The present invention is directed to construction materials, and more particularly, to structural members, such as joists, posts and beams, as well as methods of manufacturing the same.
Use of engineered materials, such as wood composites and various plastics, including recyclable thermoplastic, such as high-density polyethylene (HDPE), is becoming increasingly popular in the construction industry. These uses encompass various horizontal and vertical applications that meet a range of present decorative and/or structural construction needs.
Structural members, such as joists, beams and the like, are currently available as wood lumber, a valuable yet limited resource with no recycling capability, as plastic lumber, and as reinforced or composite lumber. Composites often include wood fiber or fiberglass in a plastic matrix, or wood composites such as I-joist products having oriented strand board with micro-laminated top and bottom flanges.
Wood-containing products generally are sensitive to environmental conditions, such as the effect of moisture. Such sensitivity must be accounted for during design, installation and use. There are various recyclable thermoplastic products available which are generally less sensitive to environmental conditions, specifically to the effect of moisture, than wood and composite products. Design benefits follow accordingly.
HDPE resins are used in a variety of blow molding, rotational molding, and extruded applications for liquid food containers, automotive fuel tanks, and large volume drums. HDPE is widely known as the material of choice for recyclable milk containers. It is also widely used for pipelines for water or other solution distribution systems, and for liners for landfills, water, or other solution holding ponds.
U.S. Plastic Lumber Corporation provides a fiberglass reinforced HDPE product that is available in sizes and shapes of standard lumber. These plastic lumber products are typically heavy and contain fiberglass fibers that can quickly dull saw blades and drill bits of construction equipment used to size the materials. Other known HDPE I-joists contain hollow cores with wide flanges that are not conducive to easy cutting-to-dimension with standard construction tools, nor fit with standard fasteners.
Accordingly, there is a need for structural members, including joists, beams, posts and the like, that are preferably made of a weather-resistant recyclable material and that provide adequate structural performance while not being too heavy or large for practical use. In addition, there is a need for providing reinforced structural members that provide adequate structural performance and that can be worked with standard construction equipment without unduly dulling cutting blades and drill bits. There is a further need for such members to be available in either standard and custom sizes and ratings, on demand or as needed, and with the possibility of working the engineering tradeoff between strength and weight in use of engineered materials, such as HDPE.
One aspect of the present invention relates to load-bearing systems, and methods of manufacture, that provide structurally functional, load-bearing assemblies. Embodiments of the invention include, but are not limited to, thermoplastic structural materials such as HDPE or polypropylene (PP) in a form that is reinforced with a rigidifying portion, such as an aluminum, aluminum alloy, carbon fiber core, glass-reinforced polyurethane, or other material.
More specifically, novel structural members may include various joists, beams, posts and the like, having sufficient strength and deflection characteristics for use in structural applications, such as framing, for decking and the like. Such structural members are comparatively lighter in weight as compared to currently available fiber-reinforced plastic lumber products and are more weather-resistant compared to wood and wood-composite products.
An illustrative I-joist product in one aspect of the present invention defines a vertical center member preferably including HDPE or PP, and top and bottom flanges interconnected to the vertical center member, also including HDPE or PP. The HDPE or PP provides a relatively hard, durable, substantially weather-resistant structure. The flanges form a system having structural vigor and enable the HDPE/PP-based system to provide sufficient strength, construction flexibility, and true alignment (i.e., true to specification).
In accordance with other embodiments of the present invention, such I-joists are provided that adequately support loads for indoor and/or outdoor decking, flooring, and other support systems. Webbing may be formed with or as a rigid member and may be combined with top and bottom flanges of a relatively hard, durable, flexible, and substantially weather-proof material. Preferred materials include either virgin and/or recycled HDPE or polypropylene (PP), surrounding a suitable rigidizing core component, such as of an aluminum alloy, carbon fiber, or glass-reinforced polyurethane. Use of recyclable material, such as HDPE, enables cut waste to be recycled. This recycling meets and adheres to current “Green Build” objectives, and is environmentally proactive. Therefore, the present invention not only achieves the design criteria required for support, but also provides a framework suitable for re-use of components in the future.
In various embodiments, webbing and top and bottom flanges of I-joists are manufactured with various dimensions and characteristics and with various materials to achieve maximum transfer of loading with minimal to no vertical or horizontal movement of the finished joist, as specified, while standard construction tools can be used to cut the product to desired dimensions.
Preferably, the load-bearing members, for example, the top and bottom flanges of an I-joist, contain a strengthening reinforcing member or core material or other channel or flange reinforcing members so as to stabilize the member and to assist in load-bearing. Thus, depending on load requirements, either or both the top and/or bottom flanges of an I-joist of the invention may contain one or more of various reinforcing members, which may include aluminum or other alloys, or other materials such as carbon fiber, or glass-reinforced polyurethane (foamed or unfoamed), and may include rods, C- and/or M-shaped channels, channels with center slot, or other configurations, for supplying a desired structural reinforcement.
Load-bearing HDPE embodiments of the present invention weather exceptionally well and do not absorb moisture. Therefore the present invention may be freely utilized for both indoor and outdoor support structures.
In various embodiments, vertical and/or horizontal support members of the invention may replace wood and/or composite material members, and may have hollow or solid cores depending upon the application and need, while also being configurable in custom and/or standard sizes. For example, boards, studs, posts and beams can be provided as standard 2×4, 4×4, 6×6 (values in inches) sized lumber, and joists, rim joists, and beams can be provided as standard 2×8, 2×10, 2×12 sized lumber, while engineered I-joists can be provided as standard sized 9½ or 11⅞ members with 2 1/16 flanges. It is advantageous that such standard sizes will enable use of conventional fasteners and other hanging hardware.
In several embodiments of the invention, structural members are configured to meet given design specifications, which may be custom or customary specifications. Structural configuration and use may be anticipated accordingly during the manufacture process, or can be adjusted before installation by selection or by adding strengthening components.
Joists according to the invention therefore may be supplied having specifications that enable center-to-center spacing selected according to project needs and design specifications while still providing substantially straight and true structural framing. These structural members can be delivered to specification without the need for trimming and truing as per wood lumber, and with minimal cutting but for length adjustments, if needed. This flexibility and reliability is uncommon to lumber products.
Another aspect of the present invention may also include an extrusion process for extruding load members, and further provides a dual extrusion process wherein a reinforcing member, such as an aluminum alloy or glass-reinforced polyurethane is extruded with a specified shape, cooled, prepared for receipt of the HPDE, and the HDPE is then extruded around the reinforcing member, with an option of also within the reinforcing member, and then cooled, all within a continuous process, to form a structural assembly or member of the invention. For a glass-reinforced polyurethane core, liquid or molten glass is added to the tooling downstream of the extruded polyurethane to blend the two materials together. This blended material comprises the reinforcing member or core structure of various structural members as described herein, and, for example, can serve as metal alloy core replacement. The glass-reinforced polyurethane is then fed through a cross-head die to the surrounding thermoplastic, comprising, for example, HDPE or PPE, with or without fillers of calcium carbonate or talc. During the manufacturing process, the glass-reinforced polyurethane may be foamed, such as by air entrainment, to provide a lighter weight reinforcing member. In certain embodiments of the invention, the extruded aluminum, other alloy component, glass-reinforced polyurethane, or carbon fiber reinforcing member may comprise an outer surface that includes a configuration for enhanced bonding between itself and the HDPE. This may include scarification of the surface, apertures in the surface, application of bonding tape, provision of ribs or other non-flat surface features, or the like, to provide a bonding and adhesion surface for the HDPE. Improved bonding between the aluminum and HDPE can improve the load bearing rating of the final product. Although still available, scarification may not be necessary for certain core materials, such as glass-reinforced polyurethane.
For at least one embodiment of the present invention having a reinforcing member with a plurality of arms, the reinforcing member is shaped such that with embedding of the reinforcing member, the reinforcing member can produce a mechanical bond with the HDPE or other surrounding material. The reinforcing member may comprise apertures or ribbing to aid in developing a sufficient mechanical bond between the HDPE and the reinforcing member, thereby removing the need for adhesive bonding or scarification of the reinforcing member, although adhesive bonding of the reinforcing member to the HDPE, and/or scarification of the surface of the reinforcing member are also optional.
The extrusion process can be enabled to provide various lengths of product as desired, thereby maximizing shipping efficiency. Typically, 60 foot lengths would optimally fill a rail car load, while 40 foot lengths would be desired for a trailer truck load.
Thus, in accordance with various embodiments of the present invention, a structural joist adapted for use in a building structure is provided, the joist comprising a substantially solid vertical center member comprising a thermoplastic material and having a longitudinal axis, and a top flange and a bottom flange interconnected to said vertical center member and extending substantially the entire length of the longitudinal axis, the top flange and the bottom flange comprising a thermoplastic material. In addition, the joist comprises an outer top flange interconnected to the top flange and extending substantially an entire length of the longitudinal axis, and an outer bottom flange interconnected to the bottom flange and extending substantially the entire length of the longitudinal axis. In addition, the joist comprises a metallic non-planar channel member operatively associated with at least one of the top flange, the bottom flange, the outer top flange, or the outer bottom flange, the channel member extending substantially the entire length of the longitudinal axis.
Further embodiments of the present invention also include a joist with outer flanges, with an optional channel member. Thus, in accordance with embodiments of the present invention, an I-joist adapted for use in a building structure is provide, the I-joist comprising an intermediate member having a longitudinal axis and a top flange and a bottom flange, an outer top flange interconnected to the top flange and extending substantially an entire length of the longitudinal axis, and an outer bottom flange interconnected to the bottom flange and extending substantially the entire length of the longitudinal axis.
At least one method of manufacturing a joist having outer flanges is provided herein, the method of manufacturing a joist comprising providing a vertical center member having a top flange and a bottom flange, providing an outer top flange have a receptacle for receiving the top flange, providing an outer bottom flange have a receptacle for receiving the bottom flange, positioning the top flange in the receptacle of outer top flange, and positioning the bottom flange in the receptacle of outer bottom flange. A reinforcing channel member may also be added as part of the method of manufacturing.
Various embodiments of the present invention may also include joists without outer flanges. Thus, in accordance with embodiments of the present invention, a structural joist is provided comprising a vertical center member, a top flange and a bottom flange connected to the vertical center member, and a reinforcing member substantially embedded within at least one of the top flange and the bottom flange, the reinforcing member extending along substantially an entire length of a longitudinal axis of the at least one of the top flange and the bottom flange, wherein a strength of the structural joist is increased.
Other embodiments of the present invention may include a reinforcing member used in various structures, such as post and joists, wherein the reinforcing member includes a plurality of arms. Thus in accordance with embodiments of the present invention, a structural member is provided, the member comprising a thermoplastic outer member having a longitudinal length; and at least one reinforcing member located within the thermoplastic outer member and extending substantially along the longitudinal length of the thermoplastic outer member, the reinforcing member comprising a plurality of arms.
In accordance with another embodiment of the invention, an I-joist is provided comprising a webbing having a longitudinal length and a top flange connected proximate a first end of the webbing and a bottom flange connected proximate a second end of the webbing, wherein the top and bottom flanges extend along the longitudinal length and at least one reinforcing member is located within at least one of the top flange and the bottom flange. The reinforcing member extends substantially along the longitudinal length, and the reinforcing member comprises a plurality of arms having at least one of a rib and a ridge between at least two of the plurality of arms. In accordance with at least one embodiment of the present invention, the at least one rib and ridge comprise a surface having at least one of a divot, a protrusion, an indentation, a scarification, and a texturing. In addition, in at least one embodiment of the invention, the at least one rib and ridge comprise a surface having a scarification, wherein the scarification comprises at least one scrape mark applied by a scraping tool.
Another embodiment of the present invention may also include an I-joist, wherein the I-joist comprises a webbing having a longitudinal length, with a top flange connected proximate a first end of the webbing and a bottom flange connected proximate a second end of the webbing, and wherein the top and bottom flanges extend along the longitudinal length. In addition, the I-joist includes at least one reinforcing member located within at least one of the top flange and the bottom flange, the reinforcing member extending substantially along the longitudinal length, and the reinforcing member comprising a plurality of arms.
Embodiments of the present invention include reinforcing members with features for mechanically bonding the outer thermoplastic material to the inner reinforcing member. Thus, in one embodiment of the invention, an I-joist is provided, the I-joist comprising:
a webbing having a longitudinal length, wherein at least a portion of the webbing comprises a thermoplastic material;
a top flange connected to the webbing at a first end of the webbing and a bottom flange connected to the webbing at a second end of the webbing, the top and bottom flanges extending along the longitudinal length, wherein at least a portion of the top and bottom flanges comprises the thermoplastic material; and
at least one reinforcing member located within at least one of the top flange and the bottom flange, the reinforcing member extending substantially along the longitudinal length, the reinforcing member comprising a first area and a second area, wherein the first area is axially positioned further from the webbing than the second area, wherein a saddle area of the reinforcing member is located between the first area and the second area, wherein the thermoplastic material surrounds the reinforcing member and resides within the saddle area. In accordance with at least one embodiment of the present invention, the thermoplastic material within the saddle area is under a compressive load from the first and second areas after loading the I-joist. In accordance with at least one embodiment of the present invention, each of the first and second areas comprise at least two arms. In accordance with at least one embodiment of the present invention, at least one of the two arms comprises at least a first indentation. In accordance with at least one embodiment of the present invention, each of the two arms comprise a first exterior surface transverse to a second exterior surface. In accordance with at least one embodiment of the present invention, each of the first and second exterior surfaces comprise at least a first indentation. In accordance with at least one embodiment of the present invention, each of the first indentions comprises a debossed area. In accordance with at least one embodiment of the present invention, each the first indentions is longitudinally spaced apart from second indentations, wherein a non-indented portion of the exterior surface extends between the longitudinally spaced apart first and second indentations. In accordance with at least one embodiment of the present invention, at least one of the first and second areas comprises at least one hollow area. In accordance with at least one embodiment of the present invention, the webbing and the top and bottom flanges are manufactured as an integral unit. In accordance with at least one embodiment of the present invention, the webbing and at least one of the top flange and the bottom flange are interconnected by welding at least one of the top flange and the bottom flange to the webbing. In accordance with at least one embodiment of the present invention, at least a portion of the thermoplastic material is thermo-foamed. In accordance with at least one embodiment of the present invention, no adhesive is used to bond the thermoplastic material to the reinforcing member.
Another embodiment of the present invention is directed to a structural member that uses glass-reinforced polyurethane. Thus, a structural member is provided, comprising: a reinforcing member comprising a glass-reinforced polyurethane; and a thermoplastic material extending laterally around and contacting an exterior surface of the reinforcing member. In accordance with embodiments of the present invention, the glass-reinforced polyurethane may be foamed or unfoamed. In accordance with embodiments of the present invention, the reinforcing member may be hollow or not hollow. In accordance with embodiments of the present invention, the reinforcing member comprises a plurality of arms. In accordance with embodiments of the present invention, the plurality of arms includes a first arm aligned substantially opposite a third arm, and a second arm aligned substantially opposite a fourth arm, and wherein a first angle between the first arm and second arm is less than a second angle between the first arm and the fourth arm. In another embodiment, the first angle between the first arm and second arm is greater than a second angle between the first arm and the fourth arm. In accordance with embodiments of the present invention, at least two arms of the plurality of arms are separated by a saddle area, wherein an exterior surface of the reinforcing member includes at least one bend, the bend transitioning between a straight portion of the exterior surface and a saddle portion of the exterior surface, wherein the straight portion is substantially parallel to a planar exterior surface of the structural member, and wherein said bend is greater than about 90 degrees and less than about 180 degrees. In accordance with embodiments of the present invention, the reinforcing member comprises a plurality of lobes and saddle areas. In accordance with embodiments of the present invention, the reinforcing member comprises a plurality of interconnected cells, the cells including at least one of a lobe and a saddle area. In accordance with embodiments of the present invention, the structural member is selected from the group consisting of a beam, a post, a pylon, a column, an I-joist, a rim joist, a stringer, a ledger, and at least a portion of a truss.
Another embodiment of the present invention is directed to a structural member, comprising:
a reinforcing member comprising a plurality of arms, wherein at least two of the arms are separated by a saddle area, wherein an exterior surface of the reinforcing member includes at least one bend, the bend transitioning between a straight portion of the exterior surface and a saddle portion of the exterior surface, wherein the straight portion is substantially parallel to a planar exterior surface of the structural member, and wherein said bend is greater than about 90 degrees and less than about 180 degrees; and
a thermoplastic material extending laterally around and contacting an exterior surface of the reinforcing member.
Embodiments of the present invention also include structural members having reinforcing members that are subdivided. Thus, in one aspect of the invention, a structural member is provided, the structural member comprising: a reinforcing member comprising a plurality of interconnected cells, the cells including at least one of a lobe and a saddle area; and a thermoplastic material surrounding at least a portion of the reinforcing member. In accordance with embodiments of the present invention, the structural member may be a beam, a post, a pylon, a column, an I-joist, a rim joist, a stringer, a ledger, and at least a portion of a truss.
Embodiments of the present invention also include structural members having a plurality of reinforcing members that are subdivided. Thus, in one aspect of the invention, a structural member is provided, the structural member comprising: a plurality of reinforcing members wherein the reinforcing members comprise a plurality of interconnected cells, the cells including at least one of a lobe and a saddle area; and a thermoplastic material surrounding at least a portion of the reinforcing members. In accordance with embodiments of the present invention, the structural member may be a beam, a post, a pylon, a column, an I-joist, a rim joist, a stringer, a ledger, and at least a portion of a truss.
Among other embodiments of the present invention described herein, an additional method of manufacture is provided for manufacturing a structural support member having a rated deflection loading. The method comprises preparing a structural reinforcing member of at least length L for bonded integration into a structural support member of at least length L, and forming a structural support member preform by feeding the structural reinforcing member into a thermoplastic extruder and extruding the structural reinforcing member with a thermoplastic, wherein the thermoplastic is bonded to the surface of the structural reinforcing member along the length of at least L. In addition, the method comprises controlled cooling of the extrusion-formed structural support member preform wherein the thermoplastic is bonded to the structural reinforcing member along the length of at least L and wherein the bonded thermoplastic and structural reinforcing member share the loading of the structural support member without separating along the at least length L when the structural support member is loaded to the rated deflection loading.
Various embodiments of the present invention are set forth in the attached figures and in the detailed description of the invention as provided herein and as embodied by the claims. It should be understood, however, that this Summary Of The Invention may not contain all of the aspects and embodiments of the present invention, is not meant to be limiting or restrictive in any manner, and that Invention as disclosed herein is and will be understood by those of ordinary skill in the art to encompass obvious improvements and modifications thereto.
Additional advantages of the present invention will become readily apparent from the following discussion, particularly when taken together with the accompanying drawings.
Various advantages and benefits of the present invention will be better understood when considered in conjunction with the following detailed description, making reference to the drawings that are not necessarily to scale unless noted, wherein:
Referring now to
As part of a typical I-joist, webbing 14 interacts as a load-bearing member with load-bearing upper and lower flanges 18, 22. In one embodiment, web member 13 includes webbing 14, upper flange 18 and lower flange 22 formed of a relatively hard, durable, flexible, and substantially weather-proof material, including but not limited to thermoplastics, such as HDPE or polypropylene (PP), and/or thermoplastic composite materials, such as HDPE or PP with additives such as, for example, natural or man-made fibers or particles of various materials/compositions, including but not limited to wood particles and/or fiberglass strands. Preferably web member 13 is extruded.
I-joist 10 also includes an upper outer flange 26 that is interconnected to upper flange 18 to form upper flange assembly 27 and a lower outer flange 30 that is interconnected to lower flange 22 to from lower flange assembly 29. Provision of these flange assemblies 27, 29 increases the rigidity and load-bearing capability of joist 10.
Typically, upper flange 18 and lower flange 22 are similar in cross-section but they may be dissimilar according to design specifications as needed. Likewise, typically outer upper flange 26 and outer lower flange 30 are similar in cross-section but they may be dissimilar according to design specifications as needed.
Alternatively webbing 14, upper flange 18, and lower flange 22 are not integrally formed and may be separately manufactured and then interconnected. For separately extruded parts, interconnection may be by extrusion welding or the like, thus to form web member 14.
As will be appreciated by those skilled in the art, and in accordance with embodiments of the present invention directed to manufacturing I-joists and/or other structural members of the present invention, the P-WAVE™ technology of Kubota Research Associates, Inc. may have application for joining such components of the structures described herein, such as joining the webbing to the top and bottom flanges of an I-joist. The P-WAVE™ technology of Kubota Research Associates, Inc. includes the use of infrared welding to join plastic parts together. Alternatively, in at least one embodiment, the thermoplastic portion of the entire I-joist is extruded around the reinforcing member(s), wherein the top and bottom flanges along with the webbing are formed as an integral piece.
Outer flanges 26 and 30 may be formed over upper flange 18 and lower flange 22, respectively, in an integrated manufacturing process or may be separately formed and then mated (e.g., slid) in place and then interconnected, such as by extrusion welding or the like. One advantage of separate components is that a single supply can be used for both outer flanges for an I-joist with symmetrical cross-section, which may provide some cost savings. Alternatively, each component may be separately specified, to provide specialized configurations, as needed, without having to interrupt regular extrusion production runs. Such flexibility enables meeting various architectural and custom design goals while providing some cost savings.
Referring again to
Likewise, lower flange 22 and webbing 14 form a key 42, and lower outer flange 30 includes receptacle 46 that internally substantially corresponds in shape to the external shape of key 42. Receptacle and key pairs 34, 38 and 46, 42, as cooperating locking components, form locking mechanisms 39 and 43, respectively.
Locking mechanism 39 enables flanges 18 and 26 to be intimately mated and structurally sound. Likewise, locking mechanism 43 enables flanges 22 and 30 to be intimately mated and structurally sound.
Outer flanges 26 and 30 preferably feature material characteristics that generally complement the structural characteristics of I-joist 10. In accordance with preferred embodiments of the present invention, outer flanges 26 and 30 include HDPE material.
Webbing 14 is preferably solid, but may be a lattice, slotted or otherwise apertured, depending on the surrounding application environment, needs of the construction project, load-bearing specifications, and overall construction objectives, and may be formed of various suitable load-bearing materials, such as HDPE, aluminum or the like.
Referring now to
By way of example and not limitation, channel reinforcing member 64, 65 have a substantially rectangular shape with an opening 68 along one side. The shape of each channel reinforcing member 64, 65 allows it to be engaged or slid over upper flange 18 and lower flange 22, respectively, prior to, or in combination with interconnecting with outer flanges 26 and 30. Preferably, channel reinforcing members 64, 65 include a metal alloy, as for example, an aluminum alloy, with the thickness of the sidewalls of each channel reinforcing member being selected based on intended use and designed loading of I-joist 60. Channel reinforcing members 64, 65 preferably extend substantially the entire longitudinal length L of I-joist 60.
Referring now to
Preferred embodiments of the invention include structural members formed with HDPE and a reinforcing member that acts as a strengthened core for the HDPE. The HDPE is preferably without cellular fiber content, such as wood fiber, and at least to the extent that any such content should not seriously impact resistance to moisture of the resulting structural member. Also preferably, the HDPE is without mineral fiber content, such as fiberglass, to the extent that the ability of the structural member can remain easily cut and/or drilled without tool damage. However, unless otherwise specified, any thermoplastic and/or thermoplastic composite materials are collectively herein referred to as simply “HDPE” or “thermoplastic,” and it is to be understood that reference herein to “HDPE” and “thermoplastic” includes other possible thermoplastics other than HDPE, such as, but not limited to, polypropylene (PP), as well as blends, composite/amended thermoplastic materials, and/or coated thermoplastic members, and further includes substantially virgin or recycled HDPE. Furthermore, other materials other than thermoplastics are within the scope of the invention. Thus, a structural member, such as an I-joist, that utilizes a non-thermoplastic (non-HDPE) material to form its flanges and/or webbing, is within the scope of the present invention.
In alternative embodiments of the invention, I-joist 70 is formed with a structure of HDPE, wherein either the webbing 14 and/or any of the flanges, include one or more reinforcing or strengthening members. A strengthening member 75 is indicated by dotted detail in
Referring now to
The presence of flange reinforcing members 86, 87 improves the structural performance of the I-joist, and allows the I-joist to provide adequate load carrying capacity with tolerable deflection, while maintaining a relatively small profile. Preferably, the flange reinforcing members include a metal or metal alloy, as for example, an aluminum alloy, with the dimensions and thickness of the sidewalls of the flange reinforcing members being capable of being customized and selected based on intended use of the I-joist. The reinforcing members may also include or comprise carbon fiber and/or glass-reinforced polyurethane. The use of an aluminum alloy material as compared to steel as a flange reinforcing member can enable a lighter weight I-joist and can enable the I-joist to be cut relatively easily using standard construction equipment. That is, an aluminum alloy provides attractive reinforcing characteristics, while at the same time not unduly dulling cutting blades of saws that are used to dimension to length the I-joist. Carbon fiber provides yet a lighter weight I-joist, but would potentially require the use of diamond-bit blades for successful repeated cutting and dimensioning the I-joist. Glass-reinforced polyurethane provides another option for the reinforcing material.
In accordance with embodiments of the present invention, flange reinforcing members 86, 87 are encased within flanges 74, 78, wherein the material forming the flange completely surrounds the longitudinal sides of the reinforcing member. Flange reinforcing members preferably extend substantially the entire longitudinal length L of the I-joist.
Flange reinforcing members may take on a variety of shapes. Referring again to
Corrugated reinforcing member 90, 91 may include sharper or wider angles as compared to the example structure shown in
Referring now to
Referring now to
In the illustration of
As shown in
As shown in
In accordance with preferred embodiments of the present invention, each of the enclosed flange reinforcing members is situated within upper flange 74 or lower flange 78, wherein the material forming upper flange 74 or lower flange 78 completely surrounds the sides of each enclosed flange reinforcing members. Preferably, I-joist 106 includes an HDPE material that forms the upper and lower flanges, while the HDPE material completely surrounds each longitudinal side of the enclosed flange reinforcing members.
Referring now to
Referring now to
In accordance with embodiments of the present invention, I-joists may include an upper flange having a reinforcing member, such as a corrugated reinforcing member 90, and the lower flange may having a different type of reinforcing member, such as an enclosed flange reinforcing member 110. Accordingly, it is within the scope of the present invention that the upper and lower flanges may include different types of reinforcing members. Such configurations may be advantageous for certain design considerations, such as where the upper and lower flanges will experience different amounts and/or modes of loading.
Referring now to
It will be appreciated by those skilled in the art that conventional wood or composite I-joists that are constructed by gluing the top and bottom flanges to the vertical center member are not weather-resistant, unlike HDPE weather-resistant embodiments of the present invention. An additional benefit of the present invention is that the configuration can be a plain or true I-system or a custom I-system.
Such custom configuration may include strengtheners or deflection-reducing elements, such as having gussets 118 supporting webbing and/or the upper and lower flanges, or having one or more pins 136 mating the HDPE overlay and the reinforcing core, so as to further strengthen the resulting structural members.
Referring now to
Alternatively, vertical reinforcing members 126 may be positioned between the bottom of upper flange 18 and the top of lower flange 22, extending through the outer upper flange 26 and outer lower flange 30. Alternatively, for I-joists not having an outer upper flange 26 or an outer lower flange 30, vertical reinforcing members 126 may be placed between upper flange 74 and lower flange 78, as for example, in I-joists 70, 82, 106, and 106′ described above.
Referring now to
Redwood and treated hemlock/fir are often used for outside decking material because of their ability to withstand weathering better than other lumber products. Load to deflection tests have been conducted using I-joists according to the invention versus wood product that would be replaced therewith. Such testing demonstrated better performance of an I-joist of the present invention as against redwood and treated hemlock/fir. Therefore it will be appreciated that the present invention provides easy to configure and weather-resistant structural members with excellent load-bearing characteristics that enables improved load-bearing systems for a wide variety of applications.
Referring now to
Support members 200 include a core reinforcing member surrounded by a thermoplastic material, such as HDPE. The core reinforcing members are stiff or rigid and preferably hollow, and may be formed of a metal or metal alloy, such as an aluminum alloy, or may also be formed of carbon fiber and/or glass-reinforced polyurethane.
The following configurations are described with respect to cross-sectional views. Referring to
Referring to
Referring to
Referring to
During manufacture of the reinforcing members, or prior or during forming an I-joist, post, or beam, the reinforcing member may be textured to provide improved adhesion between the surface of the reinforcing member and the HDPE. Surface texturing is anticipated to provide better bonding between the thermoplastic material and the reinforcing member, and thus better structural performance.
Referring again to
It will be further appreciated that surfaces of flange reinforcing members 86, 87, enclosed flange reinforcing members 109, 110, or core reinforcing member 204, and the like, may include a textured, scarified, and/or roughed surface and which may also include projections or indentations as well as apertures 88. An example of this surface treatment is generally shown in
Referring now to
Structural reinforcing member 300 is encased within HDPE structural member 328 and preferably includes a metal, such as steel, aluminum or an aluminum alloy, or alternatively, the reinforcing member may comprise carbon fiber and/or glass-reinforced polyurethane. In accordance with several embodiments of the present invention, central core 304 is preferably hollow. Structural reinforcing member 300 preferably extends the entire longitudinal length L of structural member 328.
Referring now to
As shown in
Referring still to
Still referring to
Referring now to
In practice of an embodiment of the invention, structural reinforcing members 300 and 300′ may be used in I-joists, posts beams, trusses, and the like, with good benefit. As for example,
The configuration of the reinforcing member 300, 300′ comprising a plurality of arms enhances the strength of the entire I-joist 350. This is achieved under loading conditions when the upper arms 308 and 320 tend to converge toward the lower arms 312 and 316, respectively, thereby binding in place the HDPE. That is, the first arm 308 and the second arm 312 tend to converge toward each other compressing the HDPE between them together and thereby further locking the reinforcing member 300, 300′ in place under loading conditions. Likewise, the fourth arm 320 and third arm 316 tend to converge toward each other compressing the HDPE between them together and thereby further locking the reinforcing member 300, 300′ in place under loading conditions. In addition, the ribs 336 and associated divots 344, whether partially or fully penetrating, keep the HDPE from traversing along the longitudinal axis of the reinforcing member 300, 300′ when under loading conditions.
Referring now to
In accordance with embodiments of the present invention, the ridges 338 may optionally comprise surface scarification or texturing. More particularly, and referring now to
Referring now to
Referring again to
Referring to
Referring now to
For the various reinforcing members disclosed herein, including those shown in
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Although the I-joist shown herein typically include a reinforcing member of similar structure in both the upper flange 74 and lower flange 78, it is to be understood that the upper flange 74 may use a reinforcing member of an alternate configuration than lower flange 78. For example, an I-joist may use reinforcing member 300 in the upper flange 74 and reinforcing member 784 in the lower flange 78.
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
The embodiments depicted in
As noted above, where provided in the text and the drawings of this disclosure, the dimension values shown are for preferred embodiments and are not meant to be limiting.
Referring now to
Referring now to
In comparing the I-joist 350 of
In accordance with embodiments of the present invention, the reinforcing members comprising a plurality of arms, such as reinforcing member 4004, may include curved portion exceeding 90 degrees. Referring now to
Embodiments of the present invention include variety of configurations. By way of example and not limitation, reinforcing members of the various embodiments described herein may comprise a hollow configuration. Other embodiments may comprise a first material forming the reinforcing member, with a second material filling the first material. For example, the reinforcing member may comprise a hollow aluminum reinforcing member, or the reinforcing member may be filled with another material, such as a foam. In at least one embodiment of the present invention, the reinforcing members, such as reinforcing member 4004, may comprise a hollow (or substantially hollow) glass-reinforced polyurethane structure. In at least one embodiment of the present invention, the reinforcing members, such as reinforcing member 4004, may comprise a hollow foamed or unfoamed glass-reinforced polyurethane material. In at least one embodiment of the present invention, the reinforcing members, such as reinforcing member 4004, may comprise a solid (or substantially solid) member, such as a foamed or an unfoamed glass-reinforced polyurethane material. The reinforcing members may also comprise a metal, a metal alloy, steel, aluminum, an aluminum alloy, glass-reinforced polyurethane, carbon fiber, foamed and unfoamed glass-reinforced polyurethane, and combinations thereof.
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring again to
Referring now to
Referring now to
The various reinforcing members described herein may comprise different materials. As for example, the reinforcing members may comprise a metal alloy, such as steel, or aluminum or an aluminum alloy, or it may comprise another structurally reinforcing material, such as carbon fiber or glass-reinforced polyurethane. The glass-reinforced polyurethane may be foamed to reduce its weight and to provide other advantageous engineering properties. The reinforcing members may be solid, or alternatively, it may comprise void spaces or hollow areas. Thus, by way of example, for reinforcing member 3000, the central region 304 may comprise a central hollow area 3020. In addition, the arms 308, 312, 316, and 320 may also include arm hollow areas 3024. Alternatively, the hollow areas 3020 and 3024 may later be at least partially filled with another material, such as a foam.
Referring now to
Referring now to
In accordance with embodiments of the present invention, the reinforcing member 3400 may comprise one or more features for promoting the mechanical bonding or coupling of the thermoplastic material to the material of the reinforcing member. Thus, in at least one embodiment of the present invention, the HDPE is extruded around the reinforcing member, wherein no adhesives or tape are used to facilitate bonding between the HDPE and the reinforcing member, which may comprise an variety of materials, such as carbon fiber, glass-reinforced polyurethane, aluminum or a metal alloy, such as an aluminum alloy. For the reinforcing member 3400, indentations 3404 are provided along the longitudinal length of the arms 308, 312, 316 and 320. The indentations 3404 of reinforcing member 3400 provide for mechanical bonding between the HDPE and the reinforcing member 3400. More particularly, two indentations 3404 are located on each arm 308, 312, 316 and 320, wherein the indentations 3404 are positioned on exterior surfaces of each of the arm 308, 312, 316 and 320. In accordance with at least one embodiment of the present invention, the indentations 3404 are spaced apart along the longitudinal length of the reinforcing member 3400. For one embodiment of the present invention, and by way of example and not limitation, as depicted in
In accordance with embodiments of the present invention, the central core 304 of reinforcing member 3400 comprises a central hollow area 3020, and the arms 308, 312, 316 and 320 may also include arm hollow areas 3024. In accordance with embodiments of the present invention, the hollow areas 3020 and 3024 may later be at least partially filled with another material, such as a foam, and/or the hollow areas may act as conduit or acts as a pathway of other structures, such as wiring or cables, fibers, etc. In accordance with at least one embodiment of the invention wherein the reinforcing member comprises arms having hollow areas 3024, the indentations 3404 impinge on the hollow area 3024. One method of manufacturing the reinforcing members comprises debossing at least a portion the reinforcing member to form the indentations 3404. Debossing is the process of causing a depression in an object, for example, forming a depressed shape below the normal surface of a material. Alternatively, the reinforcing members may be subjected to a process known as coining to provide surficial features along at least a portion of the longitudinal length of the reinforcing members. Coining is the squeezing of metal while it is confined in a closed set of dies. Therefore, in accordance with embodiments of the present invention, the reinforcing member 3400 includes indentations 3404 that are spaced apart along the longitudinal length of the reinforcing member 3400, wherein the indentations 3404 are caused by applying a force to the exterior of the reinforcing member 3400.
Referring now to
Referring now to
The pylon 3600 shown in
The columns, piers, or pylons 3600 have particular application to use in large structures, including structures bridge or pier supports. Depending upon the use, the hollow center area 3604 may be filled with a variety of materials, including by way of example and not limitation, water, reinforcing supports extending from one interior surface to another, concrete, reinforced concrete, aggregate and/or other earthen materials such as rock or rip rap.
Combining a thermoplastic with a metal alloy, such as an aluminum alloy, or steel, or carbon fiber, or glass-reinforced polyurethane in the configurations shown and described herein provides functionality by increasing loading strength. Under compression or tension, the integral configuration of the structural members, flanges and the like, serves to resist movement from either, thereby improving load ratings. Hollow cores/reinforcing members enable achieving structurally sound members with some reduction of weight.
In accordance with embodiments of the present invention, at least one method of manufacture is also provided, the method comprising a unique process. As one example, the method of manufacture may comprise a dual extrusion in-line fabrication process. It will be appreciated that the various structural assemblies are described herein which generally may be referred to as structural members or load members, and are preferably formed in a sequence of separate steps. As an illustration, for example, web member 13 and flanges 26, 30, may be formed as respective structures prior to their assembly and formation of a structural member, such as I-joist 10. Likewise, web member 13, channel reinforcing members 64, 65 and flanges 26, 30, may be formed as respective structures prior to their assembly and formation of a structural member, such as I-joist 60. As a further example, any of reinforcing members 71, 86, 87, 109, or 110 may be formed as respective structures prior to formation of a structural member 82, 106, 106′, or 114. As a further example, a reinforcing member 204, 300, or 300′ may be formed as respective structures prior to formation of a structural member 200, 328 or 328′.
In accordance with another embodiment of the present invention, an illustrative method of manufacturing a structural support member having a rated deflection loading includes: (a) preparing a structural reinforcing member of at least length L for bonded integration into a structural support member of at least length L; (b) forming a structural support member preform by feeding the structural reinforcing member into a thermoplastic extruder and extruding the structural reinforcing member with a thermoplastic, wherein the thermoplastic is bonded to the surface of the structural reinforcing member along the length of at least L; and (c) controlledly cooling the extrusion-formed structural support member preform wherein the thermoplastic is bonded to the structural reinforcing member along the length of at least L and wherein the bonded thermoplastic and structural reinforcing member share the loading of the structural support member without separating along the at least length L, when the structural support member is loaded to the rated deflection loading.
Practice of the invention may further include preparing the structural reinforcing member, to include forming an aluminum alloy extrusion with a non-uniform surface, the surface extending a length of at least L. The method may further include forming an aluminum alloy with a non-uniform surface that includes providing surface attributes that improve the bonding of the thermoplastic (or thermoplastic composites, such as amended HDPE) to the structural reinforcing member. The method may further include preparing the structural reinforcing member to include forming an aluminum alloy extrusion with a non-uniform surface, the surface extending a length of at least L. Furthermore, the method may include preparing the structural reinforcing member to include extruding the structural reinforcing member and adjusting its temperature by cooling.
In accordance with at least one embodiment of the present invention, to form the glass-reinforced polyurethane core material, liquid or molten glass is added to the tooling downstream of the extruded polyurethane to blend the two materials together. In accordance with embodiments of the present invention, the glass-reinforced polyurethane may be entrained with air or otherwise foamed to provide a lighter material that still exhibits advantageous engineering properties. By way of example and not limitation, one possible blend for the glass-reinforced polyurethane comprises 70% glass by weight and 30% polyurethane by weight. This blended material comprises the reinforcing member of various structural members as described herein, and for example, can serve as a substitute material for an aluminum alloy reinforcing member. The glass-reinforced polyurethane is then fed through a cross-head die to the surrounding thermoplastic comprising, for example, HDPE or PP, with or without fillers of calcium carbonate or talc. Engineering property assessments have been made on this core, with values of 6.5-7.2 Mpsi modulus, simulating properties of aluminum. The glass-reinforced polyurethane core/reinforcing member material also offers advantages over other materials, such as a metal alloy reinforcing core. More particularly, mechanical bonding between the core material and the surrounding thermoplastic is less significant of an issue because bonding between the glass-reinforced polyurethane core and the surrounding thermoplastic is achieved sufficiently through chemical bonding between the two materials, that is, the core and the surrounding thermoplastic.
In one embodiment, at least some of steps 412 through 436 are continuous, wherein a reinforcing member is extruded to specification, cooled and texturized (if necessary), and then fed into an HDPE extruder, extruded with HDPE, and then cooled to form the desired structural member. The step 436 of cooling the extruded structural member may accommodate for complexities in cooling the extruded structural member having diverse materials, such as having a HDPE over an aluminum or carbon fiber reinforcing member. This dual in-line fabrication extrusion method has the advantage of providing all necessary opportunity for engineered control of a continuous manufacture process in one location. U.S. Patent Application Publication US 2005/0108983 A1 discloses a method of forming a reinforced extruded composite structural member, and such publication is incorporated herein by reference in its entirety.
Referring now to
Additional embodiments of the present invention are directed to one or more methods of manufacturing I-joist or other structural members. In accordance with at least one embodiment of the present invention, sonic vibrations are used on the die use to extrude the I-joist or structural member. The sonic vibrations have been found to improve the throughput of the material through the die, such a by a factor of about 3. In accordance with embodiments of the present invention, thermal control of the reinforcing member may be performed while extruding the thermoplastic material around the reinforcing member. For the various embodiments of the present invention, the thermoplastic may comprise HDPE, PP (Polypropylene) and/or other materials. Polypropylene typically exhibits less shrinkage/swell given temperature fluctuations following extrusion, and may be more beneficial for certain applications. Reinforcing fiber materials may or may not be used, and may comprise carbon fibers, fiberglass, wood fibers, or other types of fibers. In addition, foaming agents may or may not be used, and may be included for a portion of the thermoplastic to lighten the weight of the I-joist or structural member; however, the use of foaming agents in the thermoplastic material is preferably limited so as not to adversely affect the overall strength of the I-joist or structural member. Thus, to maintain strength, a balance is needed for the particular application to appropriately proportion the thickness of the dimensions of the reinforcing member with any thermo-foaming used in the thermoplastic portions of the 1-joist or structural member.
By way of example and not limitation, for reinforcing members comprising a metal, such as steel, aluminum or an aluminum alloy, the reinforcing member may be heated or cooled to improve bonding of the thermoplastic material around the reinforcing member. In addition, in at least one embodiment of the present invention, one or more streams of air or gas are can be directed at one or more parts of the composite I-joist or structural member during manufacturing to prevent the thermoplastic material from pulling away from the reinforcing member. In at least one embodiment of the present invention, one or more streams of air or gas are thermally adjusted to promote controlled heating or cooling of the thermoplastic material against the reinforcing member. In addition, in at least one embodiment of the invention, the die used to form portions of the I-joist or structural member are heated and/or cooled to control heating and/or cooling of the thermoplastic plastic material and/or reinforcing member, thereby helping to control shrinkage and/or swelling of the thermoplastic material relative to the reinforcing member. An air pocket may be used in certain areas during the manufacturing process to avoid contraction of the thermoplastic material away from the arms of the reinforcing member. Thus, during one possible method of manufacture, as the reinforcing member enters die, such a cross-head thermoplastic extrusion die, the reinforcing member may be either heated or cooled to assist in a more even cooling and distribution of the thermoplastic material around the reinforcing member. The die itself may also be either heated or cooled to further assist in a more even cooling and distribution of the thermoplastic material around the reinforcing member. In addition, sonic vibration of the reinforcing member or the die may be applied to increase thermoplastic throughput, and thus increase overall production. In general, sonic vibration acts to keep the thermoplastic flowing and in liquid form and from reaching a solid condition prematurely. In addition, to assist even distribution of the thermoplastic in certain thicker sections, and air port providing air pressure may be added to assist in keeping the thermoplastic flow at more equal velocity and extend and maintain the contact with the reinforcing member.
To assist in the understanding of the present invention the following list of components and associated numbering found in the drawings is provided herein:
The present invention, in various embodiments, includes components, methods, processes, systems and/or apparatus substantially as depicted and described herein, including various embodiments, subcombinations, and subsets thereof. Those of skill in the art will understand how to make and use the present invention after understanding the present disclosure. The present invention, in various embodiments, includes providing devices and processes in the absence of items not depicted and/or described herein or in various embodiments hereof, including in the absence of such items as may have been used in previous devices or processes, e.g., for improving performance, achieving ease and\or reducing cost of implementation.
The foregoing discussion of the invention has been presented for purposes of illustration and description. The foregoing is not intended to limit Invention to the form or forms disclosed herein. In the foregoing Detailed Description for example, various features of the invention are grouped together in one or more embodiments for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed invention requires more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive aspects lie in less than all features of a single foregoing disclosed embodiment. Thus, the following claims are hereby incorporated into this Detailed Description, with each claim standing on its own as a separate preferred embodiment of the invention.
Moreover, though the description of the invention has included description of one or more embodiments and certain variations and modifications, other variations and modifications are within the scope of the invention, e.g., as may be within the skill and knowledge of those in the art, after understanding the present disclosure. It is intended to obtain rights which include alternative embodiments to the extent permitted, including alternate, interchangeable and/or equivalent structures, functions, ranges or steps to those claimed, whether or not such alternate, interchangeable and/or equivalent structures, functions, ranges or steps are disclosed herein, and without intending to publicly dedicate any patentable subject matter.
The present application is a continuation-in-part application of U.S. patent application Ser. No. 11/194,973 filed Aug. 2, 2005, which claimed the benefit of U.S. Provisional Application No. 60/598,014 filed on Aug. 2, 2004, U.S. Provisional Application No. 60/644,451 filed on Jan. 14, 2005, and U.S. Provisional Application No. 60/686,870 filed on Jun. 1, 2005; in addition, the current application also claims the benefit of U.S. Provisional Application No. 60/774,105 filed on Feb. 15, 2006, U.S. Provisional Application No. 60/791,301 filed on Apr. 12, 2006, and U.S. Provisional Application No. 60/822,048 filed on Aug. 10, 2006. The entire disclosures of the above-referenced patent applications are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
1860205 | Schenker | May 1932 | A |
3217659 | Ford, Jr. | Nov 1965 | A |
3239982 | Nicosia | Mar 1966 | A |
3263387 | Simpson | Aug 1966 | A |
3267627 | Hammitt | Aug 1966 | A |
3283464 | Litzka | Nov 1966 | A |
3284971 | Attwood | Nov 1966 | A |
3286413 | Wells | Nov 1966 | A |
3295267 | Lundell | Jan 1967 | A |
3300931 | Lütze | Jan 1967 | A |
3328931 | Smith | Jul 1967 | A |
3368016 | Birguer | Feb 1968 | A |
3394507 | Doke | Jul 1968 | A |
3427773 | Kandall | Feb 1969 | A |
3442542 | Watanabe | May 1969 | A |
3487518 | Hopfeld | Jan 1970 | A |
3516213 | Sauer | Jun 1970 | A |
3577504 | Lipski | May 1971 | A |
3590547 | Molyneux | Jul 1971 | A |
3716957 | Bernardi | Feb 1973 | A |
3716959 | Bernardi | Feb 1973 | A |
3732654 | Tsurumi | May 1973 | A |
3753326 | Kaufman, Sr. | Aug 1973 | A |
3798867 | Starling | Mar 1974 | A |
3810363 | Dar Conte | May 1974 | A |
3845544 | Nurminen et al. | Nov 1974 | A |
3866372 | Haage | Feb 1975 | A |
3877193 | Hall | Apr 1975 | A |
3908327 | Quigg | Sep 1975 | A |
3913290 | Billing et al. | Oct 1975 | A |
3946533 | Raugh et al. | Mar 1976 | A |
3947309 | Troutner | Mar 1976 | A |
3963552 | Troutner et al. | Jun 1976 | A |
D242625 | Schmidt | Dec 1976 | S |
D242799 | Schmidt | Dec 1976 | S |
4012883 | Muller | Mar 1977 | A |
4014201 | Troutner et al. | Mar 1977 | A |
4019301 | Fox | Apr 1977 | A |
4033166 | Troutner | Jul 1977 | A |
4047341 | Bernardi | Sep 1977 | A |
4081941 | Van Ausdall | Apr 1978 | A |
4129974 | Ojalvo | Dec 1978 | A |
4147379 | Winslow | Apr 1979 | A |
4177306 | Schulz et al. | Dec 1979 | A |
4196558 | Jungbluth | Apr 1980 | A |
4219980 | Loyd | Sep 1980 | A |
4251973 | Paik | Feb 1981 | A |
4291081 | Olez | Sep 1981 | A |
4297825 | Harper, Jr. | Nov 1981 | A |
4302913 | Schwartz et al. | Dec 1981 | A |
4333289 | Strickland | Jun 1982 | A |
4355754 | Lund et al. | Oct 1982 | A |
4407106 | Beck | Oct 1983 | A |
4424652 | Turner | Jan 1984 | A |
4429872 | Capachi | Feb 1984 | A |
4453363 | Koller | Jun 1984 | A |
4512835 | Gardiner | Apr 1985 | A |
4527372 | Ryan | Jul 1985 | A |
4566231 | Konsevich | Jan 1986 | A |
4571913 | Schleich et al. | Feb 1986 | A |
4576849 | Gardiner | Mar 1986 | A |
4587774 | Wendt | May 1986 | A |
4607470 | Ecker | Aug 1986 | A |
4616464 | Schleich et al. | Oct 1986 | A |
4616960 | Gladish | Oct 1986 | A |
4621475 | McClain | Nov 1986 | A |
4630546 | Wiger et al. | Dec 1986 | A |
4630547 | Przybylinski et al. | Dec 1986 | A |
4630548 | Wiger et al. | Dec 1986 | A |
4646493 | Grossman | Mar 1987 | A |
4704830 | Magadini | Nov 1987 | A |
4779395 | Schleich et al. | Oct 1988 | A |
4785599 | Murphy | Nov 1988 | A |
4811542 | Jewell | Mar 1989 | A |
4831800 | Nedelcu | May 1989 | A |
4848054 | Blitzer et al. | Jul 1989 | A |
4887406 | Saia | Dec 1989 | A |
4894898 | Walker | Jan 1990 | A |
4953339 | Jewell | Sep 1990 | A |
5021281 | Bompard et al. | Jun 1991 | A |
5022209 | Kimura | Jun 1991 | A |
5052164 | Sandow | Oct 1991 | A |
5052307 | Morrison | Oct 1991 | A |
5096525 | Engwall | Mar 1992 | A |
5119614 | Rex | Jun 1992 | A |
5125207 | Strobl, Jr. et al. | Jun 1992 | A |
5148642 | Plumier et al. | Sep 1992 | A |
5207045 | Bodnar | May 1993 | A |
5230190 | Schuette | Jul 1993 | A |
5233807 | Spera | Aug 1993 | A |
5279093 | Mead | Jan 1994 | A |
5285616 | Tripp | Feb 1994 | A |
5295334 | Haraden | Mar 1994 | A |
5308675 | Crane et al. | May 1994 | A |
5313749 | Conner | May 1994 | A |
5396748 | Rogers | Mar 1995 | A |
5412913 | Daniels et al. | May 1995 | A |
5414969 | Krejci et al. | May 1995 | A |
5421132 | Bischel et al. | Jun 1995 | A |
5437303 | Johnson | Aug 1995 | A |
5501053 | Goleby | Mar 1996 | A |
5509250 | Jensen et al. | Apr 1996 | A |
5511355 | Dingler | Apr 1996 | A |
5518208 | Roseburg | May 1996 | A |
5524410 | Menchetti | Jun 1996 | A |
5535569 | Seccombe et al. | Jul 1996 | A |
5553437 | Navon | Sep 1996 | A |
5588273 | Csagoly | Dec 1996 | A |
5595040 | Chen | Jan 1997 | A |
5600932 | Paik et al. | Feb 1997 | A |
5636492 | Dingler | Jun 1997 | A |
5671573 | Tadros et al. | Sep 1997 | A |
5680738 | Allen et al. | Oct 1997 | A |
5681641 | Grigsby et al. | Oct 1997 | A |
5749199 | Allen | May 1998 | A |
5749256 | Bodnar | May 1998 | A |
5829716 | Kirkwood et al. | Nov 1998 | A |
5845447 | Bodine et al. | Dec 1998 | A |
5848512 | Conn | Dec 1998 | A |
5895419 | Tweden et al. | Apr 1999 | A |
5913794 | Chen | Jun 1999 | A |
5924261 | Fricke | Jul 1999 | A |
5930966 | Wood et al. | Aug 1999 | A |
5930968 | Pullam | Aug 1999 | A |
5974760 | Tingley | Nov 1999 | A |
6012256 | Aschheim | Jan 2000 | A |
6023903 | Stecker | Feb 2000 | A |
6041566 | Allen | Mar 2000 | A |
6058673 | Wycech | May 2000 | A |
6067770 | Lubker, II et al. | May 2000 | A |
6073420 | Bjøru et al. | Jun 2000 | A |
6082073 | Silvanus et al. | Jul 2000 | A |
6115986 | Kelly | Sep 2000 | A |
6122884 | Talwar | Sep 2000 | A |
6128884 | Berdan, II et al. | Oct 2000 | A |
6131362 | Buecker | Oct 2000 | A |
6161361 | Ehrenkrantz | Dec 2000 | A |
6170217 | Meyer | Jan 2001 | B1 |
6173550 | Tingley | Jan 2001 | B1 |
6209282 | Lafrance | Apr 2001 | B1 |
6212846 | Johnston | Apr 2001 | B1 |
6216404 | Vellrath | Apr 2001 | B1 |
6219990 | Snyder et al. | Apr 2001 | B1 |
6237302 | Fricke | May 2001 | B1 |
6237303 | Allen et al. | May 2001 | B1 |
6301857 | Vrana | Oct 2001 | B1 |
6318029 | Huppunen | Nov 2001 | B1 |
6330778 | Jakobsson | Dec 2001 | B1 |
6332301 | Goldzak | Dec 2001 | B1 |
6341467 | Wycech | Jan 2002 | B1 |
6343453 | Wright | Feb 2002 | B1 |
6370833 | Rastegar | Apr 2002 | B1 |
6391456 | Krishnaswamy et al. | May 2002 | B1 |
6408591 | Yamashita et al. | Jun 2002 | B1 |
6446414 | Bullard, III et al. | Sep 2002 | B1 |
6460309 | Schneider | Oct 2002 | B1 |
6460310 | Ford et al. | Oct 2002 | B1 |
6475577 | Hopton et al. | Nov 2002 | B1 |
6484997 | Edwards et al. | Nov 2002 | B1 |
6497080 | Malcolm | Dec 2002 | B1 |
6516583 | Houghton | Feb 2003 | B1 |
6526723 | Hovenier | Mar 2003 | B2 |
6532713 | Katayama et al. | Mar 2003 | B2 |
6550211 | Kergen | Apr 2003 | B2 |
6561571 | Brennecke | May 2003 | B1 |
6561736 | Doleshal | May 2003 | B1 |
6615559 | McGrath et al. | Sep 2003 | B2 |
6619502 | Walther et al. | Sep 2003 | B2 |
6634155 | Smith | Oct 2003 | B2 |
6672026 | Sumerak | Jan 2004 | B2 |
6684596 | Rastegar | Feb 2004 | B2 |
6701690 | Deschenes | Mar 2004 | B2 |
6708459 | Bodnar | Mar 2004 | B2 |
6749709 | Krishnawswamy et al. | Jun 2004 | B1 |
6755003 | McGrath et al. | Jun 2004 | B1 |
6826884 | Pabedinskas et al. | Dec 2004 | B2 |
6844040 | Pabedinskas et al. | Jan 2005 | B2 |
20020083678 | Rastegar | Jul 2002 | A1 |
20020112428 | Dingler | Aug 2002 | A1 |
20040045847 | Fairbank | Mar 2004 | A1 |
20040074202 | Barmakian et al. | Apr 2004 | A1 |
20040118078 | Rastegar | Jun 2004 | A1 |
20050108983 | Simko et al. | May 2005 | A1 |
20060032182 | Carlson et al. | Feb 2006 | A1 |
20060283133 | Westre et al. | Dec 2006 | A1 |
20070137137 | Peek et al. | Jun 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20080295453 A1 | Dec 2008 | US |
Number | Date | Country | |
---|---|---|---|
60598014 | Aug 2004 | US | |
60644451 | Jan 2005 | US | |
60686870 | Jun 2005 | US | |
60774105 | Feb 2006 | US | |
60791301 | Apr 2006 | US | |
60822048 | Aug 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11194973 | Aug 2005 | US |
Child | 11675587 | US |