The present invention relates to disaster prevention system for offshore oil/gas wells and in particular to an enhanced/improved annular closing device as well as other optional supporting devices that provide the means to insure human, equipment and environmental safety and associated cost avoidance during the offshore well drilling process.
Shortly after the 2010 offshore oil well catastrophe in the Gulf of Mexico, it became obvious that British Petroleum (BP), the entire oil industry, and/or the US Government were unprepared to effectively stop the gushing oil or the means to clean it up. Throughout the first two plus months of the disaster numerous re-sealing, capturing, clogging, killing and capping techniques were unsuccessfully attempted and several high risk/cost ‘normal’ well drilling processes were brought to light.
The successful 20 July re-seal, capture and cap ‘Rube Goldberg’/‘Kluge’(said with admiration) was a simplistic but effective temporary solution for the catastrophic symptoms of the problem—where the primary operative phrase is ‘temporary solution for the catastrophic symptoms’.
The enormous somewhat/sometimes unquantifiable costs of the (or of a future) incident includes; human life, environment, drilling platform, well equipment and the associated labor along with the loss of future production, equipment and labor associated with the re-seal, cap, capture & relief/kill wells, sea/gulf clean-up, tourist, fishing industry, local community as well as public opinion relating to the oil industry, the government and the nation & international financial markets
The prior art ‘blowout preventer’ (BOP) is intended to close off the well in case of an uncontrolled/emergency condition (blowout). It's a multi mega-buck, multi-ton, multi-story device installed on the seafloor having various means/methods, with the design intent of closing a well. The most technically difficult challenge is if/when a drill pipe is within the BOP where the BOP must ‘ram’ through the pipe/pipe joints to close off the well. The second significant technically difficult challenge is to close the flow path around the exterior of the drill pipe. Both seem difficult (at best), but add the extreme water pressure and low temperatures, the extreme oil pressure and high temperatures, the contaminated/particles within the mud and the physical movement (bowing, vibration, etc.) of the drill pipe, the existing BOP is likely not going to work. After the Macondo's well was finally closed, the BOP was pulled up and evaluated—it was functional but did not do the job.
As offshore oil drilling/production continues in the future it seems only rational that the government as well as oil industry itself would demand, as a prime priority the development of improved equipment/systems and processes.
The focus of the ‘quick fix’ was to stop/control the symptoms of the immediate catastrophe—the gushing oil. What is needed is approach that provides reliable means to reduce/eliminate the causes/impacts of oil/gas well blowouts.
The primary design objective of the invention is to provide reliable, practical and cost effective improvements that reduce/eliminate the causes and/or impacts of blowouts. This specific design focus was to correct operability/reliability issues associated with the existing/in-use annular closing devices. The improved device is identified as an Advanced Annular Closing Device (AACD).
The invention further modifies the AACD by significantly reducing the area of the closing mechanism (and the device's overall physical size). The reduced size AACD is identified as a Mini-AACP. The Mini-AACP is incorporated in a Transitory Blowout Controller (TBC) Assembly added in series with the BOP and installed within the well's return/riser pipe.
Various other (prior & new art) supporting devices are identified to further improve the operational capability. These include a pressure relief and diversion functional assembly (physically located in/on the wells seabed drilling equipment) and several (low cost, highly reliably, alternative technology) devices such as; drill pipe restricting/holding, cutting, turning/un-screwing & lifting devices (physically located in/on the seabed drilling equipment and/or within the TBC).
Considering the pure human and environmental safety, the pure dollar and cents (or multi-million/billion dollar) cost avoidance and/or the potential cost savings/reductions, it is a significant understatement to suggest that features of the present invention should be integrated with other planned improvements, and incorporated on all oil wells.
The purpose is to improve the blowout protection operational reliability.
The invention identifies an Advanced Annular Closing Device (AACD) that corrects/fixes environmental operational flaws of the existing/in-use annular closing device.
Specifically the AACD ensures that the sealing area is clear of drilling particles/chips carried in the mud. The invention further defines a Mini-AACD that further improves the operational reliability by incorporating a re-designed/miniaturized closing mechanism that significantly reduces the size of the closing mechanical components.
The Mini-ACCD is incorporated into a unique Transitory Blowout Controller (TBC) assembly that is physically installed within the drilling return/riser pipe, about the drill pipe, between the drill bit and the drill platform/ship.
The TBC housing is tubular, slightly smaller in diameter than the size of the drilling return/riser pipe. The lower end of this housing incorporates the means to mechanically connect/disconnect the device to the existing seabed drilling equipment.
A modification to the drill pipe is incorporated to mechanically support/hold the device during its transition to/from the drill platform/ship to the seabed drilling equipment. The AACD and Mini-AACD are remote-controlled annular mechanical closing device capable of stopping the flow path of liquids/gases between the exterior of the drill pipe and the interior side walls of the seabed equipment (BOP/Adjunctive BOP) or the interior sidewalls of the TBC. The AACD's pass-thru opening is determined by the drill bit size where the Mini-AACD pass-thru opening is designed for the drill pipe size (the pass-thru opening is slightly larger than the specific drill pipe size). The closing mechanism of the Mini-AACD's operational area is significantly less than half that of the AACD or the existing/in-use annular closing device's mechanism.
Options with the AACD and/or Mini-AACD include;
Options either within the AACD and/or Mini-AACD and/or in/on the Seabed Drilling Equipment include;
The ‘Pipe Restricting/Holding Device’ is a remotely controlled horizontal drive with pipe guiding/grabbing element(s). The mechanical horizontal drive move the attached pipe guiding/grabbing element(s) horizontally towards the drill pipe wherein the guiding/grabbing elements limit/restrict the drill pipes horizontal motion or holds the drill pipe from any horizontal, vertical or circular motion.
The ‘Pipe Lifting Device’ is a remotely controlled jawed mechanism that engaging the drill pipe and via a vertical motor drive mechanism provides the means to vertically lift the pipe.
The ‘Pipe Cutting Device’ is a remotely controlled cutting device that incorporates a horizontal drive controlled element positioning motor driven cutting blade(s) wherein the cutting blades provide the means to sever/separate the pipe.
The ‘Pipe Turning Device’ is a remotely controlled jawed mechanism that engages and grips the drill pipe and mechanically turns the pipe—unscrewing it from a different pipe section the holding device is gripping.
The pipe cutting and/or pipe turning devices could also include a pipe joint sensing device. This device could insure the pipe turning device and the pipe holding device are positioned on different pipe sections and/or the pipe cutting device is not attempting to cut through a pipe joint (either function would be supported by feedback/control of the pipe lifting device).
The ‘Well Access Gate Valve’ is a large (opening capable of passing a drill bit), remote controlled valve that provides the means to close off the entire well access area, when there are no obstructions (the drill pipes is cleared—cut/unscrewing and drops, lifted or removed by the drill platform or ROV).
Options associated with the AACD and/or Mini-AACD incorporated in/on the Seabed Drilling Equipment include;
The Pressure Relief, Diversion Device incorporates a three (or more port) manifold where two ports are in line/in series with the wellbore and are compatible with passing through a drill bit and wherein a third port includes a remotely controlled valve connected to a diversion tube/pipe. This functional element provides the means to relieve pressure during transition periods by either dumping the oil into the environment or to a capture and recovery subsystem. This function may be further enhanced by the incorporation of an additional port and valve wherein antifreeze/dispersant/coagulant agent could be mixed with pressure relieved oil/gas.
Note: Activating/closing the well Access Gate Valve would typically require 1-2 minutes to accomplish (to cut/un-screw and clear the drill pipe). It is assume during this interim period a pressure relief manifold would be activated allowing the blowout oil/gas a low resistance path to the environment or to a capture & recovery subsystem.
All of the active operational devices are powered by either self-contained batteries and/or internal or external power sources (electrical/hydraulic) from either the seabed drilling equipment and/or the surface drilling platform/ship, or combinations of the said. When powered from external sources, appropriate connection devices are incorporated.
Controls (such as activation/deactivation) and any signals (such as status) would be provided by electrical/electronic, fiber-optic and/or acoustics means. Such controls/signals would include appropriate connection devices.
a) Prior to installing/changing the drill bit, select a proper sized TBC (drill pipe size) and install the TBC about drill pipe.
b) Install/activate the TBC drill pipe supporting/holding/securing element(s) on the drill pipe between the drill bit & the TBC.
c) Install the drill bit.
d) Lower the drill pipe (and the TBC) to the drilling seabed equipment.
e) Secure the TBC to the drilling seabed equipment.
f) Proceed with normal drilling operations.
A major kick/possible blowout is sensed.
a) Stop and stall the mud pump and close the mud pit (to hold the mud in a drill pipe and in the drill return/riser pipe via vacuum action).
b) Open the pressure relief gate valve.
c) Activate (open) the secondary (bypass) annular closing mechanism.
d) Activate the pipe holding device.
e) Activate the sealing/cleaning (gasket to drill pipe) cleaning agent.
f) Activate the primary (gasket to drill pipe) annular closing mechanism.
g) Activate (close) the secondary (bypass) annular closing mechanism.
h) Check the well status (pressure in well, pressure and flow in diversion path, etc.).
Try stuff as appropriate/as the conditions allow (heavier mud, allow pressure to bleed off, etc.).
If a blowout conditions continue:
a) De-activate the pipe holding device
b) Lift the drill pipe.
c) Activate the pipe holding device.
d) Cut or unscrew (as appropriate) the drill pipe.
e) De-activate the pipe holding device (letting the pipe drop).
f) Close the well access gate valve.
g) Close the pressure relief valve.
h) Continue to monitor the in-well conditions.
Next options (as appropriate):
a) Open the pressure relief valve for some appropriate time.
b) Re-enter the well through drill pipe (with smaller drill/kill pipe) and fix (re-cement) or kill the well.
c) Remove (fish-out) the drill pipe & drill bit and fix (re-cement) or kill the well.
These and other details of the present invention will be described in connection with the accompanying drawings, which are furnished only by way of illustration and not intended to limit the invention.
The drawings are intended to provide an introductory overview of the major device/elements that are more comprehensively defined in the detailed description of the invention.
Failure 2 is a diagrammatic cross-sectional functional overview of the Transitory Blowout Controller with the Seabed Pressure Relief option.
Re-depicted from
It is noted that:
Items (22)-(24) are options that could be incorporated in/on the Seabed Equipment.
Items (25)-(28) are options incorporated in/on the Seabed Equipment.
Re-depicted from
Re-depicted from
Newly depicted on this Figure is (30) the Drill Pipe TBC Supporting Device and (31) & (32) the TBC's and Seabed's Drilling Equipment's Mechanical Securing Elements and (33) the TBC's Supporting/Interface Elements compatible with the Drill Pipe's TBC Supporting Device.
It is noted that the details of the various configurations of the mechanical coupling elements of (31) & (32) are not depicted. These configurations include but are not limited to pipe threads, snap fitting's (similar to common air compressor hose type fittings modified whereby the drill pipe supporting (30) element would physically engage/disengage the connecting mechanism and/or an electromechanical solenoid device.
Re-depicted from
It is noted that the Particle Filter/Screening Element is not depicted. This element would be physically secured/connected to either (42) or (43) and its other end would be in contact with the drill pipe (6) prior to the full (gasket to drill pipe) closure.
Items 56 are three circular saw blades each including a high speed motor & tachometer. Items 57s are wedges. Items 58 & 59 are details of items 55. Item 58 is the fixed member of item 55. It is affixed to the turn-table and includes a lateral drive motor, an encoder, slides & gearing. Item 59 is the lateral sliding member of item 55 and includes slides & gearing. The dashed lines at item 59 indicate this member at its extended position.
It is noted that:
The turning elements of this drill pipe cutting device (turntable, ball bearings, motors) would not be functionally necessary if a Drill Pipe Turning Device (previously identified as an option & depicted on
The anti-pinch elements of this drill pipe cutting device (wages and associated drives) would not be functionally necessary if a drill Pipe Lifting Device (previously identified as an option & depicted on
The sequence of operations of the Pipe Cutter Mechanism is enabled by an operator. In an automatic operational mode, after being embedded a micro-processor and associated program controls the operation.
In a manual mode the operator will perform the steps below:
1. The operator will initiate a pipe cut.
2. The Circular Saws and Lateral Drive Devices drives, with minimum torque contacts the pipe.
3. The saw motors are turned on and laterally driven into the pipe until either the thickness of the pipe-wall is penetrated or the saw motor speed decreases greater than 20%. If the latter occurs see * (below).
4. When three saws have penetrated the pipe, the Lateral Drive Devices retract the saw blades.
5. The Turn-Table is moved/re-positioned 120 degrees.
6. The Wedges' Lateral Drive Devices is activated pressing the wedges into the pipe cut.
7. The Circular Saws' Lateral Drive Devices is again activated to drive the saw blade towards the pipe until either the thickness of the pipe wall is penetrated and the pipe is fully cut or the saw motor speed decreases greater than 20%. If the latter occurs see * (below).
8. Once the pipe is fully cut it must be extracted.
* If any of the saws speed decreases greater than 20% from its unloaded speed, the appropriate drives will be backed-off until the no-load speed is obtained. The drives will then proceed to the continuing cutting process.
Item 60 would be driven (by horizontal drive units)—close to the drill pipe for the restricting mode of operation and into sidewall of the drill pipe for the holding operation.
Number | Name | Date | Kind |
---|---|---|---|
8579033 | Robichaux | Nov 2013 | B1 |
8781743 | McKay | Jul 2014 | B2 |
20130168578 | Leuchtenberg | Jul 2013 | A1 |
20160102517 | Ibanez | Apr 2016 | A1 |
20170314355 | Ferrara | Nov 2017 | A1 |
20180187506 | Bhadbhade | Jul 2018 | A1 |
Number | Date | Country | |
---|---|---|---|
20180216435 A1 | Aug 2018 | US |
Number | Date | Country | |
---|---|---|---|
62451561 | Jan 2017 | US |