1. Field of the Invention
The present invention relates to an engraving technique and resulting engraved metal surface and, more particularly, to such engraved metal surfaces as may be decoratively employed. More specifically, the present invention relates to engraved metal surfaces, and the process to obtain same, that permit subsequent electroplating and colorization to obtain highly decorative surfaces.
2. Description of the Prior Art
It has been estimated that for the year 2001, the value of the U.S. Gross Domestic Motorcycle Product (GDMP) is approximately $25 billion. Approximately $5 billion is in new motorcycles, the remainder in the sale of used cycles, parts, and services relating to motorcycle sales and maintenance.
The Harley-Davidson V-twin cycles have been a large participant in the revival in motorcycle popularity beginning in the early 1990's. Such motorcycles cater to the individualistic rider, and while the outward appearance may seem unvarying to non-riders, it is important for most Harley owners to differentiate their motorcycle in some important visual manner.
Since many motorcycles share the same or similar aftermarket parts, oftentimes the visual differences arise from the paint and graphics applied to tanks and fenders. These parts are small and easily removed, making them far easier to paint than automobiles. As many riders discover, however, the paints that are most readily available and easily applied also tend to degrade the fastest in response to sunlight, weather, and general wear and tear.
Professional motorcycle painting traces its genesis to Kenneth “Von Dutch” Howard, a custom painter out of the 1950's and 1960's southern California school that also featured Ed “Big Daddy” Roth. Von Dutch had a talent for design and craftsmanship that essentially invented the motorcycle art of pinstriping.
Such exotic paint schemes have since evolved to ones that cost thousands of dollars and involve elaborate airbrush techniques and pigmentation. When clear-coated with protective layers, these elaborate works of art might last several years if reasonable attended to by the owner. Such owners often highlight their paint schemes by adding various chromed metal accent pieces. Most motorcycle owners, like the collectors of 1950's and 1960's automobiles, particularly value the deep metal shine of chromed parts.
Motorcycle fenders, gas tanks, and other small metal exterior parts are generally fabricated out of steel, aluminum, and brass or similar such metals. Finishing typically involves electroplating, using copper, nickel, chrome, brass, silver, gold or a combination, or painting, as previously described. It is normally not possible to electroplate over a painted surface, or paint over an electroplated surface—the latter being too smooth for the paint to reliably adhere.
Metal engraving is a well-known art, and provides designs of long last, since they represent cuts into the outer metal. If the part is to be electroplated, such coating must be applied after the engraving, since otherwise the engraver would remove the electroplated layer as the design is formed into the metal. Such breaks in the chrome layer would encourage further separation of the chrome from the underlying metal, resulting in the “peeling chrome” look that was common on aging chrome automobile bumpers in the snow and ice “road salt” areas of the United States.
Unfortunately, pre-electroplate engraving presented other technical problems. When using present laser, pantograph, rotary or other mechanical means, the engraved lines would be largely covered by the subsequently applied plated surface, considerably lessening, if not entirely eliminating, the impact of the engraved design.
Ideally, it would be desirable to provide a decorative metal surface that is able to utilize the long lasting benefits of engraving with the deep metal finishes provided by electroplating and the rich color obtained through paint pigments.
It is an object of the present invention to provide an engraved surface that can be subsequently electroplated without definitional loss of the overall engraved design. In this regard a surface having a greater depth and wider engraved angle is provided.
It is a further object of the present invention to provide both a painted and engraved electroplated surface. By the utilization of both engraving and the application of a protective mask, both types of surfaces can be obtained. After electroplating the part, preferably first with copper and then a final electroplated coating of nickel, the engraved area is masked, and the area where paint will be applied is first roughed and then painted.
After removing the mask, the entire surface is covered with a protective coat, resulting in co-existing engraved and painted electroplated surfaces. Visually, the metal surface displays a deep, engraved cut design with the shine of a nickel electroplate, with immediately adjacent surfaces having a durable painted coating.
These objects, as well as other objects and advantages of the present invention will become readily apparent upon review of the description of a non-limiting illustrative embodiment and the accompanying drawings.
Reference is now made to the drawings wherein like numerals refer to like parts throughout. In
An engraved surface 14 is formed in a portion of the fender 10. In a presently preferred embodiment, prior to forming the engraved surface 14 the metal part is first highly polished using known techniques and procedures. For example, depending upon the metal and its original surface state, various polishing compounds ranging from 80 to 1500 grit may be required. Such polishing, as well as other remedial metal processing, is intended to remove the gouges, dents, scratches, waves, ripples, and other commonly encountered surface defects in manufactured metal parts. After the metal surface is highly polished and otherwise free of these various defects, the part is ready to be engraved.
As is depicted in
Originally relying upon rocks and then “chasing hammers” to push or strike the graver, subsequent improvements have allowed the engraver to use pneumatic devices, such as those disclosed in U.S. Pat. Nos. 3,393,755 and 5,515,930 to strike against the graver. These tools primarily serve as a time saving device for the modern engravers.
In more recent historical times there are mechanical and laser engravers that can be considerably automated. Turning to
In
In
As is depicted in
The surface of metallic parts are subjected to all types of contaminants, both as a result of fabrication and caused by conditions encountered during transport and storage. Prior to initiation of further processing, all such surface contaminants must be stripped 84 from the metallic part. Various solvents are known to the art and are appropriate for specific types of contaminants and types of metal.
Such preliminary surface treatment continues with a robust surface polishing 86 to remove as many surface defects as possible. As mentioned previously, this will typically involve the use of a variety of polishing compounds selected as required by the surface blemishes and the type of metal to be polished.
A design is then applied 88 to the appropriate surface area or areas on the metal part. In a preferred embodiment such application is by conventional means, such as being directly drawn on the part or by a design transfer from a paper rendition to the metal part.
The transferred design is then engraved 92 into the metal part. In a presently preferred embodiment, the engraving is done by hand using traditional hand engraving methods and tools. The invention is not to be viewed as in any way limited to hand engraving. The factors presently viewed to be important are that the engraving be of sufficient depth to remain distinctive after an electroplated layer is applied and that the engraving create a wall-cut feature, meaning that the outer engraved walls must be substantially vertical, with a range of between 80 to 90 degrees presently viewed to be acceptable for the purposes of the present invention.
After engraving the metal part is again polished, to smooth any stray markings and normal engraving nicks and burrs. Once the surface is again satisfactorily smooth, the part is electroplated 94. As presently preferred, the initial electroplate layer is of copper, which enhances the ability to obtain a more uniform and adhering second layer of nickel. The secondary layer can be of other metals, such as gold, silver, brass, and others; however, nickel is presently preferred due to the deepness of its metallic shine—assuming a chromed-type surface reflectivity.
Optionally, an adhesion promoter is applied 96 to the metal part prior to the application of a clear coating material 98. This coating is then allowed to dry or cure for a period of preferably 24 hours. Such a coating, when used, further enhances the adhesion properties of the subsequently applied paints.
Depending upon the desired optical effects of a particular design, a liquid mask material is applied 102 to selected portions of the metal piece. Appropriate mask materials might include Metal Flake Spray MaskT™ manufactured by the Metal Flake Corporation of Amesbury, Mass. An appropriate time is accorded to permit the complete curing of the mask material—such as 24 hours when Metal Flake Spray MaskT™ is used.
Whether airbrushed or physically painted on, the mask material is purposefully applied approximately ¼ inch beyond the engraved area borders. This excess material must be removed, and typically the mask material lying outside of the engraved area is removed utilizing a small cutting tool such as a razor blade or an EXACTO® knife 104. Such a tool creates a clear and distinct line of masking material separating the engraved area from the non-engraved area. Essentially an extremely thin, substantially vertical “wall” of masking material is formed between the outside line of the engraving and the non-engraved portion by this trimming procedure.
The exposed, un-masked surface regions that are to receive a coating of paint are first subjected to a surface roughening 106 to enhance the adhesion of the paint to the electroplated surface. Such surface roughening can appropriately be obtained utilizing either a fine grit sandpaper or known liquid grit compounds.
One or more coats of paint are then applied and allowed to dry 108. Various types of paint are appropriate, and the application process will depend upon the type of paint selected. Paints manufactured by House of Paints of Picayune, Miss. are appropriate for this procedure. Depending upon such factors as color and type of paint selected, it may be necessary to apply several coats of paint, sometimes in various colors, to achieve the effect desired. These considerations are primarily artistic in nature and are not the result of any requirements or limitations of the present engraved surface or method.
The masking material is then carefully removed 110, revealing a sharp distinction between the electroplated, engraved surface and the painted area outside of the design. The “wall” of masking material has resulted in the creation of a “wall of paint” when the masking material is removed. This “wall” clearly and sharply delineates and physically separates the painted area from the nickel-plated, engraved design.
Where desired, color may be applied to the bottom portion of the engraved lines. A presently preferred manner of affecting such color utilizes the application of a small amount of paint within the engraved cuts. Such paint is then allowed to dry 112. An example of an appropriate line of paints might be located from among those supplied by House of Kolor, Picayune, Miss.
Regardless of whether color is applied to the engraved lines, completion of the decorative surface requires the application of commercially available clear coat paint to seal both the engraved and painted areas 114. Several separately applied clear coat layers may be required to enhance the project. The coatings are allowed to dry/cure and then one final polishing is performed on the entire surface 116.
Our invention has been disclosed in terms of a preferred embodiment thereof, which provides an engraved, decorative surface of great originality and ornamentality that is of great novelty and utility. Various changes, modifications, and alterations in the teachings of the present invention may be contemplated by those skilled in the art without departing from the intended spirit and scope thereof. It is intended that the present invention encompass such changes and modifications.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 60/388,594, filed Jun. 12, 2002.
| Number | Name | Date | Kind |
|---|---|---|---|
| 1488240 | Gulick | Mar 1924 | A |
| 1821577 | Povalski | Sep 1931 | A |
| 1915642 | Arbuckle et al. | Jun 1933 | A |
| 2415361 | Mell | Feb 1947 | A |
| 4166092 | Remba-Grondovski | Aug 1979 | A |
| 4221758 | Burkey et al. | Sep 1980 | A |
| 4384945 | Sword | May 1983 | A |
| 4787837 | Bell | Nov 1988 | A |
| 4912824 | Baran | Apr 1990 | A |
| 4944164 | Butler et al. | Jul 1990 | A |
| 5027537 | Freeman et al. | Jul 1991 | A |
| 5112453 | Behr et al. | May 1992 | A |
| 5247884 | Rid | Sep 1993 | A |
| 5465780 | Muntner et al. | Nov 1995 | A |
| 6007637 | Sindzingre et al. | Dec 1999 | A |
| 6134785 | Walter et al. | Oct 2000 | A |
| 6294111 | Shacklett, III et al. | Sep 2001 | B1 |
| 20020068148 | Nakamura et al. | Jun 2002 | A1 |
| 20040224181 | Galan | Nov 2004 | A1 |
| Number | Date | Country |
|---|---|---|
| 49-117511 | Nov 1974 | JP |
| 53-44436 | Apr 1978 | JP |
| 61-037998 | Feb 1986 | JP |
| 07-333356 | Dec 1995 | JP |
| Number | Date | Country | |
|---|---|---|---|
| 60388594 | Jun 2002 | US |