This disclosure relates to thermal fabric articles, e.g. for use in garments, home textile articles, such as blankets, and upholstery covers.
Thermal garment layering is considered one of the more effective means for personal insulation available. Active people use it extensively. However, layered garments typically add bulk and can impair a wearer's range of motion. Furthermore, with layered garments, it is often difficult to provide levels of insulation appropriate for all areas of the wearer's body, as different areas of the body have different sensitivities to temperature and different abilities to thermoregulate, e.g., by sweating.
Prior art fabric articles endeavoring to offer regions of differing rates of heat and/or vapor exchange, e.g. as described in U.S. Pat. Nos. 6,332,221 and 5,469,581, typically have numerous seams for joining together multiple different areas and/or layers of the fabric articles, which increase production costs associated with cutting, piecework and sewing, and increase waste. Seams are also prone to failure and can be uncomfortable to, and even chafe the skin of, a wearer.
Similar issues arise in thermal layering of home textile articles, such as blankets and the like, and upholstery covers, e.g. for home furniture, for furniture in the institutional and contract markets, such as for offices, hotels, conference centers, etc., and for seating in transportation vehicles, such as automobiles, trucks, trains, buses, etc.
The present disclosure is based, in part, on development of an engineered thermal fabric that can be used to make single layer engineered thermal articles, including, but not limited to, thermal fabric garments, addressing thermal insulation needs and comfort level, e.g., of active people, using a single layer garment, or a system of single layer garments, formed with a minimal number of seams, and also including home textile articles, such as blankets, throws, and upholstery covers.
In one aspect, the disclosure features a method of forming a unitary fabric element for use in an engineered thermal fabric article having a multiplicity of predetermined discrete regions of contrasting insulative capacity positioned about the article in an arrangement having correlation to insulative requirements of corresponding regions of a user's body, the unitary fabric element defining at least two predetermined, discrete regions of contrasting insulative capacity. The method comprises the steps of: (a) designing a pattern of the predetermined, discrete regions; (b) combining yarn and/or fibers in a continuous web according to the pattern of predetermined, discrete regions, comprising the steps of, in one or more first discrete regions of the fabric element, forming loop yarn to a first pile height, the one or more first discrete regions corresponding to one or more regions of the user's body having first insulative requirements, and in one or more other discrete regions of said fabric element, forming loop yarn to a second pile height different from and relatively greater than the first pile height, the one or more other discrete regions corresponding to one or more regions of the user's body having other insulative requirements different from and relatively greater than the first insulative requirements; (c) incorporating a smart yarn and/or smart fiber into the web, (d) finishing one or both surfaces of the continuous web to form the predetermined, discrete regions into discrete regions of contrasting pile heights; and (e) removing the unitary fabric element from the continuous web according to the pattern of predetermined, discrete regions.
Some implementations include one or more of the following features. The incorporating step includes incorporating smart yarn and/or smart fibers into the web in predetermined, discrete regions that correspond to the regions in which the loop yarn is formed to the first pile height. The incorporating step includes incorporating the smart yarn and/or smart fibers into the web in predetermined, discrete regions that correspond to the regions in which the loop yarn is formed to the second pile height. The incorporating step includes utilizing the smart yarn and/or smart fibers as stitch yarns in the regions in which the loop yarn is formed to the second pile height. The incorporating step includes combining the smart yarn and/or smart fibers into the web as floating yarns in the regions in which the loop yarn is formed to the first pile height. The smart yarn and/or smart fiber comprises a ceramic or a synthetic material embedded with ceramic particles, e.g. zirconium carbide. The smart yarn and/or smart fiber comprises a phase change material. The smart yarn and/or smart fiber comprises a biomimetric material. The designing of a pattern of the predetermined, discrete regions comprises designing of the pattern for use in an engineered thermal fabric garment. The unitary fabric element comprises a silhouette for an engineered thermal fabric garment and the method comprises the further steps of: forming a complementary unitary fabric element with a complementary pattern of predetermined, discrete regions, the complementary unitary fabric element comprising a complementary silhouette for the engineered fabric element; and joining together the unitary fabric element and the complementary unitary fabric element to form the engineered thermal fabric garment. The designing of a pattern of the predetermined, discrete regions comprises designing of the pattern for use in an engineered thermal fabric home textile article. The designing of a pattern of the predetermined, discrete regions comprises designing of the pattern for use in an engineered thermal fabric home textile article in the form of an article selected from the group consisting of: blanket, upholstery cover, mattress cover, mattress ticking, and viscoelastic mattress ticking. The combining yarn and/or fibers in a continuous web comprises combining yarn and/or fibers by tubular circular knitting, reverse plaiting, warp knitting or weaving. The method includes combining the yarn and/or fibers by regular plaiting and finishing one surface of the continuous web to form a single face fleece, or by reverse plaiting and finishing both surfaces of the continuous web to form a double face fleece. The method comprises the further step of incorporating the unitary fabric element in a unitary fabric laminate. Incorporating the unitary fabric element in a unitary fabric laminate comprises the step of laminating the unitary fabric element with a controlled air permeability element. The combining step includes selecting the yarn and/or fibers from the group consisting of: regenerate yarn and/or fibers, polyester yarn and/or fibers, nylon yarn and/or fibers, acrylic yarn and/or fibers, polypropylene yarn and/or fibers, continuous filament flat or textured or spun yarn made of synthetic staple fibers, flame retardant yarn and/or fibers, cotton yarn and/or fibers, and wool yarn and/or fibers. The regenerate yarn and/or fibers is selected from the group consisting of: rayon yarn and/or fibers. The forming loop yarn to the first pile height comprises forming loop yarn with no pile. The forming loop yarn to the first pile height comprises forming loop yarn to a low pile height using a combination of low pile using low sinker and/or shrinkable yarn and no pile. The one or more first discrete regions and the one or more other discrete regions correspond to one or more regions of the wearer's body selected from the group consisting of: spinal cord area, spine, back area, upper back area, lower back area, neck area, back of knee areas, front of chest area, breast area, abdominal area, armpit areas, arm areas, front of elbow areas, sacrum dimple areas, groin area, thigh areas, and shin areas.
In another aspect, the disclosure features a method of forming a unitary fabric element for use in an engineered thermal fabric article having a multiplicity of predetermined discrete regions of contrasting insulative capacity positioned about the article in an arrangement having correlation to insulative requirements of corresponding regions of a user's body, the unitary fabric element defining at least two predetermined, discrete regions of contrasting insulative capacity, the method comprising the steps of: (a) designing a pattern of the predetermined, discrete regions; (b) combining yarn and/or fibers in a continuous web according to the pattern of predetermined, discrete regions, the one or more first discrete regions corresponding to one or more regions of the user's body having first insulative requirements, the fabric element including one or more other discrete regions corresponding to one or more regions of the user's body having other insulative requirements different from the first insulative requirements; (c) finishing one or both surfaces of the continuous web to form areas of raised pile in at least some regions of the fabric element; and (d) removing the unitary fabric element from the continuous web according to the pattern of predetermined, discrete regions. Step (b) comprises, in one or more first discrete regions of the fabric element, incorporating a smart yarn and/or smart fiber into the web, the smart yarn and/or fiber being selected from the group consisting of phase change materials and biomimetric materials.
Some implementations include one or more of the following features. The finishing step includes forming areas of raised pile that correspond to the first discrete regions. The finishing step includes selectively forming the areas of raised pile so that the one or more other discrete regions have lower pile than the first discrete regions or have no pile. The smart yarn and or smart fiber comprises two polymers that have different relative elongations when exposed to heat.
In a further aspect, the disclosure features an engineered thermal fabric article comprising a unitary fabric element, said unitary fabric element having a multiplicity of predetermined discrete regions of contrasting insulative capacity positioned about the article in an arrangement having correlation to insulative requirements of corresponding regions of a user's body, the unitary fabric element defining at least two predetermined, discrete regions of contrasting insulative capacity, comprising, in one or more first discrete regions of the fabric element, loop yarn having a first pile height, the one or more first discrete regions corresponding to one or more regions of the user's body having first insulative requirements, and, in one or more other discrete regions of said fabric element, loop yarn having another pile height different from and relatively greater than the first pile height, the one or more other discrete regions corresponding to one or more regions of the user's body having other insulative requirements different from and relatively greater than the first insulative requirements, at least some of the loop yarn comprising smart fibers and/or yarns.
In a further aspect, the disclosure features an engineered thermal fabric garment system comprising (a) a first engineered thermal fabric garment having a multiplicity of predetermined discrete regions of contrasting insulative capacity positioned about the garment in an arrangement having correlation to the insulative requirements of corresponding regions of a wearer's body, and, (b) overlying the first engineered thermal fabric garment, in a system of overlying engineered thermal fabric garments, at least one second engineered thermal fabric garment having a multiplicity of predetermined discrete regions of contrasting insulative capacity positioned about the garment in an arrangement having correlation to the insulative requirements of corresponding regions of a wearer's body and having correlation to the multiplicity of predetermined discrete regions of contrasting insulative capacity positioned about the first engineered thermal fabric garment in the system. Smart fibers and/or yarns are selectively distributed within at least one of the engineered thermal fabric garments in a manner to provide the regions of contrasting insulative capacity.
The disclosure also features an engineered thermal fabric comprising a plurality of fibers or yarns, including biomimetric fibers or yarns, knitted, woven or plaited to form a fabric body, the fabric body having at least one raised surface.
Some implementations include one or more of the following features. The raised surface is a pile or velour surface. The fabric body has a face and back, and both the face and back have a raised pile surface. The fabric body has a face and back, and both the face and back have a velour surface. The fabric body has a reverse plaited construction. The fabric body has a knitted construction.
In yet another aspect, the invention features an engineered thermal fabric comprising a plurality of fibers or yarns, including fibers or yarns comprising a phase change polymer, knitted, woven or plaited to form a fabric body, the fabric body having at least one raised surface.
The raised surface of the fabric body may include regions of contrasting pile height, and the fibers or yarns that comprise a phase change material may be positioned in regions of relatively higher pile.
The one or more first discrete regions and the one or more other discrete regions discussed herein correspond to one or more regions of a user's body selected from the group consisting of: spinal cord area, spine, back area, upper back area, lower back area, neck area, back of knee areas, front of chest area, breast area, abdominal area, armpit areas, arm areas, front of elbow areas, sacrum dimple areas, groin area, thigh areas, and shin areas, the regions of a user's body being described as follows:
Spine: This area extends along the center of the back covering the entire length and breadth of the chain of 29 vertebrae, from the uppermost vertebra (C1) in the center base of the skull to the lowermost vertebra (S4) in the central lower portion of the hips. Beginning with the uppermost vertebra and working downwards, the groups of vertebrae are as follows; the cervical or “neck” vertebrae (C1-C7 inclusive), the thoracic or “back” vertebrae (T1-T12 inclusive), the lumbar or “small of the back” vertebrae (L1-LS inclusive) and, finally, the sacral or “lower end of the hips” vertebrae (S1-S5 inclusive) (hereinafter referred to as the “spinal cord area”). (The lowermost portion of the spine itself is the coccygeal section of vertebrae (C1-C4 inclusive).
Back: This area extends between the back of the neck and the waist, and hereinafter is referred to as the “back area.” The “upper back area” includes the area including the shoulder blades. The “lower back area” includes the small of the back and the back of the waist.
Front and back of the neck: This area, where there is a relative absence of fat pads, is characterized by a relatively higher concentration of nervous tissue close to the skin surface. It is hereinafter referred to as the “neck area.”
Backs of the knees: This area hereinafter is referred to as the “back of knee areas.”
Front of the chest: This area, where there is a relative absence of fat pads and a relatively higher concentration of nervous tissue close to the skin surface, is hereinafter referred to as the “front of chest area.”
Below the breasts: This area, located just below the breasts and not protected by fat pads, hereinafter is referred to as the “breast area.”
Abdomen: This area, located between the breasts and the waist, hereinafter is referred to as the “abdominal area.”
Armpits: These areas, not protected by fat pads, sweat relatively more and have relatively higher concentrations of lymph glands close to the skin surface. Hereinafter they are referred to as the “armpit areas.”
Arms: These areas, including the entire length of the arm, from shoulder to wrist, i.e., a long sleeve, are hereinafter referred to as the “arm areas.”
Fronts of elbows: These areas are hereinafter referred to as the “front of elbow areas.”
Groin: This area, not protected by fat pads, sweats relatively more, and has reproductive tissues and/or organs and relatively higher concentrations of lymph glands close to the skin surface. It is hereinafter referred to as the “groin area.”
Knees and shins: These areas, not protected by fat pads, hereinafter are referred to as the “shin areas.”
Sacrum dimples: These areas located at the top of the sacrum region are hereinafter referred to as the “sacrum dimple areas.”
A number of advantages are disclosed. For example, the engineered thermal fabric garments can be worn as a single layer that effectively replaces multiple layers of clothing, or multiple thermal fabric garments can be worn in an engineered thermal fabric garment system. The engineered thermal fabric garments allow a user to keep selected regions of the body warm, while allowing other regions of the body to be cooled by evaporation and/or ventilation. For example, selected regions such as the arms, or lower back, can be made to have higher insulative capacity, to keep athletes warm. In some implementations, either the right arm or the left arm may be more insulating, e.g., to keep the throwing arm of a pitcher warm while allowing the rest of the body to be cool. The formation of the garment as complementary single layer elements that are joined together (e.g., as the front and back of the garment) can reduce cutting and sewing costs and fabric wastage, and the smaller number of seams reduces potential failure points and can reduce chafing on the user's skin. Extremely intricate patterns of varying thickness can be achieved, and used to create infinitely varied regions of insulating warmth, range of motion and breatheability in the fabric, e.g., customized for any number of physical activities.
Similar advantages are realized for engineered thermal fabric articles in the form of home textile articles, such as blankets, or in the form of upholstery covers, e.g. for furniture for home, institutional and commercial markets, and for transportation seating. For example, home textile articles can be configured to provide discrete regions of insulation performance in a pattern corresponding to insulation requirements of a user's body. Engineered thermal fabric articles in the form of upholstery covers can be configured to provide discrete regions offering improved breatheability, more ventilation, and less sweat for different regions of a user's body, e.g., regions of a user's back.
Unless other reference is made, all technical and scientific terms used herein have the same meaning as commonly understood by a person of ordinary skill in the art to which this disclosure belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present disclosure, suitable methods and materials are described below. In case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.
Other features and advantages of the disclosure will be apparent from the following detailed description, and from the claims.
Like reference symbols in the various drawings indicate like elements.
Referring to
The fabric includes “smart fibers,” i.e., fibers that react to an environmental stimulus to perform a desired function. Smart fibers include phase change materials, i.e., materials that store and release latent heat; fibers embedded with ceramic particles; and biomimetric fibers that change in three dimensional (3D) configuration to modify the level of thermal insulation.
Phase change fibers are available, for example, from Outlast Technologies, Inc., under the tradename OUTLAST® fibers. These fibers include an organic phase change material embedded in a polymeric matrix.
Suitable ceramic materials include polymeric fibers embedded with zirconium carbide.
Suitable biomimetric fibers include those produced by Mide Technology, Inc., of Medford, Mass., USA. These fibers are formed of two polymers that have different relative elongations when exposed to heat. The temperature that produces a response can be related to ambient temperature (e.g., changes in weather), and/or to heat that builds up in the air-gap between the garment and the skin. Changes in temperature will cause a change in the bulk of the fabric, which will in turn change the degree of thermal insulation of the fabric. In a raised pile fabric, the fibers can change from a first pile height to a second pile height in response to a temperature change, e.g., by becoming more highly crimped, or may change their position, e.g., from generally perpendicular to the plane of the fabric to laying generally flat against the fabric surface. This change in 3D configuration is reversible when the fibers return to the original temperature. Generally, the fibers will be designed to increase the bulk of the fabric under relatively colder conditions and decrease the bulk of the fabric under relatively warmer conditions.
The smart fibers may be utilized in combination with regions of contrasting pile height, described below, in which case they may be selectively positioned in regions of relatively higher pile or relatively lower pile. As an example, if the fibers are capable of storing and slowly releasing heat (e.g., phase change polymers) or of reflecting IR energy (e.g., ceramics), they may be positioned in the regions of relatively higher pile, to further enhance insulation and user comfort. The smart fibers may be provided only in the regions of relatively higher pile, or may be incorporated throughout the web and used as stitch fibers in the regions of relatively higher pile and as float yarns in the areas of relatively lower pile, to minimize the amount of the relatively costly smart fibers in areas that do not require as much insulation.
The raised pile may be on one or both sides of the fabric. If the raised pile is only on one side of the fabric, that side would generally be positioned adjacent the wearer's skin. In conjunction with any of the above smart fibers, the fabric surface may be finished to provide a single or double face velour, a single or double face pile fabric or a pile/velour fabric.
The engineered thermal fabric articles can be produced by any procedure suitable for creating regions with different pile heights and/or regions with no pile, in predetermined designs. Examples of suitable procedures include electronic needle and/or sinker selection, tubular circular or terry loop knit construction, e.g. by reverse plaiting (as described below with respect to
A pattern of contrasting pile height regions, including one or more regions with no loop pile yarn, is knitted, or otherwise formed, in a single layer fabric. Elements of the single layer fabric are then assembled to form an engineered thermal fabric article, e.g., an engineered thermal fabric garment 10, as shown in
During processing, the engineered thermal fabric elements may be dyed, and one or both surfaces finished to form regions of contrasting pile loop height, e.g., by raising one or both surfaces, or by raising one surface and cutting the loops on the opposite surface. The degree of raising will depend on the pile height of the loop pile yarn. For example, the knit can be finished by cutting the high loops, or shearing just the high pile, without raising the low loop pile height and/or the no loop pile height. Alternatively, the knit can be finished by raising the loop surface; the high loop will be raised higher on finishing to generate relatively higher bulk/greater thickness, and thus have relatively increased insulative properties. Regions of contrasting bulk may also be obtained in a reverse circular knit terry construction by knitting two different yarns having significantly different shrinkage performance when exposed to dry or wet heat (e.g., steam or high temperature water) in a predetermined pattern. The very low shrinkage (0-10% shrinkage) yarn may be spun yarn, flat filament yarn or set textured yarn, and the high shrinkage yarn (20-60% shrinkage) may be heat sensitive synthetic yarn in flat yarn (like polypropylene) or high shrinkage polyester or nylon textured filament yarn. According to one implementation, the terry sinker loop yarn is cut on the knitting machine itself, where the velour height of the different yarns is identical, and the fabric is then exposed to high temperature (dry heat or wet heat) during dyeing to generate differences in relative pile height between contrasting regions of the two types of yarn, based on the contrast in shrinkage characteristics. Contrasting pile height may also be achieved by knitting one yarn into loops to be cut to a desired height on the knitting machine or later in the finishing process in combination with a low pile knitted to a zero pile height (e.g., a 0 mm sinker). The engineered thermal fabric articles may also include regions of no loop at all, to provide an additional contrasting level or height of pile (i.e., no pile).
The outer-facing surface (i.e., the technical back loop, or the technical face jersey), where the latter is preferred for single face fabrics) of the engineered thermal fabric garments may also be treated with a resin or chemical binder to form a relatively hard surface for resistance to pilling and/or abrasions, e.g. as described in my pending U.S. patent application Ser. No. 10/700,405, filed Nov. 4, 2003 and my U.S. Provisional Application No. 60/501,110, filed Sep. 9, 2003, the complete disclosures of all of which are incorporated herein by reference.
The pattern of contrasting pile heights, which may be varied to accommodate any predetermined design, can also be optimized for a variety of different physical activities. For example, referring to
In some implementations, in addition to being engineered for controlled insulation, the fabrics described above may be laminated to knit fabrics with velour of at least one pile height, e.g., low, high and/or any combination thereof, or to woven fabrics with or without stretch. Optionally, a membrane may be laminated between the layers of fabric to cause the laminate to be impermeable to wind and liquid water, but breatheable (e.g., a porous hydrophobic or non porous hydrophilic membrane), as in fabric product manufactured by Malden Mills Industries, Inc. and described in U.S. Pat. Nos. 5,204,156; 5,268,212 and 5,364,678, the complete disclosures of all of which are incorporated herein by reference. Alternatively, the laminate may be constructed to provide controlled air permeability (e.g., by providing an intermediate layer in the form of a perforated membrane, a crushed adhesive layer, a foam adhesive layer, or a discontinuous breatheable membrane), as in fabric product manufactured by Malden Mills Industries, Inc. and described in U.S. patent application Ser. Nos. 09/378,344; 09/863,852; 10/341,309 and 10/650,098, the complete disclosures of all of which are incorporated herein by reference.
Referring now to
Referring to FIGS. 8 and 9-15, according to one implementation, a fabric body 12 is formed (in a continuous web) by joining a stitch yarn 42 and a loop yarn 40 in a standard reverse plaiting circular knitting (terry knitting) process, e.g., as described in Knitting Technology, by David J. Spencer (Woodhead Publishing Limited, 2nd edition, 1996). Referring to
As described above, the loop yarn 40 forming the technical back 34 of the knit fabric body 32 can be made of any suitable synthetic or natural material. The cross section and luster of the fibers or filaments can be varied, e.g., as dictated by requirements of intended end use. The loop yarn 40 can be a spun yarn made by any available spinning technique, or a filament flat or textured yarn made by extrusion. The loop yarn denier is typically between 40 denier to 300 denier. A preferred loop yarn is a 200/100 denier T-653 Type flat polyester filament with trilobal cross section, e.g., as available commercially from E.I. duPont de Nemours and Company, Inc., of Wilmington, Del., or 2/100/96 texture yarn to increase tortuosity and reduce air flow, e.g., yarn from UNIFI, Inc., of Greensboro, N.C.
The stitch yarn 42 forming the technical face 36 of the knit fabric body 32 can be also made of any suitable type of synthetic or natural material in a spun yarn or a filament yarn. The denier is typically between 50 denier to 150 denier. A preferred yarn is a 70/34 denier filament textured polyester, e.g., as available commercially from UNIFI, Inc., of Greensboro, N.C. Another preferred yarn is cationic dyeable polyester, such as 70/34 T-81 from duPont, which can be dyed to hues darker or otherwise different from the hue of the loop yarn, to further accentuate a pattern.
In the preferred method, the fabric body 32 is formed by reverse plaiting on a circular knitting machine. This is principally a terry knit, where loops formed by the loop yarn 40 cover or overlie the stitch yarn 42 on the technical face 36 (see
Referring now to
Referring to
Referring once again to
Also, as described above with reference to
Referring to
In contrast, e.g., as demonstrated in
Referring now to
Similarly, referring to
Referring to
Further description is provided by the following examples, which do not limit the scope of the claims.
In an engineered thermal fabric garment, the height of the higher sinker loop pile is about 2.0 mm to 5.0 mm, e.g. the higher loop pile height is typically about 3.5 mm and can be about 5 mm to 6 mm after raising, and the low sinker loop pile is about 0.5 mm to 1.5 mm. Regions with relatively high loop pile generate significantly higher bulk than regions with relatively low loop pile and, as a result, provide higher insulation levels. Regions with no loop pile do not generate any bulk, and subsequently can have very high breatheablity to enhance cooling during high activity, e.g., cooling by heat of evaporation.
In another engineered thermal fabric article, one sinker loop pile yarn is employed with a variety of no loop pile in predetermined patterns and contrasting density to create a large region of no loop pile, e.g., in the neck and armpit areas, for minimum insulation; a region of mixed pile and no loop pile in the abdominal area, for medium insulation; and a region of 100% loop pile in the chest area, for maximum insulation.
In still another engineered thermal fabric garment, high loop pile height with inherent wind breaking (maximum tortuosity) construction is provided in the chest area with high loop pile, the arm pit areas have no loop pile, and regions adjacent to the arm pit areas are provided with relatively lower loop pile height that still provides an enhanced degree of inherent wind breaking and some lesser degree of insulation, e.g., as compared to the higher pile height regions.
In yet another engineered thermal fabric garment, the body of the fabric has high loop pile in an open knit construction, with a section, e.g., in the armpit areas, of very low pile with a region of no loops. This fabric is laminated to a knit construction with velour of at least one pile height, e.g., low, high and/or any combination thereof, and a breatheable membrane (porous hydrophobic or non porous hydrophilic) in between. The segment of no loops and/or low loops has significantly higher MVT (resulting in less resistance to moisture movement).
In still another engineered thermal fabric garment, the body of the fabric is formed by the combination of high loop pile, low loop pile and no loop pile. Regions of the high loop pile that are raised (by napping) or have cut loops generate high levels of insulation in static (at rest) conditions. The low loop pile regions and/or no loop pile regions provide good breatheablity and cooling effect in dynamic conditions, e.g. while running.
In yet another engineered thermal fabric garment, multiple layers of engineered fabric (e.g. first layer, mid layer and outer layer) are combined. In one preferred implementation, the pile height patterns of the layers are the same to create an additive effect. In another implementation, the pile height patterns of varied between layers to develop a synergy between the different layers. In each of these implementations, the technical face 36 (jersey) can be raised by napping, sanding, or brushing to generate velour.
Referring to
In versions of the engineered thermal fiber garment for use in warm weather conditions, relatively larger regions of no loop/no pile in plaited construction are provided under the body armor.
In versions for use in cold weather conditions, relatively large regions of laminate constructed for controlled air permeability with low CFM (or CMM) (e.g., by providing an intermediate layer in the form of a perforated membrane, a crushed adhesive layer, a foam adhesive layer, or a discontinuous breatheable membrane, as described above, for controlled low air permeability with relatively high insulation), and regions of relatively higher CFM (or CMM) and relatively less insulation (less bulk) under the body armor.
Referring to
By way of example only, in the sock 160 seen in
Referring next to
Referring now to
For example, along the lengths of the fingers, regions 182 of high insulation and cushioning may be provided (perhaps with relatively less pile or cushioning in regions 184 at the tips or extremities of the fingers (and thumb), as compared to the regions 182 along the lengths of the fingers (and thumb), for improved dexterity). There may also be different pile heights in the palm region 186 of the glove on the front side and/or on the rear surface region 188 of the hand. In other implementations, e.g. for work gloves, relatively more cushioning made be provided in the region 186 of the face surface of the palm, with less bulk or no bulk, and relatively less cushioning, in the regions 182, 184 of the fingers (and the thumb).
Referring next to
Referring now to
Referring again to
The second (outer) layer 192 of the fabric garment 190 may be provided with anti-microbial properties, e.g. for minimizing undesirable body odors caused by heavy sweating due to high exertion, by applying anti-microbial chemicals to the surface 196 of the fabric 190 or by forming the second (outer) fabric layer 192 with yarn having silver ions embedded in the fibers during the fiber/yarn extrusion process or applied to the surface of the fibers (e.g., as described in U.S. Pat. No. 6,194,332 and U.S. Pat. No. 6,602,811, the complete disclosures of all of which are incorporated herein by reference.). Yarn employed in forming the first (inner) fabric layer 194 may include fibers containing ceramic particles, e.g. ZrC (Zirconium Carbide) in order to enhance body heat reflection from the skin, and to provide better thermal insulation (e.g. as described in the U.S. patent application Ser. No. 09/624,660, filed Jul. 25, 2000, the complete disclosure of which is incorporated herein by reference.).
Engineered thermal fabric garments may be formed using a suitable knitting system for providing two and/or three contrasting pile heights in one integrated knit construction, which can be finished as single face or double face.
For example, in a first system, sinker loops of contrasting pile height may be generated at different, predetermined regions with high loop (about 3.5 mm loop height and 5 to 6 mm after raising), low loop and no loop. In second system, the loop yarn may be cut on the knitting machine, forming regions of high pile height (up to about 20 mm) and no pile. In each system, using circular knitting, a single type of yarn may be employed, or yarns of different characteristics, e.g. contrasting shrinkage, luster, cross section, count, etc., may be employed in different regions.
In the case of loops yarn, e.g. as in the first system, the loops may be left as is (without raising), or the highest loops may be cut (leaving the low loop and no loop as is), or both loops may be napped, in which case both loops will generate velour after shearing at the same pile height, and only after tumbling will pile differentiation be apparent, with generation of shearling in the high loop and small pebble in the low loop.
In the case of contrasting yarns, as in the second system, differentiation in pile height between different regions will be based on the individual yarn characteristics, which will become apparent after exposure to thermal conditions.
Maximum knitting capability for creation of the discrete regions of contrasting characteristics may be provided by use of electronic sinker loop selection, which will generate different loop heights in the knit construction, and electronic needle selection, which will generate different knit constructions of the stitch yarn, such as 100% knit, knit-tuck, knit-welt and knit-tuck-welt, with different aesthetics and contrasting air permeability performance in predetermined regions, with our without sinker loops.
An engineered thermal fabric is formed as described above with a pattern of one or more regions having a first pile height and one or more regions having no pile. The one or more regions of first pile height are formed with two different yarns of significantly different shrinkage performance. For example, the yarn having relatively high shrinkage is made of very fine micro fibers, e.g. 2/70/200 tx, and the yarn having relatively less or no shrinkage is made relatively more coarse and longer fibers, e.g. 212/94 polyester yarn with ribbon shape. When exposed to heat, the fabric forms a textured surface without pattern, resembling animal hair, with long, coarse fibers (like guard hairs) extending upwards from among the short, fine fibers at the surface. This is almost a “pick and pick” construction, or can be termed “stitch and stitch” for knit construction.
In yet another implementation of an engineered thermal fabric article with regions of contrasting insulative capacity and performance arranged by body mapping concepts, an engineered thermal blanket may be tailored to the insulative requirements of different regions of the projected user's body, thus to optimize the comfort level of the person while sleeping. In most cases, the regions of a person's lower legs and feet and a person's arms and shoulders tend to be relatively more susceptible to cold and thus will require a relatively higher level of insulation, e.g. relatively higher pile height and/or higher fiber density, for comfort and sleep, while, in contrast, the region of a person's upper torso and regions of the person's hips and head, especially from the sides, tend to require relatively less insulation.
Referring now to
In another implementation of an engineered thermal blanket, which is simplified for purposes of manufacture, the regions of contrasting insulative capacity and performance are arranged in band form, extending across the blanket. For example, referring to
As described above, the surfaces of the region 354 of the head, arms and shoulders, and the region 352 of the lower torso, legs and feet are plain velour, while the upper band region 356 and intermediate region 360 are low pile. Typically, the yarn and the pile density are maintained constant for all regions, again for simplicity of manufacture. The vertical widths of the respective regions represented in the drawing are by way of example only. Regions of any dimension can be arranged, tailored, e.g., for use by persons of different ages and different genders, etc. and for other factors, such as seasonality, etc.
Referring to
Other engineered thermal fabric garments, home textile articles, such as mattress cover, mattress ticking, viscoelastic mattress ticking, etc., and upholstery covers can be formed with similar application of the described concepts for arranging regions of contrasting insulative capacity in positions having corresponding insulative requirements of a user's body. The arrangements and insulative capacities can be varied with the precise nature and use of the particular garment, home textile article, or upholstery cover, and/or with one or more other factors, e.g. with gender, age, size, season, etc.
Also, the engineered thermal fabric regions can have pile of any desired fiber density and any desired pile height, with the contrast of insulative capacity and performance achieved, e.g., by different pile heights (e.g., using different sinker heights), different pile densities (e.g., using full face velour and velour with pattern of low pile or no pile), and different types of yarns (e.g., using flat yarns with low shrinkage and texture yarns with high shrinkage). Engineered thermal fabric regions of contrasting high pile, low pile, and/or no pile may be generated, e.g., by electronic sinker selection or by resist printing, as described below, and as described in U.S. Provisional Patent Application No. 60/674,535, filed Apr. 25, 2005, the complete disclosure of which is incorporated herein by reference. For example, sinker loops of predetermined regions may be printed with binder material in an engineered body mapping pattern, e.g., to locally resist raising. The surface is then raised in non-coated regions. The result is a fabric having an engineered pattern of raised regions and non-raised regions. The printed regions may be formed of sub-regions of contrasting thermal insulation and breatheability performance characteristics by use of different binder materials, densities of application, penetration, etc., thereby to achieve optimum performance requirements for each sub-region of the engineered printing pattern. Other aesthetic effects may also be applied to the face side and/or to the back side of the engineered thermal fabric, including, e.g., color differentiation and/or patterning on one or both surfaces, including three dimensional effects. Selected regions may be printed, and other regions may be left untreated to be raised while printed regions remain flat, resisting the napping process, for predetermined thermal insulation and/or breatheability performance effects. Also, application of binder material in a predetermined engineered pattern may be synchronized with the regular wet printing process, including in other regions of the fabric body. The wet printing may be applied to fabric articles made, e.g., with electronic sinker loop selection or cut loop (of the pile) of cut loop on the knitting machine and may utilize multiple colors for further aesthetic enhancement. The colors in the wet print may be integrated with the resist print to obtain a three-dimensional print on one or more regions of the fabric, or even over the entire fabric surface. The sizes, shapes and relationships of the respective regions represented in the drawing are by way of example only. Regions of any shape and size can be arranged in any desired pattern, tailored, e.g., for use by persons of different ages and different genders, etc. and for other factors, such as seasonality, etc.
A number of implementations have been described. Nevertheless, it will be understood that various modifications and rearrangements may be made without departing from the spirit and scope of this disclosure. For example, any suitable type of yarn or yarn material may be employed. Also, as described above, engineered fabrics may be used advantageously in numerous other applications beyond those described above.
Also as described above, engineered fabrics may be used advantageously in military applications, e.g., in garments worn under protective body armor. Engineered fabrics may also be used advantageously for first layer garments, i.e. long and short underwear, in particular for applications where effective movement of liquid sweat from the garment inner surface (against the wearer's skin) to the garment outer surface is a concern for reasons of improved wearer comfort. In these applications, the fabric may be formed with plaited construction, e.g. plaited jersey or double knit construction, e.g. as described in U.S. Pat. Nos. 6,194,322 and 5,312,667, the complete disclosures of all of which are incorporated herein by reference, with a denier gradient, i.e. relatively finer dpf on the outer surface of the fabric and relatively more coarse dpf on the inner surface of the fabric, for better management of water (liquid sweat). In preferred implementations, one or more regions will be formed with full mesh, i.e. see through holes, for maximum ventilation, and contrasting regions of full face plaited yarn for movement of moisture, with intermediate regions in other areas of the garment having relatively lesser concentrations of mesh openings, the regions positioned to correlate with ventilation requirements of the wearer's underlying body.
Multiple layers of engineered thermal fabric garments, e.g. underwear (first layer), insulation layer (mid layer), and outerwear (protection layer) may be worn in combination, with the engineered fabrics working together in synergy for comfort of the wearer.
Accordingly, other implementations of the disclosure are within the scope of the following claims.
This application claims benefit from U.S. Provisional Patent Application No. 60/682,695, filed May 19, 2005, now pending, the complete disclosure of which is incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
3607591 | Hansen | Sep 1971 | A |
3856598 | Gregorian et al. | Dec 1974 | A |
4418451 | Crenshaw | Dec 1983 | A |
4756958 | Bryant et al. | Jul 1988 | A |
4851291 | Vigo et al. | Jul 1989 | A |
4871615 | Vigo et al. | Oct 1989 | A |
5204156 | Lumb et al. | Apr 1993 | A |
5268212 | Lumb et al. | Dec 1993 | A |
5312667 | Lumb et al. | May 1994 | A |
5364678 | Lumb et al. | Nov 1994 | A |
5366801 | Bryant et al. | Nov 1994 | A |
5469581 | Uthoff | Nov 1995 | A |
5885475 | Salyer | Mar 1999 | A |
5906877 | Popper et al. | May 1999 | A |
6004662 | Buckley | Dec 1999 | A |
6041437 | Barker et al. | Mar 2000 | A |
6125645 | Horn | Oct 2000 | A |
6179879 | Robinson et al. | Jan 2001 | B1 |
6194322 | Lilleland et al. | Feb 2001 | B1 |
6194332 | Rock et al. | Feb 2001 | B1 |
6263511 | Moretti | Jul 2001 | B1 |
6312784 | Russell et al. | Nov 2001 | B2 |
6332221 | Gracey | Dec 2001 | B1 |
6381482 | Jayaraman et al. | Apr 2002 | B1 |
6602811 | Rock et al. | Aug 2003 | B1 |
6674535 | Kim | Jan 2004 | B1 |
6689466 | Hartmann | Feb 2004 | B2 |
6793856 | Hartmann et al. | Sep 2004 | B2 |
6855410 | Buckley | Feb 2005 | B2 |
6855422 | Magill et al. | Feb 2005 | B2 |
6881219 | Agarwal et al. | Apr 2005 | B1 |
7027699 | Tao et al. | Apr 2006 | B2 |
20040045143 | Rock et al. | Mar 2004 | A1 |
Number | Date | Country | |
---|---|---|---|
20060277950 A1 | Dec 2006 | US |
Number | Date | Country | |
---|---|---|---|
60682695 | May 2005 | US |