.




In contrast, a leak outside the crankcase would have an adverse impact on engine performance. Such a leak may cause oil to escape from the engine. While it may not cause an immediate problem, it would harm the engine over the long term. Moreover, a leak may cause air to enter the hydraulic system. Air in the hydraulic system would have a catastrophic impact on engine operation.




To avoid some of these leaks, the pick-up tube and the oil pump inlet tube could be one piece. However, they typically are not one piece because of manufacturing costs. The one piece would stick out of the oil pan or the crankcase. This arrangement has a greater chance of being damaged during transportation of the part and assembly of the engine. The combined tube may be hit and may even snap when the part is shipped or the engine moves through the assembly line. Moreover, a combined tube would not prevent leaks from gaps in the oil pan connections.




Accordingly, there is a need for a direct passage from the oil reservoir to the oil pump in an engine that does not pass through the crankcase.




SUMMARY OF THE INVENTION




The present invention provides an engine oil pan with a direct passage from the oil reservoir to the oil pump. A direct passage is one that does not pass through the crankcase. An engine crankcase connects to a front cover having a front half and a back half. The front half forms an inlet path to the oil pump, thus avoiding the need for an oil pump inlet tube. An oil pan connects to the crankcase and the front cover. There may be a gap between the oil pan and the front cover.




The oil pan has a pick-up tube disposed along an oil pan housing, which forms an oil reservoir. The pick-up tube is positioned to take oil from the deeper part of the oil reservoir. The pick-up tube connects the oil reservoir to the inlet path formed in the front half of the front cover.




Preferably, a nipple is connected by interference bonding to the pick-up tube. The nipple also is connected to the front cover by being inserted into the inlet path. The nipple may have a tapered end. The front half may have a tapered portion for receiving the nipple. The tapered end and the tapered portion may have the same taper to make a more secured connection.




An O-ring or a gasket is disposed adjacent to the nipple and between the pick-up tube and the front half. The pick-up tube and the front half each may have a groove for positioning the O-ring. Preferably, the O-ring is wider than the gap between the front cover and the oil pan. When the O-ring is not wider than the gap, the O-ring may be positioned adjacent to the contact point between the nipple and the front cover.




An alternate embodiment omits the nipple. A gasket is disposed between the oil pan and the front cover. Preferably, the gasket is disposed in grooves formed in the oil pan and the front cover.




The following drawings and description set forth additional advantages and benefits of the invention. More advantages and benefits are obvious from the description and may be learned by practice of the invention.











BRIEF DESCRIPTION OF THE DRAWINGS




The present invention may be better understood when read in connection with the accompanying drawings, of which:





FIG. 1

is a partial side-view of an engine having a direct passage according to the present invention;





FIG. 2

is a top view of an oil pan having a pick-up tube according to the present invention;





FIG. 3

is a perspective view of a nipple according to the present invention;





FIG. 4

is a close-up view of the pick-up tube connection to the front cover in

FIG. 1

according to the present invention; and





FIG. 5

is a close-up view of an alternate embodiment of an engine having a direct passage according to the present invention.











DETAILED DESCRIPTION OF THE INVENTION





FIG. 1

shows a partial side-view of an engine with a direct passage according to the present invention. An oil pan


100


is connected to a crankcase


110


via bolts (not shown). The crankcase


110


connects to a front cover


120


having a front half


122


and a back half


124


. The front half


122


forms an inlet path


128


to an oil pump


130


. The inlet path


128


has an opening


129


in the front half


122


. The oil pan


100


has a housing


104


forming an oil reservoir


105


.




The oil pan


100


extends to connect to the front cover


120


via bolts (not shown). Because of manufacturing and machining limitations, there usually is a gap


155


between the oil pan


100


and the front cover


120


. The gap


155


may be an intentional feature to ensure a secure fit between the oil pan


100


and the crankcase


110


. If there is no gap


155


and the front cover


120


is too large, then the oil pan


100


will not connect properly to the crankcase. Gap


155


could compensate for imprecise machining or manufacturing capabilities. However, gap


155


is not needed or desired when the front cover


120


has the proper dimensions for the oil pan to securely fit the crankcase


110


and the front cover


120


.




The oil pan


100


has a pick-up tube


140


positioned to move oil from the oil reservoir


105


to the inlet path


128


. The pick-up tube


140


may be positioned anywhere in the oil reservoir


105


. Preferably, the pick-up tube


140


is positioned to take oil from the deeper part of the oil reservoir


105


. The pick-up tube


140


may have a strainer


142


for catching debris.




The oil pan


100


and pick-up tube


140


preferably are made from cast aluminum with the housing


104


and the pick-up tube


140


integrated as a single part. They also may be cast from iron or steel. Alternatively, the oil pan


100


may be stamped from aluminum or steel. The pick-up tube


140


may be an aluminum or steel tube brazed or welded onto the oil pan


100


. In addition, the oil pan


100


and the pick-up tube


140


may be made from plastic separately or integrally. Other materials or a combination of materials also may be used for the oil pan


100


and pick-up tube


140


.




A nipple or spud


150


preferably connects the pick-up tube


140


to the front half


122


. The nipple


150


is preferably made of the same material as the pick-up tube


140


. While different materials may be used, care must be taken so the pick-up tube


140


and the nipple


150


have similar thermal expansions and other material properties necessary for proper operation.




The nipple


150


helps direct oil through the inlet path


128


to the oil pump


130


positioned in the front half


122


. When the oil pump


130


is operating the nipple


150


works with an O-ring or carrier type gasket


160


to prevent air from leaking into the inlet path


128


. When the oil pump is not operating, the nipple


150


and the O-ring


160


work together to prevent oil from leaking out of the engine. The O-ring


160


surrounds the nipple


150


and is positioned between the front half


122


and the oil pan


100


.

FIG. 2

shows a top view of the oil pan with the pick-up tube


140


, nipple


150


, and O-ring


160


.





FIG. 3

shows the nipple


150


with a full-sized end


152


and a tapered end


154


. The taper is exaggerated for illustration purposes. To make manufacturing easier, the nipple


150


preferably has a rectangular or square cubic-shape. However, a circular or oval cylindrical-shape (not shown) is preferred when smoother fluid flow is desired.




The taper is defined by a taper angle, a, measuring the deflection of the tapered end


154


toward the center of nipple


150


. While other taper angles may be used, a taper angle of 1° is preferred. The taper is shown to start at the approximate middle of nipple


150


. However, the taper end


154


could start anywhere along the nipple


150


. In addition, the nipple


150


could be tapered its entire length. While a tapered nipple is preferred, an untapered nipple may be used.





FIG. 4

shows a close-up view of the nipple


150


connected to the pick-up tube


140


and the front half


122


. The full-sized end


152


of the nipple


150


makes an interference fit with the pick-up tube


140


. The pick-up tube has a shape corresponding to the shape of the nipple


150


. The outside dimensions of the full-sized end


152


are essentially the same as the inside dimensions of the pick-up tube


140


. The nipple


150






preferably is coated for rust protection and interference bonding.




Preferably, the front half


122


has a tapered portion


126


forming an opening


129


for receiving the nipple


150


. The opening


129


connects with the inlet path


128


. The taper of the tapered end


152


preferably corresponds to the taper of the tapered portion


126


. Alternately, the opening


129


may be formed by an untapered front cover.




An O-ring or carrier-type gasket


160


surrounds the nipple


150


. The O-ring may be made of plastic, rubber, or other suitable material. The O-ring


160


is positioned in the gap


155


between the front half


122


and the oil pan


100


to prevent leakage, especially between the nipple


150


and the front half


122


. Preferably, the pick-up tube


140


has a first groove


102


and the front half


122


has a second groove


123


. The first and second grooves


102


,


123


are for positioning the O-ring


160


. While the first and second grooves


102


,


123


are shown working in tandem, either may be used alone to position the O-ring


160


. In which case, the other groove may not be present. Preferably, the O-ring


160


has a larger width than the gap


155


so the O-ring


160


is in compression when the front cover


120


and the oil pan


100


are connected to the crankcase


110


. When the O-ring


160


has a smaller width than gap


155


, the O-ring


160


is positioned adjacent to the contact point of the front cover


120


and the nipple


150


.





FIG. 5

shows close-up view of an alternate embodiment without a nipple. An oil pan


200


is connected to a crankcase


210


via bolts (not shown). The crankcase


210


connects to a front cover


220


having a front half


222


and a back half


224


. The front half


222


forms an inlet path


228


to an oil pump


230


. The oil pan


200


has a housing


204


forming an oil reservoir


205


.




The oil pan


200


extends to connect to the front cover


220


via bolts (not shown). Because of manufacturing and machining limitations, there usually is a gap


255


between the oil pan


200


and the front cover


220


. Similar to the other embodiment, gap


255


may be an intentional design to compensate for imprecise machining or manufacturing capabilities. Likewise, gap


255


is not needed or desired when the front cover


220


has the proper dimensions for the oil pan to securely fit the crankcase


210


and the front cover


220


.




The oil pan


200


has a pick-up tube


240


positioned to pump oil from the oil reservoir


205


to the inlet path


228


. The front cover


222


forms an opening


229


for connecting with the pick-up tube


240


. Preferably, the inside dimensions of the opening


229


are essentially the same as the inside dimensions of the pick-up tube


240


.




A carrier-type gasket or an O-ring


260


is positioned in the gap


255


between the oil pan


200


and the front half


222


. The gasket


260


may be made of plastic, rubber, or other suitable material. The gasket


260


has inside dimensions essentially equal to or greater than the inside dimensions of the pick-up tube


240


and the opening


229


. Preferably, the pick-up tube


240


has a first groove


202


and the front half


222


has a second groove


123


for positioning the gasket


260


. While the first and second grooves


202


,


223


are shown working in tandem, either may be used alone to position the gasket


160


. In which case, the other groove would not be present. The gasket


260


has a larger width than the gap


255


so the gasket


260


is in compression when the front cover


220


and the oil pan


200


are connected to the crankcase


210


.




While the invention has been described and illustrated, this description is by way of example only. Additional advantages will readily occur to those skilled in the art, who may make numerous changes without departing from the true spirit and scope of the invention.




Therefore, the invention is not limited to the specific details, representative devices, and illustrated examples in this description. Accordingly, the scope of the invention is to be limited only as necessitated by the accompanying claims.



Claims
  • 1. An oil pan with a direct passage for pumping oil from an oil reservoir to an oil pump inlet path, the oil pan comprising:an oil pan housing forming the oil reservoir; a pick-up tube internally formed with the oil pan housing, the pick-up tube configured for directly engaging the oil pump inlet path in a front cover; a gasket operatively positioned on the pick-up tube.
  • 2. An oil pan according to claim 1, wherein the pick-up tube has a groove, and wherein the gasket is disposed in the groove.
  • 3. An oil pan according to claim 1, the oil pan further comprising a nipple connected to the pick-up tube, wherein the gasket is disposed adjacent to a contact point of the nipple and the pick-up tube.
  • 4. An oil pan according to claim 3, wherein the nipple makes an interference connection with the pick-up tube.
  • 5. An oil pan according to claim 3, wherein the nipple is tapered.
  • 6. An oil pan according to claim 1, the oil pan further comprising a strainer attached to the pick-up tube, wherein the strainer is positioned in the oil reservoir.
  • 7. An oil an with a direct passage for pumping oil from an oil reservoir to an oil pump inlet path, the oil pan comprising:an oil pan housing forming the oil reservoir; a pick-up tube disposed along the oil pan housing, the pick-up tube configured for engaging the oil pump inlet path; a gasket operatively positioned on the pick-up tube; and a nipple connected to the pick-up tube, wherein the gasket is disposed adjacent to a contact point of the nipple and the pick-up tube; and wherein the nipple is further tapered.
  • 8. An engine with a direct passage from an oil reservoir to an oil pump, the engine comprising:a crankcase; a front cover connected to the crankcase, the front cover forming an inlet path to the oil pump; an oil pan connected to the crankcase and the front cover, the oil pan forming the oil reservoir; a pick-up tube integrally formed with the oil pan for pumping oil from the oil reservoir directly to the inlet path, the pick-up tube functionally connected to the front cover; and a gasket operatively disposed between the pick-up tube and the front cover.
  • 9. An engine according to claim 8, wherein the pick-up tube has a groove, and wherein the gasket is disposed in the groove.
  • 10. An engine according to claim 8, wherein the front cover has a first groove, and wherein the gasket is disposed in the first groove.
  • 11. An engine according to claim 10, wherein the pick-up tube has a second groove, and wherein the gasket is disposed in the second groove.
  • 12. An engine according to claim 8, the engine further comprising a nipple connected to the pick-up tube, the nipple engaging the front cover and inserted into the inlet path.
  • 13. An engine according to claim 12, wherein the nipple makes an interference connection with the pick-up tube.
  • 14. An engine according to claim 12, wherein the nipple has a tapered end for engaging the front cover.
  • 15. An engine according to claim 14, wherein the front cover has a tapered portion to receive the nipple, and wherein the tapered end and the tapered portion have essentially the same taper.
  • 16. An engine according to claim 12, wherein the front cover has a tapered portion to receive the nipple.
  • 17. An engine according to claim 12, wherein the oil pan and the front cover form a gap between the pick-up tube and the front cover, and wherein the gasket is disposed adjacent to a contact point of the nipple and the front cover.
  • 18. An engine according to claim 17, wherein the gasket has a width larger than the gap.
  • 19. An engine according to claim 8, wherein the oil pan and the front cover form a gap between the pick-up tube and the front cover, and wherein the gasket has a width larger than the gap.
  • 20. An engine with a direct passage from an oil reservoir to an oil pump, the engine comprising:a crankcase; front cover connected to the crankcase, the front cover forming an inlet path to the oil pump; an oil pan connected to the crankcase and the front cover the oil pan forming the oil reservoir; a pick-up tube disposed along the oil pan for pumping oil from the oil reservoir to the inlet path, the pick-up tube functionally connected to the front cover; a gasket operatively disposed between the pick-up tube and the front cover; and nipple connected to the pick-up tube, the nipple engaging the front cover and inserted into the inlet path; the nipple further having a tapered end for engaging the front cover.
  • 21. An engine according to claim 20, wherein the front cover has a tapered portion to receive the nipple, and wherein the tapered end and the tapered portion have essentially the same taper.
  • 22. An engine with a direct passage from an oil reservoir to an oil pump, the engine comprising:a crankcase; front cover connected to the crankcase, front cover forming an inlet path to the oil pump; an oil pan connected to the crankcase and the front cover the oil pan forming the oil reservoir; a pick-up tube disposed along the oil pan for pumping oil from the oil reservoir to the inlet path, the pick-up tube functionally connected to the front cover; a gasket operatively disposed between the pick-up tube and the front cover; a nipple connected to the pick-up tube, the nipple engaging the front cover and inserted into the inlet path; and the front cover further having a tapered portion to receive the nipple.
  • 23. An engine with a direct passage from an oil reservoir to an oil pump, the engine comprising:a crankcase; a front cover connected to the crakcase, the front cover forming an inlet path to the oil pump; an oil pan connected to the crankcase and the front cover, the oil pan forming the oil reservoir; a pick-up tube disposed along the oil pan for pumping oil from the oil reservoir to the inlet path, the pick-up tube functionally connected to the front cover; a gasket operatively disposed between the pick-up tube and the front cover; a nipple connected to the pick-up tube, the nipple engaging the front cover and inserted into the inlet path; wherein the oil pan and the front cover form a gap between the pick-up tube and the front cover, and wherein the gasket is disposed adjacent to a contact point of the nipple and the front cover.
  • 24. An engine according to claim 23, wherein the gasket has a width larger than the gap.
  • 25. An engine with a direct passage from an oil reservoir to an oil pump, the engine comprising:a crankcase: a front cover connected to the crankcase, the front cover forming an inlet path to the oil pump; an oil pan connected to the crankcase and the front cover, the oil pan forming the oil reservoir; a pick-up tube disposed along the oil pan for pumping oil from the oil reservoir to the inlet path, the pick-up tube functionally connected to the front cover; a gasket operatively disposed between the pick-up tube and the front cover; wherein the oil pan and the front cover from a gap between the pick-up tube and the front cover, and wherein the gasket has a width larger than the gap.
  • 26. An internal combustion engine with a direct passage from an oil reservoir to an oil pump, the engine comprising:a crankcase; a front cover connected to the crankcase, the front cover having a front half and a back half, wherein the front half forms an inlet path to the oil pump, wherein the front half has a first groove adjacent to the inlet path; an oil pan connected to the crankcase and the front cover, the oil pan forming the oil reservoir; a pick-up tube integrally formed with the oil pan for pumping oil from the oil reservoir directly to the inlet path, the pick-up tube functionally connected to the front cover, the pick-up tube forming a second groove; and a gasket operatively disposed between the front cover and the pick-up tube, the gasket disposed in at least one of the first and second grooves.
  • 27. An engine according to claim 26, the engine further comprising a nipple connected to the pick-up tube, the nipple engaging the front half and inserted into the inlet path.
  • 28. An engine according to claim 27 wherein the nipple has a tapered end for engaging the front half.
  • 29. An engine according to claim 27, wherein the oil pan and the front cover form a gap between the pick-up tube and the front half, and wherein the gasket is disposed adjacent to a contact point of the nipple and the front cover.
  • 30. An engine according to claim 26, wherein the oil pan and the front cover form a gap between the pick-up tube and the front half, and wherein the gasket has a width larger than the gap.
  • 31. An internal combustion engine with a direct passage from an oil reservoir to an oil pump, the engine comprising:a crankcase; a front cover connected to the crankcase, the front cover having a front half and a back half, wherein the front half forms an inlet path to the oil pump, wherein the front half has a first groove adjacent to the inlet path; an oil pan connected to the crankcase and the front cover, the oil pan forming the oil reservoir; a pick-up tube disposed along the oil pan for pumping oil from the oil reservoir, the pick-up tube functionally connected to the front cover, the pick-up tube forming a second groove; a gasket operatively disposed between the front cover and the pick-up tube, the gasket disposed in at least one of the first and second grooves; a nipple connected to the pick-up tube, the nipple engaging the front half and inserted into the inlet path; the nipple further having a tapered end for engaging the front half.
  • 32. An internal combustion engine with a direct passage from an oil reservoir to an oil pump, the engine comprising:a crankcase; a front cover connected to the crankcase, the front cover having a front half and a back half, wherein the front half forms an inlet path to the oil pump, wherein the front half has a first groove adjacent to the inlet path; an oil pan connected to the crankcase and the front cover, the oil pan forming the oil reservoir; a pick-up tube disposed along the oil pan for pumping oil from the oil reservoir, the pick-up tube functionally connected to the front cover, the pick-up tube forming a second groove; a gasket operatively disposed between the front cover and the pick-up tube, the gasket disposed in at least one of the first and second grooves; a nipple connected to the pick-up tube, the nipple engaging the front half and inserted into the inlet path; wherein the oil pan and the front cover form a gap between the picket-up tube and the front half, and wherein the gasket is disposed adjacent to a contact point of the nipple and the front cover.
  • 33. An internal combustion engine with a direct passage from an oil reservoir to an oil pump, the engine comprising:a crankcase; a front cover connected to the crankcase, the front cover having a front half and a back half, wherein the front half forms an inlet path to the oil pump, wherein the front half has a first groove adjacent to the inlet path; an oil pan connected to the crankcase and the front cover, the oil pan forming the oil reservoir; a pick-up tube disposed along the oil pan for pumping oil from the oil reservoir, the pick-up tube functionally connected to the front cover, the pick-up tube forming a second groove; a gasket operatively disposed between the front cover and the pick-up tube, the gasket disposed in at least one of the first and second grooves; wherein the oil pan and the front cover form a gap between the picket-up tube and the front half, and wherein the gasket has a width larger than the gap.
US Referenced Citations (13)
Number Name Date Kind
3592293 Frincke Jul 1971
4479463 Curley et al. Oct 1984
4615314 Baugh Oct 1986
4616609 Munch et al. Oct 1986
4616610 Ishida Oct 1986
4875884 Meisenburg Oct 1989
4977870 Hashimoto et al. Dec 1990
5136993 Ampferer et al. Aug 1992
5158053 Krechberger et al. Oct 1992
5411114 Bedi et al. May 1995
5601060 Smietanski et al. Feb 1997
5879140 Ellison Mar 1999
6041752 Van Klompenburg Mar 2000