Information
-
Patent Grant
-
6820586
-
Patent Number
6,820,586
-
Date Filed
Wednesday, March 19, 200321 years ago
-
Date Issued
Tuesday, November 23, 200420 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
-
CPC
-
US Classifications
Field of Search
-
International Classifications
-
Abstract
The present invention relates to an engine in which the stroke of a piston at an expansion stroke is larger than that at a compression stroke. In order to ensure that a top dead center at each of intake and exhaust strokes and a top dead center at the compression stroke are at the same level, the following dimensions are determined according to an equation representing a level of a piston pin, so that the top dead center at each of the intake and exhaust strokes and the top dead center at the compression stroke are congruous with each other: a length of a second arm; a length of a first arm; a length of a control rod; a length of a connecting rod; a length from an axis of a crankshaft to axes of rotary shafts in a direction of a y-axis; a length from the axis of the crankshaft to the axes of the rotary shafts in a direction of an x-axis; an amount of offsetting of a cylinder axis from the axis of the crankshaft in the direction of the y-axis; an angle formed by the first and second arms; a length between the axis of the crankshaft and the crankpin; a length of a straight line connecting the axes of the rotary shafts; and an axis of a movable eccentric shaft and an angle when a crank angle is “0”.
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an engine comprising a connecting rod connected at one end to a piston through a piston pin, a first arm turnably connected at one end to the other end of the connecting rod and at the other end to a crankshaft through a crankpin, a second arm integrally connected at one end to the other end of the first arm, a control rod turnably connected at one end to the other end of the second arm, and a movable eccentric shaft mounted between eccentric positions of rotary shafts to which a power reduced at a reduction ratio of 1/2 is transmitted from the crankshaft, the movable eccentric shaft being connected to the other end of the control rod, the stroke of the piston at an expansion stroke being larger than that at a compression stroke.
2. Description of the Related Art
Such engines are conventionally known, for example, from U.S. Pat. No. 4,517,931 and Japanese Patent Application Laid-open No. 9-228853. In each of these engines, the stroke of the piston at an expansion stroke is larger than that at a compression stroke, whereby a larger expansion work is carried out in the same amount of air-fuel mixture drawn, so that the cycle thermal efficiency is enhanced.
In the conventionally known engine, it is common that the position of a top dead center at each of the intake and exhaust strokes and the position of the top dead center at the compression stroke are different from each other. However, if the position of the top dead center at each of the intake and exhaust strokes is higher in level than the position of the top dead center at the compression stroke, there is a possibility that the interference of each of intake and exhaust valves and a top of the piston with each other occurs. If the position of the top dead center at each of the intake and exhaust strokes is lower in level than the position of the top dead center at the compression stroke to avoid the interference, the top dead center at the compression stroke is further lower and hence, an enhancement in a compression ratio in the engine is not desired and it is difficult to operate the engine at a higher thermal efficiency. On the other hand, if the top dead center at the compression stoke is higher in level than the top dead center at each of the intake and exhaust strokes, there is a possibility that the scavenge provided by the piston is insufficient due to the lower level of the piston at the top dead center at each of the intake and exhaust strokes, and thus, a large amount of burned gas remains within a cylinder, thereby bringing about a reduction in output in a full-load state and the instability of burning in a lower-load state.
SUMMARY OF THE INVENTION
Accordingly, it is an object of the present invention to provide an engine, wherein the stroke of the piston at the expansion stroke is larger than that at the compression stroke and in addition, the top dead center at each of the intake and exhaust stroke and the top dead center at the compression stroke are at the same level, whereby the above-described problems are solved.
To achieve the above object, according to a first feature of the present invention, there is provided an engine comprising a connecting rod connected at one end to a piston through a piston pin, a first arm turnably connected at one end to the other end of said connecting rod and at the other end to a crankshaft through a crankpin, a second arm integrally connected at one end to the other end of said first arm, a control rod turnably connected at one end to the other end of said second arm, and a movable eccentric shaft mounted between eccentric positions of rotary shafts to which a power reduced at a reduction ratio 1/2 is transmitted from said crankshaft, said movable eccentric shaft being connected to the other end of said control rod, the stroke of said piston at an expansion stroke being larger than that at a compression stroke, wherein when various dimensions are represented as described below in an x-y plane constituted by an x-axis extending through an axis of said crankshaft along a cylinder axis and a y-axis extending through the axis of said crankshaft in a direction perpendicular to the x-axis: a length of said connecting rod is represented by L
4
; a length of said first arm is represented by L
2
; a length of said second arm is represented by L
1
; a length of said control rod is represented by L
3
; a length from the axis of said crankshaft to axes of said rotary shafts in a direction of the y-axis is represented by L
5
; a length from the axis of said crankshaft to the axes of said rotary shafts in a direction of the x-axis is represented by L
6
; an angle formed by said connecting rod with respective to the cylinder axis is represented by φ
4
; an angle formed by said first and second arm is represented by a; an angle formed by said second arm with the y-axis within the x-y plane is represented by φ
1
; an angle formed by said control rod with the y-axis is represented by φ
3
; an angle formed by a straight line connecting the axis of said crankshaft and said crankpin with the x-axis is represented by θ; an angle formed by a straight line connecting the axes of said rotary shafts and the axis of said movable eccentric shaft with the x-axis is represented by θp; a value of the angle θp is represented by γ when the angle θ is “0”; a length between the axis of said crankshaft and said crankpin is represented by R; a length of the straight line connecting the axes of said rotary shafts and the axis of said movable eccentric shaft is represented by Rp; a rotational angular speed of said crankshaft is represented by ω; and a ratio of the rotational speed of said movable eccentric shaft to the rotational speed of said crankshaft is represented by η and the rotational direction thereof is represented by η=+0.5 or η=−0.5, the following equation is established:
L
4
·sin φ
4
·
d
φ
4
/
dt+L
2
·cos (α+φ
1
)·
d
φ
1
/
dt−R
·ω·sin θ=0
Wherein
φ
4
=arcsin {L
2
·cos (α+φ
1
)+R·sin θ−δ}/L
4
dφ
4
/dt=ω·[−L
2
·sin (α+φ
1
)·{R·cos (θ−φ
3
)−η·Rp·cos (θp−φ
3
)}/{L
1
·sin (φ
1
+φ
3
)}+R·cos θ)]/(L
4
·cos φ
4
)
φ
1
=arcsin [(L
3
2
−L
1
2
−C
2
−D
2
)/{2·L
1
·(C
2
+D
2
)}]−arctan(C/D)
φ
3
=arcsin {(R·cos θ−L
6
−Rp·cos θp+L
1
·sin φ
1
)/L
3
}
C=L
5
+Rp·sin θp−R·sin θ
D=L
6
+Rp·cos θp−R·cos θ
θp=η·θ+γ
dφ
1
/dt=ω·{R·cos (θ−φ
3
)−ηRp·cos (θp−φ
3
)}/{L
1
·sin (φ
1
+φ
3
)}
and crank angles θ at a top dead center at each of the intake and exhaust strokes and at the top dead center at the compression stroke are determined from said equation, and the length L
1
of said second arm; the length L
2
of said first arm; the length L
3
of said control rod; the length L
4
of said connecting rod; the length L
5
from the axis of said crankshaft to the axes of said rotary shafts in the direction of the y-axis; the length L
6
from the axis of said crankshaft to the axes of said rotary shafts in the direction of the x-axis; the amount δ of offsetting of the cylinder axis from the axis of said crankshaft in the direction of the y-axis; the angle α formed by said first and second arms; the length R between the axis of said crankshaft and said crankpin; the length Rp of the straight line connecting the axes of said rotary shafts and the axis of said movable eccentric shaft and the angle θp when the angle θ is “0”, are determined so that the top dead center at each of the intake and exhaust strokes and the top dead center at the compression stroke are congruous with each other, according to the following equation:
X=L
4
·cos φ
4
+
L
2
·sin (α+φ
1
)+
R
·cos θ
which represents a level X of the piston pin at both said crank angles θ.
The operation according to the configuration of the first feature will be described below with reference to
FIG. 5
diagrammatically showing the arrangements of the piston pin, the connecting rod, the crankshaft, the crankpin, the first arm, the second arm, the control rod and the movable eccentric shaft. When the coordinates (Xpiv and Ypiv) of the movable eccentric shaft are determined, a moving speed (dX/dt) of the piston pin is determined by differentiating the position of the piston pin in the direction of the x-axis determined by {X=L
4
·cos φ
4
+L
2
·sin (α+φ
1
)+R·cos θ}, and an equation provided when dX/d=0 has four solutions in a range of −2π<θ<2π. The four solutions are associated with the motion of a 4-cycle engine, whereby crank angles providing a top dead center at a compression stroke, a top dead center at each of intake and exhaust strokes, a bottom dead center after an expansion stroke and a bottom dead center after the intake stroke are determined and used to determine various positions of the piston pin in the directions of the x-axis and the y-axis. When the position of the piston pin at the top dead center in the direction of the x-axis at compression stroke is represented by Xctdc; the position of the piston pin in the direction of the x-axis at the top dead center at each of the intake and exhaust strokes is represented by Xotdc; the position of the piston pin ion the direction of the x-axis at the bottom dead center after an expansion stroke is represented by Xebdc; and the position of the piston pin in the direction of the x-axis at the bottom dead center after the intake stroke is represented by Xibdc, a stroke Scomp at the compression stroke and a stroke Sexp at the compression stroke are represented by (Scomp=Xctdc−Xibdc) and (Sexp=Xotdc−Xebdc), respectively, and the length L
1
of the second arm, the length L
2
of the first arm, the length L
3
of the control rod, the length L
4
of the connecting rod, the length L
5
from the axis of the crankshaft to the axes of the rotary shafts in the direction of the y-axis; the length L
6
from the axis of the crankshaft to the axes of the rotary shafts in the direction of the x-axis; the amount δ of offsetting of the cylinder axis from the axis of the crankshaft in the direction of the y-axis; the angle α formed by the first and second arms; the length R between the axis of the crankshaft and the crankpin; the length Rp of the straight line connecting the axes of the rotary shafts and the axis of the movable eccentric shaft and the angle θp when the angle θ is “0”, are determined so that Scomp<Sexp is satisfied and Xctdc=Xotdc is satisfied. Thus, the stroke of the piston at the expansion stroke can be set larger than that at the compression stroke and in addition, the top dead center at each of the intake and exhaust strokes and the top dead center at the compression stroke can be set at the same level. As a result, it is possible to prevent the occurrence of the interference of each of an intake valve and an exhaust valve and a top of the piston with each other; to provide an enhancement in compression ratio in the engine to enable the operation at a higher thermal efficiency, and to achieve the sufficient scavenge by the piston and to prevent a reduction in output in a full-load state and the instability of burning in a lower-load state.
According to a second feature of the present invention, in addition to the first feature, a locus of movement of the piston pin is determined to be fallen into a range between the x-axis and one of tangent lines parallel to the x-axis and tangent to a locus described at the expansion stroke by a point of connection between the connecting rod and the first arm, which is closest to the x-axis. With such feature, it is possible to reduce the friction of the piston and suppress a piston slap sound. More specifically, when the piston is at the expansion stroke, a large load is applied to the piston, but if the change in attitude of the piston is increased due to the large load at that time, the friction is increased and the piston slap sound is magnified. However, the above-described determination of the locus of movement of the piston pin ensures that the connecting rod is always inclined to one side at the expansion stroke, notwithstanding that the piston receives the large load at the expansion stroke, whereby the change in attitude of the piston can be suppressed to reduce the friction of the piston and to suppress the generation of the piston slap sound.
According to a third feature of the present invention, in addition to the second feature, the range of the crank angle at the expansion stroke is set larger than that at the intake stroke, and the range of the crank angle at the exhaust stroke is set larger than that at the compression stroke. With such configuration, it is possible to avoid the degradation of inertia vibration due to an increase in acceleration of the piston. More specifically, during lowering of the piston, the stroke at the expansion stroke is larger than that at the intake stroke, and during lifting of the piston, the stroke at the exhaust stroke is larger than that at the compression stroke. In the setting in which the top and bottom dead centers are alternated with each other at the crank angle of 180 degrees, the speed of the piston at each of the expansion and exhaust strokes at which the stroke is larger is higher than that at each of the intake and compression strokes at which the stroke is smaller, and the acceleration of the piston is increased due to such a large difference between the speeds, thereby bringing about the degradation of inertia vibration. However, by setting the range of the crank angle at each of the expansion and exhaust strokes at which the stroke is larger at a value larger than the range of the crank angle at each of the intake and compression strokes at which the stroke is smaller, as described above, the speed of the piston at each of the stokes can be further uniform to suppress the variation in acceleration of the piston at the bottom dead center after the intake and expansion strokes and the variation in acceleration of the piston at the top dead center after the intake and expansion strokes to avoid the degradation of inertia vibration.
According to a fourth feature of the present invention, in addition to the third feature, the ranges of the crank angles at the expansion and exhaust strokes are set at values exceeding 180 degrees, respectively. With such configuration, the speed of the piston at each of the intake, compression, expansion and exhaust strokes can be further uniform to more effectively suppress the variation in acceleration of the piston at the bottom dead center after the intake and expansion strokes and the variation in acceleration of the piston at the top dead center after the intake and expansion strokes, thereby more effectively avoiding the degradation of inertia vibration.
According to a fifth feature of the present invention, in addition to any of the first to fourth features, the movable eccentric shaft is mounted on the rotary shafts having the axes disposed at locations spaced within the x-y plane apart from the axis of the crankshaft by the lengths L
5
and L
6
in the directions of the y-axis and the x-axis, respectively, so that it is displaced from the axes of the rotary shafts by a distance corresponding to a radius Rp, and wherein when the length R between the axis of the crankshaft and the crankpin is set at 1.0, the length L
1
of the second arm is set in a range of 1.7 to 4.5; the length L
2
of the first arm is set in a range of 0.6 to 5.2; the length L
3
of the control rod is set in a range of 4.3 to 6.9; the length L
5
between the axis of the crankshaft and the rotary shafts in the direction of the y-axis is set in a ranger of 2.3 to 4.0; the length L
6
between the axis of the crankshaft and the rotary shafts in the direction of the x-axis is set in a range of 0.00 to 3.35; and the radius Rp is set in a range of 0.25 to 1.80, as well as the angle a formed by the first and second arms is set in a range of 105 to 180 degrees. With such configuration, it is possible to provide the configuration of the fourth feature, thereby more effectively avoiding the degradation of inertia vibration.
The above and other objects, features and advantages of the invention will become apparent from the following description of the preferred embodiments taken in conjunction with the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
FIGS. 1
to
7
show a first embodiment of the present invention.
FIG. 1
is a partially cutaway front view of an engine;
FIG. 2
is a vertical sectional view of the engine, which corresponds to a sectional view taken along a line
2
—
2
in
FIG. 3
;
FIG. 3
is a sectional view taken along a line
3
—
3
in
FIG. 2
;
FIG. 4
is a sectional view taken along a line
4
—
4
in
FIG. 3
;
FIG. 5
is an illustration diagrammatically showing the disposition of a link mechanism;
FIG. 6
is a diagram showing operative states of the link mechanism sequentially;
FIG. 7
is a diagram showing a variation in position of a piston pin corresponding to a crank angle;
FIG. 8
is a sectional view of essential portions of an engine according to a second embodiment;
FIG. 9
is an illustration showing the state of a link mechanism at expansion stroke in a third embodiment;
FIG. 10
is an illustration showing the state of the link mechanism at the expansion stroke when a range of crank angle at each of the intake and compression strokes is set larger than that each of the expansion and exhaust strokes;
FIG. 11
is a graph showing the position of a piston provided at each of the strokes by the link mechanism shown in
FIG. 10
;
FIG. 12
is a graph showing a variation in acceleration of the piston provided at each of the strokes by the link mechanism shown in
FIG. 10
;
FIG. 13
is an illustration showing a state of a link mechanism at expansion stroke in a fourth embodiment;
FIG. 14
is a graph showing the position of a piston provided at each of the strokes by the link mechanism shown in
FIG. 13
;
FIG. 15
is a graph showing a variation in acceleration of the piston provided at each of the strokes by the link mechanism shown in
FIG. 13
;
FIG. 16
is an illustration showing a state of a link mechanism at expansion stroke in a fifth embodiment;
FIG. 17
is a graph showing the position of a piston provided at each of the strokes by the link mechanism shown in
FIG. 16
;
FIG. 18
is a graph showing a variation in acceleration of the piston provided at each of the strokes by the link mechanism shown in
FIG. 16
;
FIG. 19
is an illustration showing a state of a link mechanism at expansion and exhaust strokes in a sixth embodiment;
FIG. 20
is a graph showing the position of a piston provided at each of the strokes by the link mechanism shown in
FIG. 19
;
FIG. 21
is a graph showing a variation in acceleration of the piston provided at each of the strokes by the link mechanism shown in
FIG. 19
; and
FIG. 22
is an illustration diagrammatically showing the disposition of a link mechanism for explaining dimensions of various portions.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
A first embodiment of the present invention will now be described with
FIGS. 1
to
7
. Referring first to
FIGS. 1
to
3
, an engine according to the first embodiment is an air-cooled single-cylinder engine used, for example, in a working machine or the like, and includes an engine body
21
which is comprised of a crankcase
22
, a cylinder block
23
protruding in a slightly upward inclined state from one side of the crankcase
22
, and a cylinder head
24
coupled to a head portion of the cylinder block
23
. Large numbers of air-cooling fins
23
a
and
24
a
are provided on outer surfaces of the cylinder block
23
and the cylinder head
24
. A mounting face
22
a
on a lower surface of the crankcase
22
is mounted on an engine bed of each of various working machines
The crankcase
22
comprises a case body
25
formed integrally with the cylinder block
23
by a casting process, and a side cover
26
coupled to an open end of the case body
25
, and a crankshaft
27
are rotatably carried at its opposite ends on the case body
25
and the side cover
26
with ball bearings
28
and
29
and oil seals
30
and
31
interposed therebetween. One end of the crankshaft
27
protrudes as an output shaft portion
27
a
from the side cover
26
, and the other end of the crankshaft
27
protrudes as an auxiliary-mounting shaft portion
27
b
from the case body
25
. Moreover, a flywheel
32
is fixed to the auxiliary-mounting shaft portion
27
b
; a cooling fan
35
for supplying cooling air to various portions of the engine body
21
and a carburetor
34
is secured to an outer surface of the flywheel
32
by a screw member
36
, and a recoil-type engine stator
37
is disposed outside the cooling fan
36
.
A cylinder bore
39
is defined in the cylinder block
23
, and a piston
38
is slidably received in the cylinder bore
39
. A combustion chamber
40
is defined between the cylinder block
23
and the cylinder head
24
, so that a top of the piston is exposed to the combustion chamber
40
.
An intake port
41
and an exhaust port
42
are defined in the cylinder head
24
, and lead to the combustion chamber
40
, and an intake valve
43
for connecting and disconnecting the intake port
41
and the combustion chamber
40
to and from each other and an exhaust valve
44
for connecting and disconnecting the exhaust port
42
and the combustion chamber
40
to and from each other, are openably and closably disposed in the cylinder head
24
. A spark plug
45
is threadedly fitted into the cylinder head
24
with its electrodes facing to the combustion chamber
40
.
The carburetor
34
is connected to an upper portion of the cylinder head
24
, and a downstream end of an intake passage
46
included in the carburetor
34
communicates with the intake port
41
. An intake pipe
47
leading to an upstream end of the intake passage
46
is connected to the carburetor
34
and also connected to an air cleaner (not shown). An exhaust pipe
48
leading to the exhaust port
42
is connected to the upper portion of the cylinder head
24
and also connected to an exhaust muffler
49
. Further, a fuel tank
51
is disposed above the crankcase
22
in such a manner that it is supported on a bracket
50
protruding from the crankcase
22
.
A driving gear
52
is integrally formed on the crankshaft
27
at a location closer to the side cover
26
of the crankcase
22
, and a driven gear
53
meshed with the driving gear
52
is secured to a camshaft
54
rotatably carried in the crankcase
22
and having an axis parallel to the crankshaft
27
. Thus, a rotating power from the crankshaft
27
is transmitted to the camshaft
4
at a reduction ratio of 1/2 by the driving gear
52
and the driven gear
53
meshed with each other.
The camshaft
54
is provided with an intake cam
55
and an exhaust cam
56
corresponding to the intake valve
43
and the exhaust valve
44
, respectively, and a follower piece
57
operably carried on the cylinder block
23
is in sliding contact with the intake cam
55
. On the other hand, an operating chamber
58
is defined in the cylinder block
23
and the cylinder head
24
, so that an upper portion of the follower piece
57
protrudes from a lower portion of the operating chamber
58
; and a pushrod
59
is disposed in the operating chamber
58
with its lower end abutting against the follower piece
57
. On the other hand, a rocker arm
60
is swingably carried on the cylinder head
24
with its one end abutting against an upper end of the exhaust valve
44
biased in a closing direction by a spring, and an upper end of the pushrod
59
abuts against the other end of the rocker arm
60
. Thus, the pushrod
59
is operated axially in response to the rotation of the intake cam
55
, and the intake valve
43
is opened and closed by the swinging of the rocker arm
60
caused in response to the operation of the pushrod
59
.
A mechanism similar to that between the intake cam
55
and the intake valve
43
is also interposed between the exhaust cam
56
and the exhaust valve
44
, so that the exhaust valve
44
is opened and closed in response to the rotation of the exhaust cam
56
.
Referring also to
FIG. 4
, the piston
38
, the crankshaft
27
and a movable eccentric shaft
61
carried in the crankcase
22
of the engine body
21
for displacement in a plane extending through a cylinder axis C and perpendicular to an axis of the crankshaft
27
, are connected to one another through a link mechanism
62
.
The link mechanism
62
comprises a connecting rod
64
connected at one end to the piston
38
through a piston pin
63
, a first arm
66
turnably connected at one end to the other end of the connecting rod
64
and at the other end to a crankpin
65
of the crankshaft
27
, a second arm
67
integrally connected at one end to the other end of the first arm
66
, and a control rod
69
turnably connected at one end to the other end of the second arm
67
and at other end to the movable eccentric shaft
61
. The first and second arms
66
and
67
are integrally formed as a subsidiary rod
68
.
The subsidiary rod
68
includes a semi-circular first bearing portion
70
provided at its intermediate portion to come into sliding contact with half of a periphery of the crankpin
65
, and a pair of bifurcated portions
71
and
72
provided at its opposite ends, so that the other end of the connecting rod
64
and one end of the control rod
69
are sandwiched therebetween. A semicircular second bearing portion
74
included in the crank cap
73
is in sliding contact with the remaining half of the periphery of the crankpin
65
of the crankshaft
27
, and the crank cap
73
is fastened to the subsidiary rod
68
.
The connecting rod
64
is turnably connected at the other end thereof to one end of the subsidiary rod
68
, i.e., to one end of the first arm
66
through a connecting rod pin
75
, which is press-fitted into the other end of the connecting rod
64
inserted into the bifurcated portion
71
at one end of the subsidiary rod
68
and which is turnably fitted at its opposite ends into the bifurcated portion
71
at the one end of the subsidiary rod
68
.
The control rod
69
is turnably connected at one end to the other end of the subsidiary rod
68
, i.e., to the other end of the second arm
67
through a cylindrical subsidiary rod pin
76
, which is passed relatively turnably through one end of the control rod
69
inserted into the bifurcated portion
72
at the other end of the subsidiary rod
68
, and which is clearance-fitted at its opposite end into the bifurcated portion
72
at the other end of the subsidiary rod
68
. Moreover, a pair of clips
77
,
77
are mounted to the bifurcated portion
72
at the other end of the subsidiary rod
68
to abut against the opposite ends of the subsidiary rod pin
76
for inhibiting the removal of the subsidiary rod pin
76
from the bifurcated portion
72
.
The crank cap
73
is fastened to the bifurcated portions
71
and
72
by disposed pair by pair at opposite sides of the crankshaft
27
, and the connecting rod pin
75
and the subsidiary rod pin
76
are disposed on extensions of axes of the bolts
78
,
78
.
The cylindrical movable eccentric shaft
61
is mounted between eccentric positions of a pair of rotary shafts
81
and
82
coaxially disposed and having axes parallel to the crankshaft
27
. Moreover, the rotary shaft
81
is rotatably carried on a support portion
83
mounted to the side cover
26
of the crankcase
22
, and the rotary shaft
82
is rotatably carried on a support portion
84
mounted to the case body
25
of the crankcase
22
.
A follower sprocket
85
is fixed to the rotary shaft
81
, and driving sprocket
86
is fixed to the crankshaft
27
at a location corresponding to the follower sprocket
85
. An endless chain
87
is reeved around the driving sprocket
86
and the follower sprocket
85
. Thus, a rotational power reduced at a reduction ratio of 1/2 is transmitted from the crankshaft
27
to the rotary shafts
81
and
82
, and the movable eccentric shaft
61
mounted between the rotary shafts
81
and
82
is rotated in one rotation about axes of the rotary shafts every time the crankshaft
27
is rotated in two rotations.
By rotating the movable eccentric shaft
61
in the above manner, it is ensured that the stroke of the piston
38
at an expansion stroke is larger than that at a compression stroke. The dimensional relationship in the link mechanism for this purpose will be described with reference to FIG.
5
.
Here, when various dimensions are represented as described below in an x-y plane constituted by an x-axis extending through an axis of the crankshaft
27
along a cylinder axis C and a y-axis extending through the axis of the crankshaft
27
in a direction perpendicular to the x-axis: i.e., a length of the connecting rod
64
is represented by L
4
; a length of the first arm
66
is represented by L
2
; a length of the second arm
67
is represented by L
1
; a length of the control rod
69
is represented by L
3
; a length of from the axis of the crankshaft
27
to the axes of the rotary shafts
81
and
82
in a direction of the y-axis is represented by L
5
; a length from the axis of the crankshaft
27
to the axes of the rotary shafts
81
and
82
in a direction of the x-axis is represented by L
6
; an angle formed by the connecting rod
64
with respective to the cylinder axis C is represented by φ
4
; an angle formed by the first and second arms
66
and
67
with each other is represented by α; an angle formed by the second arm
67
with the y-axis is represented by φ
1
; an angle formed by the control rod
69
with the y-axis is represented by φ
3
; an angle formed by a straight line connecting the axis of the crankshaft
27
and the crankpin
65
with the x-axis is represented by θ; an angle formed by a straight line connecting the axes of the rotary shafts
81
and
82
and the axis of the movable eccentric shaft
61
with the x-axis is represented by θp; a value of the angle θp when the angle θ is “0” is represented by γ; a length between the crankshaft
27
and the crankpin
65
is represented by R; a length of the straight line connecting the axes of the rotary shafts
81
and
82
and the axis of the movable eccentric shaft
61
is represented by Rp; a rotational angular speed of the crankshaft
27
is represented by ω; and a ratio of the rotational speed of the movable eccentric shaft
61
to the rotational speed of the crankshaft
27
is represented by η and the rotational direction thereof is by η=+0.5, a level X of the piston pin
63
is determined according to
X=L
4
·cos φ
4
+
L
2
·sin (α+φ
1
)+
R
·cos θ (1)
wherein
φ
4
=arcsin {L
2
·cos (α+φ
1
)+R·sin θ−δ}/L
4
φ
1
=arcsin [(L
3
2
−L
1
2
−C
2
−D
2
)/{2·L
1
·(C
2
+D
2
)}]−arctan (C/D)
C=L
5
+Rp·sin θp−R·sin θ
D=L
6
+Rp·cos θp−R·cos θ
θp=η·θ+γ
Here, a speed of the piston pin
63
in a direction of the x-axis is determined according to the following equation by differentiating the above-described equation (1):
dX/dt=−L
4
·sin φ
4
·
d
φ
4
/dt+L
2
·cos (α+φ
1
)·
d
φ
1
/
dt −R
·ω·sin θ (2)
Wherein
dφ
4
/dt=ω·[−L
2
·sin (α+φ
1
)·{R·cos (θ−φ
3
)−η·Rp·cos (θp−φ
3
)}
/{L
1
·sin (φ
1
+φ
3
)}+R·cos θ)}]/(L
4
·cos φ
4
)
φ
3
=arcsin {(R·cosθ−L
6
−Rp·cos θp+L
1
·sin φ
1
)/L
3
}
dφ
1
/dt=ω·{R·cos (θ−φ
3
)−η·Rp·cos (θp−φ
3
)}/{L
1
·sin (φ
1
+φ
3
)}
An equation in a case where dX/d=0 in the above-described equation (2) has four solutions when θ is in a range of −2π<θ<2π. The four solutions are associated with the motion of a 4-cycle engine, and crank angles providing a top dead center at the compression stroke, an top dead center at the intake and exhaust strokes, a bottom dead center after the expansion stroke and a bottom dead center after the intake stroke are determined and used to determine various positions of the piston pin. When the position of the piston pin
63
in the direction of the x-axis at the top dead center at the compression stroke is represented by Xctdc; the position of the piston pin
63
in the direction of the x-axis at the top dead center at the intake and exhaust strokes is represented by Xotdc; the position of the piston pin
63
in the direction of the x-axis at the bottom dead center after the expansion stroke is represented by Xebdc; and the position of the piston pin
63
in the direction of the x-axis at the bottom dead center after the intake stroke is represented by Xibdc, the stroke Scomp at the compression stroke and the stroke Sexp at the expansion stoke are represented by (Scomp=Xctdc−Xibdc) and (Sexp=Xotdc−Xebdc), respectively, and the following dimensions are determined, so that Scomp<Sexp is satisfied and Xctdc=Xotdc is satisfied: the length L
1
of the second arm
67
; the length L
2
of the first arm
66
; the length L
3
of the control rod
69
; the length L
4
of the connecting rod
64
; the length L
5
from the axis of the crankshaft
27
to the axes of the rotary shafts
81
and
82
in the direction of the y-axis; the length L
6
from the axis of the crankshaft
27
to the axes of the rotary shafts
81
and
82
in the direction of the x-axis; the amount δ of offsetting of the cylinder axis C from the axis of the crankshaft
27
in the direction of the y-axis; the angle α formed by the first and second arms
66
and
67
; the length R between the axis of the crankshaft
27
and the crankpin
65
; the length Rp of the straight line connecting the axes of the rotary shafts
81
and
82
and the axis of the movable eccentric shaft
61
and the angle θp when the angle θ is “0”.
Such determinations ensure that the stroke of the piston at the expansion stroke is larger than that at the compression stroke and moreover, the top dead center at the intake and exhaust strokes and the top dead center at the compression stroke can be identical with each other.
More specifically, the link mechanism
62
is operated as shown in
FIG. 6
at the intake, compression, expansion and exhaust strokes in the engine, and the position X of the piston pin
63
in the direction of the x-axis is varied as shown in
FIG. 7
in accordance with such operation of the link mechanism
62
. Namely, the stroke Sint at the intake stroke and the stroke Scomp at the compression stroke are equal to each other (Sint=Scomp), and the stroke Sexp at the expansion stroke and the stroke Sexh at the exhaust stroke are equal to each other (Sexp=Sexh). Moreover, the stroke Sexp (=Sexh) at the expansion stroke is larger than the stroke Scomp (=Sint) at the compression stroke. Thus, a larger expansion work can be conducted with the same amount of a fuel-air mixture drawn, thereby enhancing the cycle thermal efficiency.
Further, the position Xotdc of the piston pin
63
in the direction of the X-axis at the top dead center at the intake and exhaust strokes and the position Xctdc of the piston pin
63
in the direction of the X-axis at the top dead center at the compression stroke are also congruous with each other.
The operation of the first embodiment will be described below. The engine includes the link mechanism which is constituted by the connecting rod
64
connected at one end to the piston
38
through the piston pin
63
, the first arm
66
turnably connected at one end to the other end of the connecting rod
64
and at the other end to the crankshaft
27
through the crankpin
65
, the second arm
66
integrally connected at one end to the other end of the first arm to constitute the subsidiary rod
68
by cooperation of the first arm, and the control rod
69
turnably connected at one end to the other end of the second arm
67
. The movable eccentric shaft
61
for supporting the other end of the control rod
69
is mounted between the eccentric positions of the rotary shafts
81
and
82
to which the power reduced at the reduction ratio of 1/2 is transmitted from the crankshaft
27
, and the stroke of the piston
38
at the expansion stroke is larger than that at the compression stroke. In such engine, the following various dimensions are determined properly: the length L
1
of the second arm; the length L
2
of the first arm
66
; the length L
3
of the control rod
69
; the length L
4
of the connecting rod
64
; the length L
5
from the axis of the crankshaft
27
to the axes of the rotary shafts
81
and
82
in the direction of the y-axis; the length L
6
from the axis of the crankshaft
27
to the axes of the rotary shafts
81
and
82
in the direction of the x-axis; the amount δ of offsetting of the cylinder axis C from the axis of the crankshaft
27
in the direction of the y-axis; the angle α formed by the first and second arms
66
and
67
; the length R between the axis of the crankshaft
27
and the crankpin
65
; the length Rp of the straight line connecting the axes of the rotary shafts
81
and
82
and the axis of the movable eccentric shaft
61
and the angle θp when the angle θ is “0”, so that the top dead center at the intake and exhaust strokes and the top dead center at the compression stroke are congruous with each other.
Therefore, it is possible to prevent the occurrence of interferences of the intake valve
43
and the exhaust valve
44
and the top of the piston
38
with each other and to provide an enhancement in compression ratio in the engine to achieve the operation of the engine at a higher thermal efficiency. It is also possible to achieve the sufficient scavenge by the piston
38
to prevent a reduction in output in a full-load state and prevent the instability of the combustion in a lower-load state.
The first and seconds arms
66
and
67
constitute the subsidiary rod
68
having the semi-circular first bearing portion
70
placed into sliding contact with the half of the periphery of the crankpin
65
by cooperation with each other. The connecting rod
64
is turnably connected to one end of the subsidiary rod
68
, and the control rod
69
is turnably connected at one end to the other end of the subsidiary rod
68
. The crank cap
73
having the semi-circular bearing portion
74
placed into sliding contact with the remaining half of the periphery of the crankpin
65
is fastened to the pair of semi-circular bifurcated portions
71
and
72
integrally provided on the subsidiary rod
68
in such a manner that the other end of the connecting rod
64
and the one end of the control rod
69
are sandwiched between the semi-circular bifurcated portions
71
and
72
. Thus, it is possible to enhance the rigidity of the subsidiary rod
68
mounted to the crankpin
65
.
In addition, the connecting rod pin
75
press-fitted into the other end of the connecting rod
64
is turnably fitted at its opposite ends into one
71
of the bifurcated portions, and the subsidiary rod pin
76
relatively rotatably passed through one end of the control rod
69
is clearance-fitted at its opposite ends into the other bifurcated portion
72
. Therefore, the portion from the piston
38
to the subsidiary rod
68
and the control rod
69
are assembled separately into the engine, and the subsidiary rod
68
and the control rod
69
can be then connected to each other. In this manner, the assembling operation can be facilitated, while enhancing the assembling accuracy and as a result, an increase in size of the engine can be avoided.
Moreover, since the connecting rod pin
75
and the subsidiary rod
76
are disposed on the extensions of the axes of the bolts
78
for fastening the crank cap
73
to the subsidiary rod
68
, the subsidiary rod
68
and the crank cap
73
can be constructed compactly, whereby the weight of the subsidiary rod
68
and the crank cap
73
can be reduced, and the loss of a power can be also suppressed.
FIG. 8
shows a second embodiment of the present invention, wherein portions or components corresponding to those in the first embodiment are designated by the same reference numerals and symbols.
A driven gear
90
fixed to the rotary shaft
81
is meshed with a driving gear
52
which is provided on the crankshaft
27
, so that it is meshed with the driven fear
53
fixed to the camshaft
54
. Thus, a rotational power reduced at a reduction ratio of 1/2 is transmitted from the crankshaft
27
through the driving gear
52
and the driven gear
90
to the rotary shafts
81
and
82
, and the movable eccentric shaft
61
mounted between the rotary shafts
81
and
82
is rotated about the axes of the rotary shafts
81
and
82
in one rotation every time the crankshaft
27
is rotated in two rotations.
Moreover, the movable eccentric shaft
61
of the second embodiment rotates in the direction opposite to that the movable eccentric shaft
61
of the first embodiment rotates. That is, in the second embodiment, rotational direction of the movable eccentric shaft
61
is represented by η=−0.5 when its rotational speed is η.
Also in the second embodiment, the top dead center at the intake and exhaust strokes and the top dead center at the compression stroke can be made congruous with each other to provide an effect similar to that in the first embodiment by properly determining the length L
1
of the second arm
67
; the length L
2
of the first arm
66
; the length L
3
of the control rod
69
; the length L
4
of the connecting rod
64
; the length L
5
from the axis of the crankshaft
27
to the axes of the rotary shafts
81
and
82
in the direction of the y-axis; the length L
6
from the axis of the crankshaft
27
to the axes of the rotary shafts
81
and
82
in the direction of the x-axis; the amount δ of offsetting of the cylinder axis C from the axis of the crankshaft
27
in the direction of the y-axis; the angle a formed by the first and second arms
66
and
67
; the length R between the axis of the crankshaft
27
and the crankpin
65
; the length Rp of the straight line connecting the axes of the rotary shafts
81
and
82
and the axis of the movable eccentric shaft
61
and the angle θp when the angle θ is “0”.
When the piston
38
is at the expansion stroke, a large load is applied to the piston
38
due to the combustion in the combustion chamber
40
, but if the change in attitude of the piston
38
is increased due to the large load at that time, the friction is increased and the piston slap sound is magnified. Therefore, an arrangement designed to prevent such disadvantage from being arisen will be described in a third embodiment.
To suppress the friction and the piston slap sound, a locus of movement of the piston pin
63
is determined to be fallen into a range between the x-axis and one (which is closest to the x-axis) of tangent lines parallel to the x-axis and tangent to a locus described at the expansion and compression strokes by a point of connection between the connecting rod
64
and the first arm
66
, i.e., the center of the connecting rod pin
75
.
More specifically, at the expansion and exhaust strokes, the link mechanism
62
is operated as shown in
FIG. 9
between a state in which the piston
38
is at the top dead center (a state shown by a solid line) and a state in which the piston
38
is at the bottom dead center (a state shown by a dashed line), and the center of the connecting rod pin
75
describes a locus
95
1
shown by a thin solid line at the expansion stroke and describes a locus
95
2
shown in a thin solid line at the next exhaust stroke, so that a locus
95
provides an endless configuration as a whole. The locus of movement of the piston pin
63
is determined to be fallen into a range between the x-axis and one
96
of a pair of tangent lines parallel to the x-axis and tangent to the locus
951
at the expansion stroke, which is closest to the x-axis.
If the locus of movement of the piston pin
63
is determined as described above, the friction of the piston
38
can be reduced, and the piston slap sound can be suppressed. More specifically, when the piston
38
is at the expansion stroke, a large load is applied to the piston
38
, but if the change in attitude of the piston
38
is increased due to the large load at that time, the friction is increased and the piston slap sound is magnified. However, the above-described determination of the locus of movement of the piston pin
63
ensures that the connecting rod
64
is always inclined to one side at the expansion stroke, notwithstanding that the piston
38
receives the large load at the expansion stroke, whereby the change in attitude of the piston
38
can be suppressed. As a result, the friction of the piston
38
can be reduced, and the piston slap sound can be suppressed.
In the engine in which during lowering of the piston
38
, the stroke at the expansion stroke is larger than that at the intake stroke, and during lifting of the piston
38
, the stroke at the exhaust stroke is larger than that at the compression stroke, as described above, if the link mechanism is set so that the top and bottom dead centers of the piston
38
are retracted at every crank angle of 180 degrees, there is a possibility that the reciprocating speed of the piston at the expansion and exhaust strokes at which the stroke is larger is larger than the reciprocating speed of the piston
38
at the intake and compression strokes at which the stroke is smaller, and the change in acceleration of the piston at the top and bottom dead centers is magnified due to such a speed difference, thereby bringing about a degradation of inertial vibration. Thus, in the engine using the above-described link mechanism
62
, the range of the crank angle at each of the intake, compression, expansion and exhaust strokes can be set at a value other than 180 degrees.
For example, when the link mechanism
62
is set so that it is brought into a state shown by a solid line in
FIG. 10
at the top dead center at the expansion stroke and a state shown by a dashed line in
FIG. 10
at the bottom dead center, the range of the crank angle at each of the intake, compression, expansion and exhaust strokes is as shown in FIG.
11
. The range (=179.8 degrees) of the crank angle at the intake stroke is larger than the range (=153.5 degrees) of the crank angle at the expansion stroke, and the range (=197.7 degrees) of the crank angle at the compression stroke is larger than range (=189.1 degrees) of the crank angle at the exhaust stroke, and the acceleration of the piston
38
in this case is varied as shown in FIG.
12
.
In this case, when the stroke of the piston
38
at the expansion and exhaust strokes is 56 mm; the stroke of the piston
38
at the intake and compression strokes is 37 mm; and a ratio of the volume at the expansion stroke to the volume at compression strokes is 1.5, the largest acceleration (the largest acceleration toward the top dead center) is +6440 m/sec
2
immediately before the expansion stroke changes to the exhaust stroke; the smallest acceleration (the largest acceleration toward the bottom dead center) is −4009 m/sec
2
in the middle of the expansion stroke, as shown in
FIG. 12
, and both (the absolute value of the largest acceleration) and (the absolute value of the smallest acceleration) are large.
Namely, if the range of the crank angle at the intake stroke is larger than the range of the crank angle at the expansion stroke, and the range of the crank angle at the compression stroke is larger than the range of the crank angle at the exhaust stroke, the acceleration of the piston
38
is not reduced and hence, it is impossible to prevent the degradation of inertia vibration.
Therefore, in a fourth embodiment of the present invention, the range of the crank angle at the expansion stroke is set larger than the range of the crank angle at the intake stroke, and the range of the crank angle at the exhaust stroke is set larger than the range of the crank angle at the compression stroke.
Namely, when the link mechanism
62
is set so that it is brought into a state shown by a solid line in
FIG. 13
at the top dead center at the expansion stroke, and a state shown by a dashed line in
FIG. 13
at the bottom dead center, the range of the crank angle at each of the intake, compression, expansion and exhaust strokes is as shown in FIG.
14
. The range (=195.1 degrees) of the crank angle at the expansion stroke is larger than range (=189.9 degrees) of the crank angle at the intake stroke, and the range (=169.7 degrees) of the crank angle at the exhaust stroke is larger than range (=165.3 degrees) of the crank angle at the compression stroke, and the acceleration of the piston
38
in this case is varied as shown in FIG.
15
.
In this case, when the stroke of the piston
38
at the expansion and exhaust strokes, the stroke of the piston
38
at the intake and compression strokes and the ratio of the volume at the expansion stroke to the volume at the compression stroke are set at the same values in the embodiment shown in
FIGS. 10
to
12
, the largest acceleration (the largest acceleration toward the top dead center) is +3377 m/sec
2
at the time when the expansion stroke changes to the exhaust stroke; the smallest acceleration (the largest acceleration toward the bottom dead center) is −2909 m/sec
2
immediately before the exhaust stroke changes to the intake stroke, as shown in
FIG. 15
, and both (the absolute value of the largest acceleration) and (the absolute value of the smallest acceleration) can be reduced remarkably than those in the embodiment shown in
FIGS. 10
to
12
.
Namely, by setting the range of the crank angle at the expansion and exhaust strokes at which the stroke is larger at a value larger than the range of the crank angle at the intake and compression strokes at which the stroke is smaller, the speed of the piston
38
at each of the strokes can be uniform, and the variation in acceleration of the piston at the bottom dead center after the intake and expansion strokes and the variation in acceleration of the piston at the top dead center after the compression and exhaust strokes can be suppressed, thereby avoiding the degradation of inertia vibration.
In addition, in a fifth embodiment of the present invention, the link mechanism
62
is set so that it is brought into a state shown by a solid line in
FIG. 16
at the top dead center at the expansion stroke, and a state shown by a dashed line in
FIG. 16
at the bottom dead center. Thus, the range of the crank angle at each of the intake, compression, expansion and exhaust strokes is as shown in FIG.
17
. The range of the crank angle at the expansion stroke (=178.2 degrees) is larger than the range of the crank angle at the intake stroke (=177.7 degrees), and the range of the crank angle at the exhaust stroke (=185.3 degrees) is larger than the range of the crank angle at the compression stroke (=178.8 degrees), and the acceleration of the piston
38
in this case is varied as shown in FIG.
18
.
In this case, when the stroke of the piston
38
at the expansion and exhaust strokes, the stroke of the piston
38
at the intake and compression strokes and the ratio of the volume at the expansion stroke to the volume at the compression stroke are set at the same values in the embodiment shown in
FIGS. 10
to
12
and the fourth embodiment, the largest acceleration (the largest acceleration toward the top dead center) is +3798 m/sec
2
at the time when the expansion stroke changes to the exhaust stroke; the smallest acceleration (the largest acceleration toward the bottom dead center) is −2212 m/sec
2
immediately before the exhaust stroke changes to the intake stroke, as shown in
FIG. 18
, and both (the absolute value of the largest acceleration) and (the absolute value of the smallest acceleration) can be reduced remarkably than those in the embodiment shown in
FIGS. 10
to
12
.
Also according to the fifth embodiment, the degradation of inertia vibration can be prevented as in the fourth embodiment.
In the fourth and fifth embodiments, however, the acceleration of the piston
38
can be reduced, but the largest acceleration (the largest acceleration toward the top dead center) and the smallest acceleration (the largest acceleration toward the bottom dead center) are imbalanced between the fourth and fifth embodiments. More specifically, in the fourth embodiment, (the absolute value of the largest acceleration)/(the absolute value of the smallest acceleration) is 1.16, and in the fifth embodiment it is 1.72. To reliably prevent the degradation of inertia vibration, it is desirable that (the absolute value of the largest acceleration)/(the absolute value of the smallest acceleration) is a value near to “1”.
The reason why (the absolute value of the largest acceleration)/(the absolute value of the smallest acceleration) is larger than “1” in the fourth and fifth embodiment is considered to be that in the fourth embodiment, the range of the crank angle at the expansion stroke is 195.1 degrees exceeding 180 degrees, while the range of the crank angle at the exhaust stroke is 169.7 degrees smaller than 180 degrees, and in the fifth embodiment, the range of the crank angle at the exhaust stroke is 185.3 exceeding 180 degrees, while the range of the crank angle at the expansion stroke is 178.2 degrees smaller than 180 degrees.
Therefore, in a sixth embodiment of the present invention, the range of the crank angle at the expansion stroke is set larger than the range of the crank angle at the intake stroke, and the range of the crank angle at the exhaust stroke is set larger than the range of the crank angle at the compression stroke, and in addition, the ranges of the crank angles at the expansion and exhaust strokes are set at values exceeding 180 degrees, respectively.
Namely, the link mechanism
62
is set so that it is brought into a state, for example, shown by a solid line in
FIG. 19
at the top dead center at the expansion stroke and a state, for example, shown by a dashed line in
FIG. 19
at the bottom dead center. Thus, the range of the crank angle at each of the intake, compression, expansion and exhaust strokes is as shown in FIG.
20
. The range of the crank angle at the expansion stroke (=191.2 degrees) is larger than the range of the crank angle at the intake stroke (=168.2 degrees), and the range of the crank angle at the exhaust stroke (=190.2 degrees) is larger than the range of the crank angle at the compression stroke (=170.4 degrees), and the acceleration of the piston
38
in this case is varied as shown in FIG.
21
.
According to the sixth embodiment, the speed of the piston
38
at each of the strokes can be further uniform, and the variation in acceleration of the piston at the bottom dead center after the intake and expansion strokes and the variation in acceleration of the piston at the top dead center after the compression and exhaust strokes can be suppressed more effectively, thereby avoiding the degradation of inertia vibration more effectively.
Namely, when the stroke of the piston
38
at the expansion and exhaust strokes, the stroke of the piston
38
at the intake and compression strokes and the ratio of the volume at the expansion stroke to the volume at the compression stroke are set at the same values in the embodiment shown in
FIGS. 10
to
12
, the largest acceleration (the largest acceleration toward the top dead center) is +2467 m/sec
2
immediately before the expansion stroke changes to the exhaust stroke; the smallest acceleration (the largest acceleration toward the bottom dead center) is −2471 m/sec
2
immediately before the exhaust stroke changes to the intake stroke, as shown in
FIG. 21
, and (the absolute value of the largest acceleration)/(the absolute value of the smallest acceleration) ≈1.0 can be achieved.
To ensure that the range of the crank angle at the expansion stroke is set larger than the range of the crank angle at the intake stroke, and the range of the crank angle at the exhaust stroke is set larger than the range of the crank angle at the compression stroke, and in addition, the ranges of the crank angles at the expansion and exhaust strokes are set at the values exceeding 180 degrees, respectively, the dimensions of the various portions in the link mechanism
62
are set as described below.
As shown in
FIG. 22
, the support shaft
61
is displaced to describe a circular locus having a radius Rp about a point spaced within the x-y plane apart from the axis of the crankshaft
27
by the lengths L
5
and L
6
in the directions of the y-axis and the x-axis, respectively, and when the length R between the axis of the crankshaft
27
and the crankpin
65
is set at 1.0, the length L
1
of the second arm
67
is set in a range of 1.7 to 4.5; the length L
2
of the first arm
66
is set in a range of 0.6 to 5.2; the length L
3
of the control rod
69
is set in a range of 4.3 to 6.9; the length L
5
is set in a ranger of 2.3 to 4.0; the length L
6
is set in a range of 0.00 to 3.35; and the radius Rp is set in a range of 0.25 to 1.80, as well as the angle a formed by the first and second arms
66
,
67
is set in a range of 105 to 180 degrees.
By determining the dimensions of the various portions in the link mechanism
62
, the degradation of inertia vibration can be avoided more effectively, as described in the sixth embodiment.
Although the embodiments of the present invention have been described in detail, it will be understood that the present invention is not limited to the above-described embodiments, and various modifications in design may be made without departing from the spirit and scope of the invention defined in the claims.
For example, the sprockets
85
,
86
and the chain
87
have been used to turn the support shaft
61
in each of the above-described embodiments, but a cog belt or the like may be used.
Claims
- 1. An engine comprising a connecting rod connected at one end to a piston through a piston pin, a first arm turnably connected at one end to the other end of said connecting rod and at the other end to a crankshaft through a crankpin, a second arm integrally connected at one end to the other end of said first arm, a control rod turnably connected at one end to the other end of said second arm, and a movable eccentric shaft mounted between eccentric positions of rotary shafts to which a power reduced at a reduction ratio 1/2 is transmitted from said crankshaft, said movable eccentric shaft being connected to the other end of said control rod, the stroke of said piston at an expansion stroke being larger than that at a compression stroke,wherein when various dimensions are represented as described below in an x-y plane constituted by an x-axis extending through an axis of said crankshaft along a cylinder axis and a y-axis extending through the axis of said crankshaft in a direction perpendicular to the x-axis: a length of said connecting rod is represented by L4; a length of said first arm is represented by L2; a length of said second arm is represented by L1; a length of said control rod is represented by L3; a length from the axis of said crankshaft to axes of said rotary shafts in a direction of the y-axis is represented by L5; a length from the axis of said crankshaft to the axes of said rotary shafts in a direction of the x-axis is represented by L6; an angle formed by said connecting rod with respective to the cylinder axis is represented by φ4; an angle formed by said first and second arm is represented by α; an angle formed by said second arm with the y-axis within the x-y plane is represented by φ1; an angle formed by said control rod with the y-axis is represented by φ3; an angle formed by a straight line connecting the axis of said crankshaft and said crankpin with the x-axis is represented by θ; an angle formed by a straight line connecting the axes of said rotary shafts and the axis of said movable eccentric shaft with the x-axis is represented by θp; a value of the angle θp is represented by γ when the angle θ is “0”; a length between the axis of said crankshaft and said crankpin is represented by R; a length of the straight line connecting the axes of said rotary shafts and the axis of said movable eccentric shaft is represented by Rp; a rotational angular speed of said crankshaft is represented by ω; and a ratio of the rotational speed of said movable eccentric shaft to the rotational speed of said crankshaft is represented by η and the rotational direction thereof is represented by η=+0.5 or η=−0.5, the following equation is established: −L4·sin φ4·dφ4/dt+L2·cos (α+φ1)·dφ1/dt−R·ω·sin θ=0 Whereinφ4=arcsin {L2·cos (α+φ1)+R·sin θ−δ}/L4dφ4/dt=ω·[−L2·sin (α+φ1)·{R·cos (θ−φ3)−η·Rp·cos (θp−φ3)}/{L1·sin (φ1+φ3)}+R·cos θ}]/(L4·cos φ4) φ1=arcsin [(L32−L12−C2−D2)/(2·L1·(C2+D2)}]−arctan (C/D) φ3=arcsin {(R·cos θ−L6−Rp·cos θp+L1·sin φ1)/L3}C=L5+Rp·sin θp−R·sin θD=L6+Rp·cos θp−R·cos θθp=η·θ+γdφ1/dt=ω·{R·cos (θ−φ3)−η·Rp·cos (θp−φ3)}/(L1·sin (φ1+φ3)}and crank angles θ at a top dead center at each of the intake and exhaust strokes and at the top dead center at the compression stroke are determined from said equation, and the length L1 of said second arm; the length L2 of said first arm; the length L3 of said control rod; the length L4 of said connecting rod; the length L5 from the axis of said crankshaft to the axes of said rotary shafts in the direction of the y-axis; the length L6 from the axis of said crankshaft to the axes of said rotary shafts in the direction of the x-axis; the amount δ of offsetting of the cylinder axis from the axis of said crankshaft in the direction of the y-axis; the angle a formed by said first and second arms; the length R between the axis of said crankshaft and said crankpin; the length Rp of the straight line connecting the axes of said rotary shafts and the axis of said movable eccentric shaft and the angle θp when the angle θ is “0”, are determined so that the top dead center at each of the intake and exhaust strokes and the top dead center at the compression stroke are congruous with each other, according to the following equation:X=L4·cos φ4+L2·sin (α+φ1)+R·cos θwhich represents a level X of the piston pin at both said crank angles θ.
- 2. An engine according to claim 1, wherein a locus of movement of said piston pin is determined to be fallen into a range between the x-axis and one of tangent lines parallel to the x-axis and tangent to a locus described at the expansion stroke by a point of connection between said connecting rod and said first arm, which is closest to said x-axis.
- 3. An engine according to claim 1, wherein the range of the crank angle at the expansion stroke is set larger than that at the intake stroke, and the range of the crank angle at the exhaust stroke is set larger than that at the compression stroke.
- 4. An engine according to claim 3, wherein the ranges of the crank angles at the expansion and exhaust strokes are set at values exceeding 180 degrees, respectively.
- 5. An engine according to claim 4, wherein said movable eccentric shaft is mounted on said rotary shafts having the axes disposed at locations spaced within said x-y plane apart from the axis of said crankshaft by the lengths L5 and L6 in the directions of the y-axis and the x-axis, respectively, so that it is displaced from the axes of said rotary shafts by a distance corresponding to a radius Rp, and wherein when the length R between the axis of said crankshaft and said crankpin is set at 1.0, the length L1 of said second arm is set in a range of 1.7 to 4.5; the length L2 of said first arm is set in a range of 0.6 to 5.2; the length L3 of said control rod is set in a range of 4.3 to 6.9; the length L5 between the axis of said crankshaft and said rotary shafts in the direction of the y-axis is set in a ranger of 2.3 to 4.0; the length L6 between the axis of said crankshaft and said rotary shafts in the direction of the x-axis is set in a range of 0.00 to 3.35; and said radius Rp is set in a range of 0.25 to 1.80, as well as the angle α formed by said first and second arms is set in a range of 105 to 180 degrees.
Priority Claims (2)
Number |
Date |
Country |
Kind |
2002-079736 |
Mar 2002 |
JP |
|
2003-050641 |
Feb 2003 |
JP |
|
US Referenced Citations (4)
Number |
Name |
Date |
Kind |
2259176 |
Pitney et al. |
Oct 1941 |
A |
4517931 |
Nelson |
May 1985 |
A |
4917066 |
Freudenstein et al. |
Apr 1990 |
A |
4957069 |
Mederer |
Sep 1990 |
A |
Foreign Referenced Citations (2)
Number |
Date |
Country |
93 13 192 |
Dec 1993 |
DE |
9-228853 |
Sep 1997 |
JP |