ENHANCED CELL SURVIVAL AGAINST BIOTIC AND ABIOTIC STRESSES THROUGH SALICYLICK ACID-INDUCED NPR1 CONDENSATES

Information

  • Patent Application
  • 20230227838
  • Publication Number
    20230227838
  • Date Filed
    June 22, 2021
    2 years ago
  • Date Published
    July 20, 2023
    11 months ago
Abstract
The present disclosure describes compositions and methods for promoting cell survival against biotic and abiotic stress and during plant immune responses.
Description
FEDERAL FUNDING LEGEND

This invention was made with Government support under Federal Grant no. R35GM118036 awarded by the National Institutes of Health. The Federal Government has certain rights to this invention.


SEQUENCE LISTING

The Sequence Listing written in file 560198_SeqListing_ST25.txt is 257 kilobytes in size, was created Jun. 15, 2021, and is hereby incorporated by reference.


BACKGROUND

An essential feature of immunity is to ensure defense against pathogens without collateral damage to self. In plants, pathogen effector-triggered immunity (ETI) often results in programmed cell death, which is restricted through the function of NPR1, a positive regulator of systemic acquired resistance. Despite the importance of this protein and the extent to which it has been studied, the biochemical activities of NPR1 that promote both defense and cell survival remain unclear.


SUMMARY

The Summary is provided to introduce a selection of concepts that are further described below in the Detailed Description. This Summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used as an aid in limiting the scope of the claimed subject matter.


The present disclosure provides, is based, in part on the discovery by the inventors that NPR1 promotes cell survival by targeting substrates for ubiquitination and degradation through salicylic acid (SA)-driven phase separation into cytoplasmic condensates. Further, the inventors show that NPR1 condensates are enriched in cell death regulators including nucleotide-binding leucine-rich repeat immune receptors, redox metabolism proteins, DNA damage repair and protein quality control machineries. Phase separation of NPR1 is required for recruitment of the Cullin 3 RING E3 ligase complex to the condensates and NPR1 can promote cell survival by degrading EDS1 and specific WRKY transcription factors required for ETI. The discovery of distinct functional groups of proteins in the SA-induced NPR1 condensates, herein termed “SINCs”, suggests that NPR1 modulates survival by converging multiple stress-responsive processes in this quasi organelle.


Other aspects and embodiments of the present disclosure provide compositions and methods for promoting cell survival of a cell comprising, consisting of, or consisting essentially of modulating NPR1 in the cell. In some embodiments, modulating may comprise upregulating the expression of and/or enhancing the function of, NPR1 in the cell. In another embodiment, the cell comprises a plant cell.


In one aspect, provided are nucleic acids encoding a npr1 protein, wherein the npr1 protein forms salicylic acid-independent NPR1 condensates. In some such nucleic acids, the nucleic acid is operably linked to one or more expression control elements. In some such nucleic acids, the one or more expression control elements comprise: a promoter, one or more upstream open reading frames (uORFs), or the promoter and the one or more uORFs. In some such nucleic acids, the promoter is selected from the group consisting of: a constitutive promoter, an inducible promoter, a temporally-regulated promoter, a developmentally regulated promoter, a chemically regulated promoter, a tissue-preferred promoter, a tissue-specific promoter, a TBF1 promoter, a 35S promoter, a ubiquitin promoter, a tCUP cryptic constitutive promoter, a Rsyn7 promoter, a pathogen-inducible promoter, a maize In2-2 promoter, a tobacco PR-1a promoter, a glucocorticoid-inducible promoter, an estrogen-inducible promoter, a tetracycline-inducible promoter, a tetracycline-repressible promoter, a T3 promoter, a T7 promoter, and a SP6 promoter. In some such nucleic acids, the promoter is the TBF1 promoter. In some such nucleic acids, the uORF comprises a TBF1 gene uORF. In some such nucleic acids, the expression control elements comprise the TBF1 promoter and one or more TBF1 uORFs.


In some such nucleic acids, the npr1 protein is an A. thaliana npr1 protein comprising one or more mutations. In some such nucleic acids, the npr1 protein comprises one or more mutations in at least one redox-sensitive intrinsically disordered region (RDR). In some such nucleic acids, the one or more mutations comprises a substitution of one or more cysteines in at least one RDR, a deletion of one or more cysteines in at least one RDR, or a combination thereof. In some such nucleic acids, the one or more cysteines are located in a region corresponding to residues 140-160, 368-404, or 510-539 of SEQ ID NO: 1. In some such nucleic acids, the one or more cysteines are located in the region corresponding to residues 368-404 of SEQ ID NO: 1. In some such nucleic acids, the npr1 protein has increased interaction with CUL3 compared to wild-type NPR1 in the absence of salicylic acid. In some such nucleic acids, the one or more mutations reduces the redox-sensitivity of the RDR. In some such nucleic acids, the npr1 protein comprises a mutation of a cysteine corresponding to the cysteine at position 378, of SEQ ID NO: 1, position 385 of SEQ ID NO: 1, position 394 of SEQ ID NO: 1, positions 378 and 385 of SEQ ID NO: 1, positions 378 and 394 of SEQ ID NO: 1, positions 385 and 394 of SEQ ID NO: 1, or positions 378, 385, and 394 of SEQ ID NO: 1. In some such nucleic acids, the npr1 protein comprises the mutation of the cysteine corresponding to the cysteines at positions 378, 385, and 394 of SEQ ID NO: 1. In some such nucleic acids, the mutation of the cysteine comprises an alanine substitution. In some such nucleic acids, the npr1 protein comprises a mutation of one or more cysteines corresponding to the cysteines at positions 150, 155, 156, and 160 of SEQ ID NO: 1.


In some such nucleic acids, the nucleic acid encodes a ΔCTD npr1 ACTD protein, a BTB domain npr1 protein, or a sim3 npr1 protein.


In some such nucleic acids, the nucleic acid encodes: (a) a protein comprising the amino acid sequence of any of SEQ ID NOS: 134-160 or an ortholog thereof; or (b) a protein having at least 70% identity to a protein comprising the amino acid sequence of any of SEQ ID NOS: 134-160. In some such nucleic acids, the nucleic acid encodes a protein comprising the amino acid sequence of SEQ ID NO: 134.


In another aspect, provided are plants or plant cells expressing any of the above nucleic acids. In some such plants or plant cells, the plant is a monocot or a dicot. In some such plants or plant cells, the plant is a food crop plant, a biofuel plant, a corn plant, a legume plant, a bean plant, a rice plant, a soybean plant, a cotton plant, a sugarcane plant, a tobacco plant, a palm oil plant, a date palm, a wheat, a vegetable plant, a squash plant, a Solanaceae plant, a tomato, a banana plant, a potato plant, a pepper plant, a moss plant, a parsley plant, a sunflower plant, a mustard plant, a sorghum plant, a millet plant, a citrus plant, an apple plant, a strawberry plant, a rapeseed plant, a cabbage plant, a cassava plant, a coffee plant, a sweet potato plant, a jatropha plant, or a switchgrass plant. In some such plants or plant cells, the plant expresses a wild-type NPR1 gene. In some such plants or plant cells, the plant does not express a wild-type NPR1 gene.


In another aspect, provided are methods of increasing stress tolerance in a plant, comprising expressing in the plant any of the above nucleic acids. In some such methods, the stress is biotic or abiotic stress. In some such methods, the biotic stress comprises pathogen infection. In some such methods, the pathogen is a bacteria or a virus. In some such methods, the abiotic stress comprises high temperature (heat shock) stress, low temperature (cold shock) stress, oxidative stress, or DNA damage. In some such methods, increasing stress tolerance comprises one or more of: decreasing programmed cell death, decreasing effector-triggered immunity (ETI)-induced cell death, increasing formation of NPR1 condensates, and degrading EDS1 and specific WRKY transcription factors required for pathogen ETI. In some such methods, the plant is a monocot or a dicot. In some such methods, the plant is a food crop plant, a biofuel plant, a corn plant, a legume plant, a bean plant, a rice plant, a soybean plant, a cotton plant, a sugarcane plant, a tobacco plant, a palm oil plant, a date palm, a wheat, a vegetable plant, a squash plant, a Solanaceae plant, a tomato, a banana plant, a potato plant, a pepper plant, a moss plant, a parsley plant, a sunflower plant, a mustard plant, a sorghum plant, a millet plant, a citrus plant, an apple plant, a strawberry plant, a rapeseed plant, a cabbage plant, a cassava plant, a coffee plant, a sweet potato plant, a jatropha plant, or a switchgrass plant. In some such methods, the plant expresses a wild-type NPR1 gene. In some such methods, the plant does not express a wild-type NPR1 gene.


Another aspect of the present disclosure provides all that is described and illustrated herein.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying Figures and Examples are provided by way of illustration and not by way of limitation. The foregoing aspects and other features of the disclosure are explained in the following description, taken in connection with the accompanying example figures (also “FIG.”) relating to one or more embodiments, in which:



FIGS. 1A-1K show NPR1 is required for cell survival and accumulation of ubiquitinated proteins. In FIGS. 1A-1C, half leaves (left side) of Col-0, npr1-2 and sid2-2 plants were infiltrated with (mock) or Psm ES4326/AvrRpt2 (Avr). At 2 dpi, the adjacent leaf halves were infiltrated with the same pathogen. Cell death was assessed by tissue collapse at 1 dpi (FIG. 1A) and conductivity assay (FIG. 1B). Growth of Psm ES4326/AvrRpt2 (Tetr) was measured in the adjacent leaf halves after the first inoculation with Psm ES4326/AvrRpm1 (Avr; Kanr) (FIG. 1C). Data are presented as mean±SD (FIG. 1B), and mean±95% confidence intervals (FIG. 1C). In FIG. 1D, half leaves of plants expressing dex:AvrRpt2 in Col-0, npr1-2, and rps2 were inoculated as in FIG. 1B. At 2 dpi, the adjacent leaf halves were infiltrated with 25 mM dexamethasone (dex) and cell death was assessed as in FIG. 1B. Data are presented as mean±SD. In FIGS. 1E-1G, Col-0, rps2 and npr1-2 plants were treated with water (mock) or 1 mM SA 24 hr before inoculation with Psm ES4326/AvrRpt2. Cell death was assessed by trypan blue staining (FIG. 1E) and conductivity assay (FIG. 1F). Bacterial growth was measured at 1 dpi (FIG. 1G). Data are presented as mean±SD (FIG. 1F), and mean±95% confidence intervals (FIG. 1G). In FIG. 1H, plants expressing dex:AvrRpt2 in Col-0, npr1-2 and rps2 were treated as in FIGS. 1E-1G before treatment with 25 μM dexamethasone (dex). Cell death was assessed as in FIG. 1B. Data are presented as mean±SD. In FIGS. 1I-1J, Ws-2 (FIG. 1I) or Col-0 and npr1-2 (FIG. 1J), were treated as in FIGS. 1E-1G before inoculation with Pf Pf0-1/AvrRps4 or Pf Pf0-1/AvrRps4KRVY-AAAA. Cell death was assessed as in FIG. 1B. Data are presented as mean±SD. In FIG. 1K, Col-0 and npr1-2 plants were treated with SA for 6 hr. Total proteins were probed with α-Ub and α-NPR1. See also FIGS. 8A-8E.



FIGS. 2A-2I show NPR1 accumulates in the cytoplasm and forms cysteine-dependent condensates. FIG. 2A shows subcellular fractionation of Col-0 after 6 hr SA treatment. Cytoplasmic (C), nuclear (N) and combined (C+N) fractions were probed with α-NPR1 and α-Ub antibodies. Band intensities (b.i.)in the upper blot are shown as percentages of the combined C+N levels. The middle blot (a longer exposure of the upper blot) shows the higher MW NPR1 bands. FIG. 2B shows localization of NPR1-GFP and sim3-GFP in transient expression in Col-0 seedlings treated with SA for 2 hr. Scale bar=20 μm. FIGS. 2C-2E show single-cell time-lapse imaging of NPR1-GFP condensation induced by 5 mM SA. Imaging was started 40 min after SA induction (time 0) for a duration of 2 hr. Images from selected time points (FIG. 2C), fluorescence intensity per body (FIG. 2D) and number of bodies (FIG. 2E) are shown. Scale bar=20 μm. Data are presented as mean±SE (FIG. 2D). FIG. 2F shows predicted RDR regions of NPR1. Values represent differential IDR score. Dots indicate position of cysteine residues (red), and known point mutations and their alleles (black). FIGS. 2G and 2H show localization of NPR1-GFP and rdr3-GFP after treatment with 5 mM SA for 2 hr (FIG. 2G). Scale bar=20 μm. Insets show enlarged nuclei at lower exposure. FIG. 2H shows total fluorescence intensity of bodies from SA-treated samples. Data are presented as mean±SE. FIG. 2I shows transactivation of the PR1 promoter by NPR1 and rdr3 after treatment with 2 mM SA for 24 hr. Values represent the PR1 promoter activity plotted relative to free HA. Data are represented as mean±SD. See also FIGS. 8A-8E, 9A-9E and 10A-10I; Tables 3 and 4.



FIGS. 3A-3F show NPR1 condensates are enriched in stress proteins. FIG. 3A shows functional categorization of sim3-GFP interactome (SINC components). The relative sizes of functional groups (left) and the number of proteins at their intersection (right) are shown. FIG. 3B shows representative SINC components from four major functional groups. Black dots indicate confirmed localization in cytoplasmic NPR1 condensates. FIG. 3C shows co-localization of sim3-GFP with free mCherry or mCherry-fused SINC components, EDS1, BCS1, GSTU19 after treatment with 1 mM SA for 5 hr. Scale bar=20 μm. In FIGS. 3D-3F, Col-0 and npr1-2 plants were treated with water (mock) or 1 mM SA 24 hr before inducing cell death with indicated stresses. Cell death was assessed by conductivity assay. Data are presented as mean±SD. See also FIGS. 11A-11H; Table 5.



FIGS. 4A-4L show NPR1 recruits CUL3 to its cytoplasmic condensates. FIG. 4A shows interaction of Myc-CUL3 with HA-fused NPR1 or its variants in N. benthamiana. Plants were treated with water (−) or 1 mM SA (+) for 5 hr before co-IP. FIG. 4B shows interaction of GFP-fused NPR1, sim3 and ABTB with the endogenous CUL3 in transgenic Arabidopsis. Plants were treated with 1 mM SA for 24 hr before co-IP. FIG. 4C shows interaction of Myc-CUL3 with GST-fused NPR1 or its variants in E. coli. Total protein from E. coli co-expressing Myc-CUL3 with either of GST-NPR1 variants or GST was used in the pull-down assay. FIG. 4D shows inhibition of CUL3-BTB interaction by the CTD in N. benthamiana. The three proteins, Myc-CUL3, BTB-HA and CTD-GFP, were co-expressed at 1:1:0 (0), 1:1:0.25 (1/4), 1:1:0.5 (1/2) and 1:1:1 (1) ratios, respectively, before co-IP. FIGS. 4E-4F show interaction of CUL3 with NPR1, sim3 or S55/59D in the BiFC assay after treatment with 1 mM SA for 5 hr. Scale bar=10 μm. BiFC signal intensity was quantified and values are plotted relative to CUL3/NPR1 (FIG. 4F). Data are presented as mean±SE. FIG. 4G shows localization of NPR1-GFP, sim3-GFP and S55/59D-GFP in N. benthamiana treated with water (mock) or 5 mM SA for 2 hr. Scale bar=10 μm. FIG. 4H shows interaction of Myc-CUL3 with HA-fused NPR1 or rdr mutants in N. benthamiana after treatment with 1 mM SA for 5 hr before co-IP. FIGS. 4I-4L show localization of GFP-CUL3 in NbNPR1-silenced N. benthamiana after treatment with 5 mM SA for 2 hr (FIG. 4I). Scale bar=20 μm. Total fluorescence intensity per body (FIG. 4J) and number of bodies per cell (FIG. 4K) were quantified relative to the E.V. control. Data are presented as mean±SE. Expression levels were verified by GFP-CUL3 immunoblotting (FIG. 4L). See also FIGS. 12A-12D and 13A-13F.



FIGS. 5A-5E show NPR1-CUL3 cytoplasmic condensates are active ubiquitination complexes. FIG. 5A shows co-localization of CUL3/sim3 BiFC bodies with mCherry-fused organelle and protein body markers in N. benthamiana treated with 1 mM SA for 5 hr SA. Scale bar=20 μm. Representative co-localizations with Ubiquitin and NBR1 are shown (left). FIG. 5B shows co-localization of sim3-GFP with mCherry-NBR1 in the presence of Myc-CUL3 or free Myc in N. benthamiana treated with 1 mM SA for 5 hr. Scale bar=20 μm. FIG. 5C shows interaction between Myc-CUL3 and HA-fused NPR1 or sim3 in N. benthamiana treated with SA for 5 hr before the pull-down assay (upper panels). Total ubiquitination was tested in the “input” fractions (lower panels). FIG. 5D shows total ubiquitination in N. benthamiana expressing Myc-CUL3 or Myc-CUL3ARBX1, sim3-GFP or GFP, and V5-Ub, after treatment with 1 mM SA for 5 hr. FIG. 5E shows total ubiquitination in the NbCUL3-silenced N. benthamiana or in the E.V. control expressing sim3-GFP and V5-Ub, after treatment with 1 mM SA for 5 hr. See also FIGS. 13A-13F.



FIGS. 6A-6I show SINC-localized proteins are targeted for degradation by NPR1-CRL3. FIG. 6A shows interaction of EDS1-mCherry with HA-fused NPR1 or sim3 in N. benthamiana after treatment with 1 mM SA for 5 hr before co-IP. FIG. 6B shows interaction of EDS1 with NPR1 in E. coli. Total protein from E. coli co-expressing FLAG-EDS1 with GST-NPR1 or GST was used for pull-down assay. FIG. 6C shows co-localization of NPR1/CUL3 or sim3/CUL3 BiFC bodies with EDS1-mCherry after treatment with 1 mM SA for 5 hr. Values quantified from free mCherry samples (not shown) are included in the quantification. Scale bar=20 μm. FIG. 6D shows stability of EDS1 in Col-0 or npr1-2 mutant. Seedlings were incubated in water (−) or 1 mM SA (+) for 4 hr, with (+) or without (−) subsequent addition of 100 μM cycloheximide (CHX). After 16 hours of co-incubation, total protein was probed with α-EDS1 and α-NPR1 antibodies. FIG. 6E shows ubiquitination of EDS1 in Col-0, npr1-2 and eds1-2 mutants treated with water (Mock) or 1 mM SA for 6 hr. FIG. 6F shows co-localization of sim3/CUL3 BiFC bodies with mCherry-fused WRKY54 or WRKY70 in N. benthamiana treated with 1 mM SA for 5 hr. Scale bar=20 μm. FIG. 6G shows stability of WRKY70-GFP in Col-0 or npr1-2 mutant. Seedlings were treated with 1 mM SA or 50 μM MG132 or in combination for 24 hr, and total protein was probed with α-GFP, α-NPR1 and α-TUB antibodies. FIG. 6H shows ubiquitination of WRKY70-GFP in Col-0 or npr1-2 mutant treated with 1 mM SA for 24 h before immunoprecipitation of WRKY70-GFP under denaturing conditions (dn). FIG. 6I shows NPR1- and sim3-dependent ubiquitination of FLAG-WRKY70 by the NPR1-CRL3 ubiquitination reconstituted in E. coli. FLAG-WRKY70 was immunoprecipitated under denaturing conditions (dn) using α-FLAG beads. See also FIGS. 14A-14D.



FIGS. 7A-7D show NPR1 promotes survival during ETI by targeting WRKY54 and WRKY70. In FIGS. 7A-7C, Col-0, rps2, npr1-2, wrky54 wrky70 (w54w70), and npr1 wrky54 wrky70 (n1w54w70) plants were treated with water (mock) or 1 mM SA 24 hr before inoculation with Psm ES4326/AvrRpt2. Cell death was assessed by trypan blue staining (FIG. 7A) and conductivity assay (FIG. 7B). Bacterial growth was measured at 1 dpi (FIG. 7C). Data are presented as mean±SD (FIG. 7B), and mean±95% confidence intervals (FIG. 7C). FIG. 7D shows a proposed model for NPR1 function in promoting cell survival during ETI. “P”, phosphorylation at S55/59; “S”, SUMOylation; “U”, ubiquitination; “W”, WRKY TFs; “NPR1C”, NPR1 condensate.



FIGS. 8A-8E show effect of SA and NPR1 on ETI-triggered cell death. Related to FIGS. 1A-1K and 2A-2I. In FIG. 8A, half leaves (left side) of plants expressing est:AvrRpt2 in Col-0, sid2-2 and rps2 backgrounds were infiltrated with MgSO4 (mock) or Psm ES4326/AvrRpm1


(Avr). At 2 dpi, the adjacent halves were infiltrated with 50 μM estradiol, followed by cell death measurement using the conductivity assay. Data are presented as mean±SD. In FIG. 8B, Col-0 and npr1-2 plants were treated with indicated concentrations of SA (mM) 24 hr before inoculation with Psm ES4326/AvrRpt2. Cell death was measured using the conductivity assay. Data are presented as mean±SD. In FIG. 8C, the ATR1/RPP1 effector/receptor pair was expressed in the NbNPR1-silenced N. benthamiana or E.V. control. At 20 hpi, tissue was sampled and cell death was measured using the conductivity assay in the presence or absence of 1 mM SA (SA or mock, respectively) at 0 and 24 hr after sampling. Data are presented as mean±SD. In FIG. 8D, Col-0 plants were treated with SA for 6 hr, and leaf tissue was used for subcellular fractionation. Proteins from cytoplasmic and nuclear fractions were run on low-resolution gel and probed with α-NPR1 and α-Ub antibodies. In FIG. 8E, the sim3-GFP/npr1-2 transgenic plant was infected at the tip with Psm ES4326/AvrRpt2. At 24 hpi, tissue was sampled from the death-survival boundary (diagram), stained with propidium iodide (PI) to distinguish dead cells (stained nuclei) from living cells (stained apoplast), and imaged. GFP and PI signals were captured from 20 consecutive confocal planes along the Z-axis and across a defined region in the XY-plane covering both dead and living cells (dashed line). Z-projection and XY-stitching were performed to produce the final image. Enlargements from regions adjacent to- and distant from the cell death zone (dashed rectangles) are shown in bottom panels. Scale bar=100 μm (top panels); 20 μm (bottom panels).



FIGS. 9A-9E show formation of cytoplasmic condensates correlates with predicted redox-sensitive disordered regions in NPR proteins. Related to FIGS. 2A-2I. FIGS. 9A-9C show localization of GFP-fused Arabidopsis NPR1-6 in N. benthamiana after treatment with water (mock) or 5 mM SA for 2 hr (FIG. 9A). Scale bar=10 μm. Insets show enlarged nuclei at lower exposure to visualize the nuclear bodies. FIG. 9B shows quantification of cytoplasmic bodies from the SA-treated samples. Data are presented as mean±SE. FIG. 9C shows validation of NPR-GFP fusion protein expression levels by GFP immunoblotting. FIG. 9D shows interaction of NPR1 with its paralogs NPR2-6 in BiFC assay. Imaging was done after treatment with water (mock) or 1 mM SA for 5 hr. Scale bar=10 μm. FIG. 9E shows prediction of redox-sensitive disorder regions (RDRs) in NPRs (NPR1-6) with the IUPred2a algorithm (iupred2a.elte.hu/). Values represent disorder score predicted for each protein with WT (redox plus) or mutated (redox minus) cysteines. Orange bars indicate the size and position of the identified putative RDRs (shaded regions) with disorder scores>0.5.



FIGS. 10A-10I show analysis of rdr mutants. Related to FIGS. 2A-2I. FIGS. 10A-10C show localization of NPR1-GFP, rdr1-GFP, rdr2-GFP and rdr3-GFP in N. benthamiana in the absence of SA (FIG. 10A). Scale bar=20 μm. FIG. 10B shows quantification of total fluorescence intensity from each body. Values are plotted relative to NPR1-GFP. Data are presented as mean±SE. Validation of fusion protein expression levels by GFP immunoblotting. sim3-GFP is included as a control. FIG. 10D shows nuclear-cytoplasmic partitioning of NPR1-GFP, rdr1-GFP, rdr2-GFP and rdr3-GFP expressed in N. benthamiana in the absence of SA. Total fluorescence intensities from nuclei were quantified as a fraction of total fluorescence intensity of the entire cell. FIG. 10E shows transactivation of the PR1 promoter by NPR1, rdr1-3, sim3 and S55/59D after treatment with 2 mM SA for 24 hr. Values represent the PR1 promoter activity measured as ratio of F-LUC and R-LUC activities and plotted relative to free HA. Data are presented as mean±SD. FIG. 10F shows morphology of npr1-2 mutant and transgenic plants expressing NPR1-GFP, rdr1-GFP, rdr2-GFP and rdr3-GFP in the npr1-2 background. In FIGS. 10G-10I, the npr1-2 mutant and transgenic plants expressing NPR1-GFP/npr1-2, rdr1-GFP/npr1-2 [lines #15 and #18] (FIG. 10G), rdr2-GFP/npr1-2 [lines #8 and #17] (FIG. 10H) and rdr3-GFP/npr1-2 [lines #5 and #8] (FIG. 10D were treated with 1 mM SA 24 hr before inoculation with Psm ES4326/AvrRpt2. Cell death was monitored using the conductivity assay starting at 1 hpi. Data are presented as mean±SD.



FIGS. 11A-11H show sample preparation, quality test, and GO term analysis of the sim3-GFP interactome. Related to FIGS. 3A-3F. In FIG. 11A, transgenic plants expressing sim3-GFP in WT NPR1 background (sim3-GFP/Col-0) were treated with water (mock) or 1 mM SA for 24 hr, and subcellular localization of sim3-GFP was analyzed. Scale bar=20 μm. In FIG. 11B, total protein was extracted from plants in FIG. 11A, subjected to SDS-PAGE and probed with an α-Ub antibody. Tubulin detected by an α-TUB antibody was used as a loading control. In FIG. 11C, sim3-GFP was immunoprecipitated using GFP-trap beads in three replicate reactions (1, 2, 3) from the extracts in FIG. 11B. A 5 μl aliquot of the beads from each reaction was subjected to SDS-PAGE and silver-stained. The sim3-GFP band (˜94 kDa) is indicated by the red triangle. FIGS. 11D-11E show principal component analysis (PCA) (FIG. 11D) and two-dimensional hierarchical clustering (FIG. 11E) of proteins identified in the sim3-GFP interactome with >2-fold change between SA and mock at p<0.05. For each replicate, values represent intensities detected for individual proteins normalized to the intensity of the bait protein sim3-GFP in the same sample. FIGS. 11F-11H show Gene Ontology (GO) terms of the sim3-GFP interactome. List of proteins (171) identified in the sim3-GFP interactome were submitted to the ShinyGO v0.60: Gene Ontology Enrichment Analysis tool (bioinformatics.sdstate.edu/go/) using default parameters. A Fisher's exact test was applied to identify most enriched GO terms in Biological Process (FIG. 11F), Molecular Function (FIG. 11G), and Cellular Component (FIG. 11H) categories.



FIGS. 12A-12D show in planta screen of NPR1 mutants for interaction with CUL3. Related to FIGS. 4A-4L. FIG. 12A shows a diagram of NPR1 protein truncations and point mutants used in the screen for interaction with CUL3. FIG. 12B shows representative subcellular localization patterns of GFP-fused WT NPR1, its truncations and point mutants depicted in FIG. 12A after 1 mM SA treatment. Fusion proteins expressed in N. benthamiana followed by treatment with 1 mM SA for 5 hr before imaging. Scale bar=10 μm. FIG. 12C shows interaction between Myc-CUL3 or GFP-CUL3 and HA-tagged NPR1 truncations and point mutant variants. Proteins were expressed in N. benthamiana followed by treatment with 1 mM SA for 5 hr and co-IP with α-HA beads (above). Summary table of co-IP results (below). Letters in the table indicate the predominant subcellular localization for each GFP-fused NPR1 variant: C, cytoplasm; N, nucleus; C/N, cytoplasm and nucleus. Numbers in the table represent interaction strength for each variant quantified using the CUL3 band intensity pulled down by WT NPR1 as 1. FIG. 12D shows localization of ACTD-GFP in N. benthamiana treated with water (mock) or with 1 mM SA for 5 hr before imaging. Scale bar=10 μm.



FIGS. 13A-13F show analysis of NPR-CUL3 interactions. Related to FIGS. 4A-4L and 5A-5E. FIG. 13A shows interaction between NPR1 and NPR1-4 in BiFC assay was performed in N. benthamiana. The free mCherry, nYFP-fused CUL3 (YN-CUL3) and cYFP-fused NPR1 (NPR1-YC), NPR2 (NPR2-YC), NPR3 (NPR3-YC) and NPR4 (NPR4-YC) were co-expressed and images were captured from leaves treated with 1 mM SA for 5 hr. Scale bar=10 μm. FIG. 13B shows interaction of Myc-CUL3 with NPR1-HA, NPR2-HA, NPR3-HA, NPR4-HA, NPRS-HA, NPR6-HA or sim3-HA in N. benthamiana. Plants were treated with 1 mM SA for 5 hr followed by co-IP performed on total protein using α-HA beads. FIG. 13C shows images of plants 10 days after inoculation with VIGS (virus-induced gene silencing) vectors carrying the NbNPR1, NbCUL3 or NbPDS (phytoene desaturase) RNAi fragment. Silencing of NbCUL3 caused delay in plant growth, consistent with the essential role of CUL3-dependent ubiquitination. Scale bar=4 cm. FIG. 13D shows validation of gene silencing by qPCR analysis of NbNPR1 (left) and NbPR1 (middle) and NbCUL3 (right) transcripts. Expression of NbPR1 was tested in plants treated with water (mock) or 1 mM SA for 5 hr. Data are presented as mean±SD. FIG. 13E shows representative images of co-localization analysis of sim3/CUL3 BiFC signal with markers of protein bodies and organelles (FIG. 5A). The sim3-YC/YN-CUL3 BiFC pair was co-expressed in N. benthamiana with mCherry-fused markers: TGN (trans-Golgi network/early endosome) and MVB (multivehicular body/late endosome), HSC70 (heat shock protein 70) and ATG8 (autophagy protein 8a). FIG. 13F shows relative band intensity of the total ubiquitination blot shown in the lower panel of FIG. 5C. Intensities were measured along the entire lane and normalized to that of the 0 mM SA sample for each set of interactions.



FIGS. 14A-14D show stability and ubiquitination of SINC-localized proteins. Related to FIGS. 6A-6I. FIG. 14A shows stability of EDS1 and NIMIN1 in Col-0 or npr1-2 mutant. Seedlings were treated with water (−) or 1 mM SA for 4 hr, with (+) or without (−) subsequent addition of 100 μM cycloheximide (CHX). After 16 hours of co-incubation, total protein was extracted and immunoblotted with α-EDS1, α-NIMIN1, α-NPR1 and α-TUB (tubulin) antibodies. A higher exposure is shown for theEDS1 blot in the npr1-2 background such that the intensity of control sample (-CHX) is similar to the corresponding sample in the Col-0 background. FIG. 14B shows co-localization of NIM1-interacting 1 (NIMIN1) with NPR1 in SINCs. mCherry-fused NIMIN1 (NINIM1-mCherry) was co-expressed with NPR1-GFP in N. benthamiana followed by treatment with 1 mM SA for 5 hr before imaging. Scale bar=20 μm. FIG. 14C shows a diagram of the E. coli-based ubiquitination system for testing NPR1-dependent ubiquitination of WRKY70. E. coli cells were transformed with three plasmids, each expressing the indicated components of the ubiquitination reaction under the control of lactose operator and Shine-Dalgarno sequence (rbs). Control strains were transformed with the same plasmids except that GST-NPR1 was replaced by either GST-sim3 or GST. FIG. 14D shows an immunoblot of the FLAG-WRKY70 ubiquitination reaction (FIG. 6I) showing levels of Myc-CUL3, GST-NPR1, GST-sim3 and GST before immunoprecipitation.





DETAILED DESCRIPTION

For the purposes of promoting an understanding of the principles of the present disclosure, reference will now be made to preferred embodiments and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the disclosure is thereby intended, such alteration and further modifications of the disclosure as illustrated herein, being contemplated as would normally occur to one skilled in the art to which the disclosure relates.


Articles “a” and “an” are used herein to refer to one or to more than one (i.e., at least one) of the grammatical object of the article. By way of example, “an element” means at least one element and can include more than one element.


“About” is used to provide flexibility to a numerical range endpoint by providing that a given value may be “slightly above” or “slightly below” the endpoint without affecting the desired result.


The use herein of the terms “including,” “comprising,” or “having,” and variations thereof, is meant to encompass the elements listed thereafter and equivalents thereof as well as additional elements. As used herein, “and/or” refers to and encompasses any and all possible combinations of one or more of the associated listed items, as well as the lack of combinations where interpreted in the alternative (“or”).


As used herein, the transitional phrase “consisting essentially of” (and grammatical variants) is to be interpreted as encompassing the recited materials or steps “and those that do not materially affect the basic and novel characteristic(s)” of the claimed invention. Thus, the term “consisting essentially of” as used herein should not be interpreted as equivalent to “comprising.”


Moreover, the present disclosure also contemplates that in some embodiments, any feature or combination of features set forth herein can be excluded or omitted. To illustrate, if the specification states that a complex comprises components A, B and C, it is specifically intended that any of A, B or C, or a combination thereof, can be omitted and disclaimed singularly or in any combination.


Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. For example, if a concentration range is stated as 1% to 50%, it is intended that values such as 2% to 40%, 10% to 30%, or 1% to 3%, etc., are expressly enumerated in this specification. These are only examples of what is specifically intended, and all possible combinations of numerical values between and including the lowest value and the highest value enumerated are to be considered to be expressly stated in this disclosure.


A nucleic acid is “operably connected” or “operably linked” when it is placed into a functional relationship with a second nucleic acid sequence. For instance, a promoter is operably linked to a coding sequence if the promoter is connected to the coding sequence or insert site such that it may affect transcription or expression of the coding sequence.


The nucleic acids described herein be operably linked to one or more expression control elements. “Expression control elements” are sequences that modulate expression of the gene, either through modulation of transcription of the gene, modulation of translation on an mRNA transcribed from the gene, or a combination of modulation of transcription and translation. Expression control elements include, but are not limited to, promoters, enhancers, 3′ untranslated sequence, and 5′ untranslated sequences.


The nucleic acids described herein may be operably linked to a promoter or a combination of a promoter and one or more uORFs. The terms “promoter,” “heterologous promoter,” “promoter region,” or “promoter sequence” refer generally to transcriptional regulatory regions of a gene, which may be found at the 5′ or 3′ end of the coding region, or within the coding region of the heterologous coding sequence, or within introns. Typically, a promoter is a DNA regulatory region capable of binding RNA polymerase in a cell and initiating transcription of a downstream (3′ direction) coding sequence. The typical 5′ promoter sequence is bounded at its 3′ terminus by the transcription initiation site and extends upstream (5′ direction) to include the minimum number of bases or elements necessary to initiate transcription at levels detectable above background. Within the promoter sequence is a transcription initiation site, as well as protein binding domains (consensus sequences) responsible for the binding of RNA polymerase. The promoter may be the endogenous promoter of an endogenous gene modified to include heterologous R-motif, uORF, and/or 5′ regulatory sequences (i.e., separately or in combination). The promoter may be natively associated with the 5′ UTR chosen, but be operably connected to a heterologous coding sequence.


Promoters include, but are not limited to, constitutive promoters, inducible promoters, temporally-regulated promoters, developmentally regulated promoters, chemically regulated promoters, tissue-preferred promoters, and tissue-specific promoters. A promoter suitable for expression in plants includes, but is not limited to, a TBF1 promoter (from any plant species including Arabidopsis), a 35S promoter (such as from a cauliflower mosaic virus), a ubiquitin promoter, a tCUP cryptic constitutive promoter, a Rsyn7 promoter, a pathogen-inducible promoter, a maize In2-2 promoter, a tobacco PR-1a promoter, a glucocorticoid-inducible promoter, an estrogen-inducible promoter, a tetracycline-inducible promoter, a tetracycline-repressible promoter, a T3 promoter, a T7 promoter, and a SP6 promoter. Those of skill in the art are familiar with a wide variety of additional promoters for use in various cell types. In some embodiments, the promoter includes a plant promoter. In some embodiments, the promoter includes a plant promoter inducible by a plant pathogen or chemical inducer. The promoter may be a seed-specific or fruit-specific promoter.


An upstream open reading frame (uORF) is an open reading frame (ORF) within the 5′ untranslated region (5′ UTR) of an mRNA. uORFs can regulate eukaryotic gene expression, such as through suppression of translation. Translation of the uORF may inhibit or increase downstream expression of the primary ORF (e.g., by translation suppression). As one example, a uORF can be a TBF1 uORF (e.g., Arabidopsis thaliana TBF1), such as uORF1 or uORF2. See, e.g., Pajerowska-Mukhtar et al. (2012) Curr. Biol. 22 (2): 103-112; Xu et al. (2017) Nature 545(7655):491-494; US 2018-0273965; U.S. Pat. No. 10,584,346; US 2015-0113685; U.S. Pat. No. 10,017,773; WO 2013/096567; US 2019-0352664; and WO 2018/144831, each of which is herein incorporated by reference in its entirety for all purposes.


“Salicylic acid-induced NPR1 condensates” (SINCs) are cytoplasmic organelle-like structures that contain NPR1 protein and Cullin 3 RING E3 ligase (CLR3) and are enriched in proteins that regulate death, redox metabolism, DNA damage response, and protein quality control machineries, including ubiquitination. SINC formation in wild-type plants is dependent on NPR1 and salicylic acid. In the absence of salicylic acid, wild-type NPR1 does not induce formation of SINCs. However, in the presence or salicylic acid, wild-type NPR1 initiates formation of condensates.


“Salicylic acid-independent NPR1 condensates” are NPR1 condensates that are functionally similar to SINCs and form in the absence of salicylic acid. Formation of salicylic acid-independent NPR1 condensates is induced by certain mutant npr1 proteins described herein in the absence of salicylic acid.


An “intrinsically disordered region” (IDR) is a region of a protein that does not have, or is not predicted to have, a fixed or ordered three-dimensional structure in the absence of interaction partners. IDRs can be determined or predicted using methods known in the art. IDRs can be predicted using algorithms such as, but not limited to, the IUPred2a algorithm. IUPred2A can be used to predict disordered protein regions using the IUPred2 algorithm and optionally disordered binding regions using ANCHOR2. IUPred2 returns a score between 0 and 1 for each residue in an input protein (amino acid) sequence corresponding to the probability that the given residue is part of a disordered region. IUPred2A is also capable of identifying protein regions that do or do not adopt a stable structure depending on the redox state of their environment.


A “redox-sensitive intrinsically disordered region” (RDR) is an IDR that is sensitive to oxidations. Redox-sensitivity can be determined or predicted using methods known in the art. Redox-sensitivity can be predicted using algorithms such as, but not limited to, IUPred2a algorithm. RDRs can be determined or predicted using methods known in the art. RDRs can be predicted using algorithms such as, but not limited to, the IUPred2a algorithm. In some embodiments, an RDR contains one or more cysteine residues. In some embodiments, an RDR region comprises a string of 5 or more contiguous amino acids wherein the differential IDR score ((Redox minus)−(Redox plus)) determined for each amino acid is greater than or equal to about 0.15. Redox minus and redox plus scores can be determined using the IUPred2a algorithm. In some embodiments, an RDR region comprises a string of 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, or more consecutive amino acids wherein the differential IDR score ((Redox minus)−(Redox plus)) each amino acid is greater than or equal to about 0.15.


A “homolog” or “homologous” sequence (e.g., nucleic acid sequence) includes a sequence that is either identical or substantially similar to a known reference sequence, such that it is, for example, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identity to the known reference sequence. Sequence identity can be determined by aligning sequences using algorithms, such as BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package Release 7.0, Genetics Computer Group, 575 Science Dr., Madison, Wis.), using default gap parameters, or by inspection, and the best alignment (i.e., resulting in the highest percentage of sequence similarity over a comparison window). Percentage of sequence identity is calculated by comparing two optimally aligned sequences over a window of comparison, determining the number of positions at which the identical residues occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of matched and mismatched positions not counting gaps in the window of comparison (i.e., the window size), and multiplying the result by 100 to yield the percentage of sequence identity. Unless otherwise indicated the window of comparison between two sequences is defined by the entire length of the shorter of the two sequences. Homologous sequences can include, for example, orthologs (orthologous sequences) and paralogs (paralogous sequences). Homologous genes, for example, typically descend from a common ancestral DNA sequence, either through a speciation event (orthologous genes) or a genetic duplication event (paralogous genes). “Orthologous” genes include genes in different species that evolved from a common ancestral gene by speciation. Orthologs typically retain the same function in the course of evolution. “Paralogous” genes include genes related by duplication within a genome. Paralogs can evolve new functions in the course of evolution.


“NPR1” (non-expresser of pathogenesis related (PR) genes 1) is a plant gene that encodes the NPR1 protein. NPR1 is a positive regulator of systemic acquired resistance. NPR1 contains a Broad-Complex, Tramtrack and Bric a brac (BTB) domain, and three ankyrin-repeat domains.


Unless otherwise defined, all technical terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs.


Treating plants with salicylic acid (SA) can protect them from cell death induced by both biotic and abiotic stresses, such as a broad spectrum of pathogens, high and low temperature, oxidative stress, and DNA damage through the formation of NPR1 condensates. These SA-induced NPR1 condensates (SINCs) contain many plant nucleotide-binding and leucine-rich repeat (NB-LRR) immune receptors and signaling components, such as EDS1 and PAD4, as well as components in the heat response, redox regulation, DNA damage repair and protein homeostasis (ubiquitination/degradation) pathways. SINC formation serves as a sink for maintaining protein homeostasis during a diverse array of stresses and make plants more resistant. Since SINC formation is an intrinsic property of NPR1, it can be used as a target for engineering broad spectrum stress resistance in different organisms because many of the SINC proteins and the processes that they represent are highly conserved in evolution.


The present disclosure provides, is based, in part on the discovery by the inventors that NPR1 promotes cell survival by targeting substrates for ubiquitination and degradation through salicylic acid (SA)-driven phase separation into cytoplasmic condensates. Further, the inventors show that NPR1 condensates are enriched in cell death regulators including nucleotide-binding leucine-rich repeat immune receptors, redox metabolism proteins, DNA damage repair and protein quality control machineries. Phase separation of NPR1 is required for recruitment of the Cullin 3 RING E3 ligase complex to the condensates and NPR1 can promote cell survival by degrading EDS1 and specific WRKY transcription factors required for ETI. The discovery of distinct functional groups of proteins in the SA-induced NPR1 condensates, herein termed “SINCs”, suggests that NPR1 modulates survival by converging multiple stress-responsive processes in this quasi organelle.


As described above and further described below in the examples, in response to SA, wild-type NPR1 can be found in cytoplasmic condensates (SINCs) that correlate with decreased plant cell death and increased plant tolerance to various stresses, including biotic and abiotic stress. Described herein are variant NPR1 proteins (npr1 proteins) that spontaneously or constitutively form cytoplasmic condensates (NPR1 condensates), i.e., in the absence of SA. The described npr1 proteins induce formation of NPR1 condensates at greater frequency compared to wild type NPR1 protein in the absence of SA. These salicylic acid (SA)-independent NPR1 condensates also correlate with decreased plant cell death and increased plant tolerance to various stresses, including biotic and abiotic stress. Expression of a npr1 protein in a plant cell or plant can be used to increase plant stress tolerance and reduce plant cell death in response to stress.


NPR1 Proteins

In some embodiments, a npr1 protein comprises a NPR1 protein having one or more mutations in at least one redox-sensitive intrinsically disordered region (RDR), wherein the one or more mutations result in the npr1 protein forming salicylic acid-independent NPR1 condensates. In some embodiments, the npr1 protein retains the cytoplasmic functions of NPR1. In some embodiments, the npr1 protein retains the nuclear functions of NPR1. In some embodiments, the npr1 protein retains both the cytoplasmic and nuclear functions of NPR1. Formation of salicylic acid-independent NPR1 condensates is readily determined using the methods described herein. NPR1 contains three RDRs (RDR1, RDR2, and RDR3). The three RDRs of the A. thaliana NPR1 are located at amino acids 140-160, 368-404, and 510-539 (shown in boxes) of














SEQ ID NO: 1 


(MDTTIPGFADSYE1SSTSFVATDNTDSSIVYLAAEQ





VLTGPDVSALQLLSNSFESVFDSPDDFYSDAKLVLSDGREVSFHRCVLSARSSFFKSA







embedded image









embedded image







ANICGKACMKLLDRCKEIIVKSNVDMVSLEKSLPEELVKEIIDRRKELGLEVPKVKKH





VSNVHKALDSDDIELVKLLLKEDHTNLDDACALHFAVAYCNVKTATDLLKLDLAD







embedded image









embedded image







LAQRLFPTEAQAAMEIAEMKGTCEFIVTSLEPDRLTGTKRTSPGVKIAPFRILEEHQSR







embedded image







ETLKKAFSEDNLELGNSSLTDSTSSTSKSTGGKRSNRKLSHRRR).










The RDR regions of homologs and/or orthologs of A. thaliana NPR1 can be identified using RDR predicting algorithms as is described for A. thaliana NPR1. Alternatively, RDR regions of homologs and/or orthologs of A. thaliana NPR1 can be identified by identifying the regions of the NPR1 homologs and/or orthologs corresponding to amino acids 140-160, 368-404, and 510-539 of SEQ ID NO: 1. Suitable orthologs of A. thaliana NPR1 include, but are not limited to, the NPR1 of tobacco, tomato, grape, barley, rice, soybean, melon, corn, rapeseed, cabbage, broccoli, radish, and mustard. Orthologs of SEQ ID NO: 1 include, but are not limited to: SEQ ID NOS: 2-12 and 30-34. The RDR2 region of A. thaliana NPR1 corresponds to amino acids 368-404 or SEQ ID NO: 1. The corresponding RDR2 regions of SEQ ID NOS. 2-12 and 30-34 are shown in Table 1. The corresponding RDR1 and RDR3 regions of SEQ ID NOS. 2-12 and 30-34 can be similarly determined by homology alignment with SEQ ID NO: 1.









TABLE 1







NPR1 RDR2 sequence alignment: NPR1 RDR2 sequence in Arabidopsis



thaliana and orthologs.












SEQ


Plant
RDR2 Sequence Alignment
ID NO.






Arabidopsisthaliana

RTALMIAKQATMAVECNNIPEQCKHSLKGRLCVEILEQEDKR
13






Nicotianabenthamiana

RKALQIAKRLTRLVDFSKSPEEGKSASKDRLCIEILEQAERR
14






SolanumLycopersicon

KKALQIAKRLTRLVDFTKSTEEGKSAPKDRLCIEILEQAERR
15






Vitisvinifera

RNALQIAKRLTRAVDYHKSTEEGKPSPKDQLCVEVLEQAERR
16






Hordeumvulgare

RKAVQIAKRLTKHGDYFGNTEEGKPSPNDKLCIEILEEAERR
17






Medicagotruncatula

RKALQISKRCTKAVDYYKSTEEGKVSSNDRLCIEILEQAERR
18






Nicotianatabacum

RKALQIAKRLTRLVDFSKSPEEGKSASNDRLCIEILEQAERR
19






Oryzasativa

RKAVQISKRLTKQGDYFGVTEEGKPSPKDRLCIEILEQAERR
20






Glycinemax

RKALQISKRLTKAVDYYKSTEEGKVSCSDRLCIEILEQAERR
21






Populustrichocarpa

RKALQISKRLTRAMDYHKSTEEGKASPKERLCIEILEQAERR
22






Cucumismelo

RTAANICQRLTRPKDYHAKTEKGQETNKDRLCIDILEREMWR
23






Zeamays

RKAVQISKRLTKHGDYFGPTEDGKPSPKDRLCIEVLEQAERR
24






Raphanussativus

RTALVIAKQVTKATECCIL ERGKLSAKGGVCVEILKEPDNK
25






Brassicanapus

RTALLIAKQVTKAAECCIL EKGKLAAKGGVCVEILKQPDNK
26






Brassicaoleracea

RTALLIAKQVTKAAECCIL EKGKLAAKGGVCVEILKQPDNT
27






Brassicarapa

RTALLIAKQVTKAAECCIL EKGKLAAKGGVCVEILKQPDNK
28






Brassicajuncea

RTALLIAKQVTKAAECCIL EKGKLAAKGGVCVEILKQPDNK
29









In some embodiments, a npr1 protein comprises an A. thaliana NPR1 protein having one or more mutations in at least one redox-sensitive intrinsically disordered region (RDR), wherein the one or more mutations result in the npr1 protein forming salicylic acid-independent NPR1 condensates. In some embodiments, a npr1 protein comprises an ortholog of an A. thaliana NPR1 protein having one or more mutations in at least one redox-sensitive intrinsically disordered region (RDR), wherein the one or more mutations result in the npr1 protein forming salicylic acid-independent NPR1 condensates. Overexpression of A. thaliana NPR1 or its orthologs has been shown to enhance resistance in a number of horticultural crop plants, including grape, carrot, tomato, apple, citrus, tobacco, and strawberry and in high-acreage agronomic crops such as rice, wheat, soybean, peanut, and potato. See, e.g., Silva et al. (2018) Hortic. Res. 5:15, herein incorporated by reference in its entirety for all purposes. The ortholog can be, but is not limited to, a Nicotiana benthamiana NPR1, a Solanum lycopersicon NPR1, a Vitis vinifera NPR1, a Hordeum vulgare NPR1, a Medicago truncatula NPR1, a Nicotiana tabacum NPR1, a Oryza sativa NPR1, a Glycine max NPR1, a Populus trichocarpa NPR1, a Cucumis melo NPR1, a Zea mays NPR1, a Raphanus sativus NPR1, a Brassica napus NPR1, a Brassica oleracea NPR1, a Brassica rapa NPR1, a Brassica juncea NPR1. The ortholog can be, but is not limited to, a protein comprising the amino acid sequence of SEQ ID NO: 2-12 and 30-34.


In some embodiments, the one or more mutations in the at least one RDR reduce the redox-sensitivity of the RDR.


In some embodiments, a npr1 protein comprises a NPR1 protein having mutations of one or more cysteines in at least one RDR. The one or more cysteines can be located in a single RDR, 2 RDRs (e.g., RDR1 and RDR2, RDR2, and RDR3, or RDR1 and RDR3), 3 RDRs (e.g., RDR1, RDR1 and RDR3), or a combination thereof. In some embodiments, a npr1 protein comprises an A. thaliana NPR1 protein having mutations of one or more cysteines in at least one RDR. The one or more cysteines can be located in a single RDR, 2 RDRs (e.g., RDR1 and RDR2, RDR2, and RDR3, or RDR1 and RDR3), 3 RDRs (e.g., RDR1, RDR1 and RDR3), or a combination thereof. In some embodiments, a npr1 protein comprises an ortholog of an A. thaliana NPR1 protein having mutations of one or more cysteines in at least one RDR. The ortholog can be, but is not limited to, a Nicotiana benthamiana NPR1, a Solanum lycopersicon NPR1, a Vitis vinifera NPR1, a Hordeum vulgare NPR1, a Medicago truncatula NPR1, a Nicotiana tabacum NPR1, a Oryza sativa NPR1, a Glycine max NPR1, a Populus trichocarpa NPR1, a Cucumis melo NPR1, a Zea mays NPR1, a Raphanus sativus NPR1, a Brassica napus NPR1, a Brassica oleracea NPR1, a Brassica rapa NPR1, a Brassica juncea NPR1. The ortholog can be, but is not limited to, a protein comprising the amino acid sequence of SEQ ID NO: 2-12 and 30-34. The npr1 protein can have a mutation of a single cysteine, 2 cysteines, 3 cysteines, 4 cysteines, 5 cysteines, 6 cysteines, or 7 or more cysteines. The mutation can be a substitution, a deletion, or a combination thereof. The mutation at each position can independently be an alanine substitution, a glycine substitution, a serine substitution, a threonine substitution, or a deletion. In some embodiments, the substitution is an alanine.


In some embodiments, a npr1 protein comprises a NPR1 protein having mutations of one or more cysteines, wherein the cysteines are located in a region corresponding to residues 140-160, 368-404, and/or 510-539 of SEQ ID NO: 1. In some embodiments, a npr1 protein comprises an A. thaliana NPR1 protein having mutations of one or more cysteines, wherein the cysteines are located in a region corresponding to residues 140-160, 368-404, and/or 510-539 of SEQ ID NO: 1. In some embodiments, a npr1 protein comprises an ortholog of an A. thaliana NPR1 protein having mutations of one or more cysteines, wherein the cysteines are located in a region corresponding to residues 140-160, 368-404, and/or 510-539 of SEQ ID NO: 1. The ortholog can be, but is not limited to, a Nicotiana benthamiana NPR1, a Solanum lycopersicon NPR1, a Vitis vinifera NPR1, a Hordeum vulgare NPR1, a Medicago truncatula NPR1, a Nicotiana tabacum NPR1, a Oryza sativa NPR1, a Glycine max NPR1, a Populus trichocarpa NPR1, a Cucumis melo NPR1, a Zea mays NPR1, a Raphanus sativus NPR1, a Brassica napus NPR1, a Brassica oleracea NPR1, a Brassica rapa NPR1, a Brassica juncea NPR1. The ortholog can be, but is not limited to, a protein comprising the amino acid sequence of SEQ ID NO: 2-12 and 30-34. The npr1 protein can have a mutation of a single cysteine, 2 cysteines, 3 cysteines, 4 cysteines, 5 cysteines, 6 cysteines, or 7 or more cysteines. The mutation can be a substitution, a deletion, or a combination thereof. The mutation at each position can independently be an alanine substitution, a glycine substitution, a serine substitution, a threonine substitution, or a deletion. In some embodiments, the substitution is an alanine. The cysteine residues in an ortholog of A. thaliana NPR1 may not be in the exact same numerical positions as the cysteines in A. thaliana NPR1. For example, the cysteine residue at position 394 of SEQ ID NO: 1 occurs at position 396 of the Zea mays ortholog (SEQ ID NO: 12).


In some embodiments, a npr1 protein comprises a NPR1 protein having mutations of one or more cysteines, wherein the cysteines are located in a region corresponding to residues 368-404 of SEQ ID NO: 1. In some embodiments, a npr1 protein comprises an A. thaliana NPR1 protein having mutations of one or more cysteines, wherein the cysteines are located in a region corresponding to residues 368-404 of SEQ ID NO: 1. In some embodiments, a npr1 protein comprises an ortholog of an A. thaliana NPR1 protein having mutations of one or more cysteines, wherein the cysteines are located in a region corresponding to residues 368-404 of SEQ ID NO: 1. The ortholog can be, but is not limited to, a Nicotiana benthamiana NPR1, a Solanum lycopersicon NPR1, a Vitis vinifera NPR1, a Hordeum vulgare NPR1, a Medicago truncatula NPR1, a Nicotiana tabacum NPR1, a Oryza sativa NPR1, a Glycine max NPR1, a Populus trichocarpa NPR1, a Cucumis melo NPR1, a Zea mays NPR1, a Raphanus sativus NPR1, a Brassica napus NPR1, a Brassica oleracea NPR1, a Brassica rapa NPR1, a Brassica juncea NPR1. The ortholog can be, but is not limited to, a protein comprising the amino acid sequence of SEQ ID NO: 2-12 and 30-34. The npr1 protein can have a mutation of a single cysteine, 2 cysteines, 3 cysteines, 4 cysteines, 5 cysteines, 6 cysteines, or 7 or more cysteines. The mutation can be a substitution, a deletion, or a combination thereof. The mutation at each position can independently be an alanine substitution, a glycine substitution, a serine substitution, a threonine substitution, or a deletion. In some embodiments, the substitution is an alanine.


In some embodiments, a npr1 protein comprises a NPR1 protein having a mutation of a cysteine located at a position corresponding to residue 394 of SEQ ID NO: 1. In some embodiments, a npr1 protein comprises an A. thaliana NPR1 protein having a mutation of a cysteine at position 394 of SEQ ID NO: 1. In some embodiments, a npr1 protein comprises an ortholog of an A. thaliana NPR1 protein having a mutation of a cysteine located at a position corresponding to residue 394 of SEQ ID NO: 1. The ortholog can be, but is not limited to, a Nicotiana benthamiana NPR1, a Solanum lycopersicon NPR1, a Vitis vinifera NPR1, a Hordeum vulgare NPR1, a Medicago truncatula NPR1, a Nicotiana tabacum NPR1, a Oryza sativa NPR1, a Glycine max NPR1, a Populus trichocarpa NPR1, a Cucumis melo NPR1, a Zea mays NPR1, a Raphanus sativus NPR1, a Brassica napus NPR1, a Brassica oleracea NPR1, a Brassica rapa NPR1, a Brassica juncea NPR1. The ortholog can be, but is not limited to, a protein comprising the amino acid sequence of SEQ ID NO: 2-12 and 30-34. The mutation can be a substitution or a deletion. The substitution can be an alanine substitution, a glycine substitution, a serine substitution, or a threonine substitution. In some embodiments, the substitution is an alanine. In some embodiments, the npr1 protein comprises the amino acid sequence of SEQ ID NO: 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, or 153.


In some embodiments, a npr1 protein comprises an A. thaliana NPR1 protein having a mutation of a cysteine at position 378 of SEQ ID NO: 1, position 385 of SEQ ID NO: 1, position 394 of SEQ ID NO: 1, positions 378 and 385 of SEQ ID NO: 1, positions 378 and 394 of SEQ ID NO: 1, positions 385 and 394 of SEQ ID NO: 1, or positions 378, 385, and 394 of SEQ ID NO: 1. The mutations can be substitutions, deletions, or a combination thereof. The mutation at each position can independently be an alanine substitution, a glycine substitution, a serine substitution, a threonine substitution, or a deletion. In some embodiments, the substitution is an alanine. In some embodiments, the npr1 protein comprises the amino acid sequence of SEQ ID NO: 134.


In some embodiments, a npr1 protein comprises a NPR1 protein having mutations of one or more cysteines, wherein the cysteines are located in a region corresponding to residues 140-160 of SEQ ID NO: 1. In some embodiments, a npr1 protein comprises an A. thaliana NPR1 protein having mutations of one or more cysteines, wherein the cysteines are located in a region corresponding to residues 140-160 of SEQ ID NO: 1. In some embodiments, a npr1 protein comprises an ortholog of an A. thaliana NPR1 protein having mutations of one or more cysteines, wherein the cysteines are located in a region corresponding to residues 140-160 of SEQ ID NO: 1. The ortholog can be, but is not limited to, a Nicotiana benthamiana NPR1, a Solanum lycopersicon NPR1, a Vitis vinifera NPR1, a Hordeum vulgare NPR1, a Medicago truncatula NPR1, a Nicotiana tabacum NPR1, a Oryza sativa NPR1, a Glycine max NPR1, a Populus trichocarpa NPR1, a Cucumis melo NPR1, a Zea mays NPR1, a Raphanus sativus NPR1, a Brassica napus NPR1, a Brassica oleracea NPR1, a Brassica rapa NPR1, a Brassica juncea NPR1. The ortholog can be, but is not limited to, a protein comprising the amino acid sequence of SEQ ID NO: 2-12 and 30-34. The mutation can be a substitution, a deletion, or a combination thereof. The mutation at each position can independently be an alanine substitution, a glycine substitution, a serine substitution, a threonine substitution, or a deletion. In some embodiments, the substitution is an alanine.


In some embodiments, a npr1 protein comprises an A. thaliana NPR1 protein having a mutation of a cysteine at one or more of positions 150, 155, 156, and 160 of SEQ ID NO: 1. In some embodiments, a npr1 protein comprises an A. thaliana NPR1 protein having a mutation of a cysteine at position 150 of SEQ ID NO: 1; position 155 of SEQ ID NO: 1; position 156 of SEQ ID NO: 1; position 160 of SEQ ID NO: 1; positions 150 and 155 of SEQ ID NO: 1; positions 150 and 156 of SEQ ID NO: 1; positions 150 and 160 of SEQ ID NO: 1; positions 155 and 156 of SEQ ID NO: 1; positions 155 and 160 of SEQ ID NO: 1; positions 156 and 160 of SEQ ID NO: 1; positions 150, 155, and 156 of SEQ ID NO: 1; positions 150, 156, and 160 of SEQ ID NO: 1; positions 150, 155, and 156 of SEQ ID NO: 1; positions 155, 156, and 160 of SEQ ID NO: 1; or positions 150, 155, 156, and 160 of SEQ ID NO: 1. The mutation can be a substitution, a deletion, or a combination thereof. The mutation at each position can independently be an alanine substitution, a glycine substitution, a serine substitution, a threonine substitution, or a deletion. In some embodiments, the substitution is an alanine. In some embodiments, the npr1 protein comprises the amino acid sequence of SEQ ID NO: 134.


In some embodiments, a npr1 protein comprises a npr1 ACTD protein, a BTB domain npr1 protein, or a npr1 sim3 protein. A ACTD npr1 comprises a NPR1 protein having a deletion of amino acids corresponding to amino acids 1-364 of SEQ ID NO: 1 or an ortholog thereof. A BTB npr1 protein consists the BTB domain of NPR1 corresponding to amino acids 65-144 of SEQ ID NO: 1 or an ortholog thereof. A npr1sim3 protein comprises a SUMOylation-deficient mutant of NPR1.


In some embodiments, the npr1 protein has increased interaction with CUL3 compared to wild-type NPR1 in the absence of salicylic acid when measured under the same conditions. In some embodiments, the npr1 protein has increased interaction with CUL3 compared to wild-type NPR1 at lower concentrations of salicylic acid when measured under the same conditions Interaction may be determined using methods known in the art, including, but not limited to, co-immunoprecipitation, yeast two-hybrid assay, and BiFC assay.


Nucleic Acids

Any of the described npr1 proteins that form salicylic acid-independent NPR1 condensates can be expressed in a plant or plant cell by introducing into the plant or plant cell or a progenitor plant or plant cell, a nucleic acid encoding the npr1 protein. Nucleic acids encoding the described npr1 proteins (npr1 genes) are readily made using methods known in the art. Nucleic acid sequences encoding A. thaliana NPR1 (SEQ ID NO: 1) and its orthologs, such as SEQ ID NOS: 2-12 and 30-34, are known in the art. Modification (mutation) of a nucleic acid sequence encoding a NPR1 gene to form a nucleic acid encoding a described npr1 protein can be done using methods known in the art for site directed mutagenesis of a nucleic acid.


A npr1 gene encoding a npr1 protein that forms salicylic acid-independent NPR1 condensates can be a nucleic acid encoding: (a) a protein comprising the amino acid sequence of any of SEQ ID NOS: 134-160 or an ortholog thereof; or (b) a protein having at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identity to a protein comprising the amino acid sequence of any of SEQ ID NOS: 134-160, wherein the protein retains salicylic acid-independent NPR1 condensate formation function.


A npr1 gene encoding any of the described npr1 proteins can be operably linked to one or more expression control elements (e.g., one or more heterologous expression control elements). The expression control elements can comprise a promoter (e.g., a heterologous promoter), one or more upstream open reading frames (uORFs) (e.g., one or more heterologous uORFs), or a promoter and one or more uORFs. In a specific example, a npr1 gene can be operably linked to a TBF1 promoter (e.g., Arabidopsis TBF1 promoter) and one or more TBF1 uORFs (e.g., Arabidopsis TBF1 uORF1 and/or uORF2).


The promoter can be, but is not limited to, a constitutive promoter, an inducible promoter, a temporally-regulated promoter, a developmentally regulated promoter, a chemically regulated promoter, a tissue-preferred promoter, a tissue-specific promoter, a TBF1 promoter, a 35S promoter, a ubiquitin promoter, a tCUP cryptic constitutive promoter, a Rsyn7 promoter, a pathogen-inducible promoter, a maize In2-2 promoter, a tobacco PR-1a promoter, a glucocorticoid-inducible promoter, an estrogen-inducible promoter, a tetracycline-inducible promoter, a tetracycline-repressible promoter, a T3 promoter, a T7 promoter, or a SP6 promoter. In a specific example, the promoter is a TBF1 promoter, such as an Arabidopsis TBF1 promoter. See, e.g., Pajerowska-Mukhtar et al. (2012) Curr. Biol. 22(2):103-112; Xu et al. (2017) Nature 545(7655):491-494; US 2018-0273965; U.S. Pat. No. 10,584,346; US 2015-0113685; U.S. Pat. No. 10,017,773; WO 2013/096567; US 2019-0352664; and WO 2018/144831, each of which is herein incorporated by reference in its entirety for all purposes. TBF1 is an important transcription factor for the growth-to-defense switch upon immune induction. In one example, the promoter can comprise the sequence set forth in SEQ ID NO: 167. In another example, the promoter can comprise the sequence set forth in SEQ ID NO: 168.


The upstream uORF can comprise one or more TBF1 gene uORFs. See, e.g., Pajerowska-Mukhtar et al. (2012) Curr. Biol. 22(2):103-112; Xu et al. (2017) Nature 545(7655):491-494; US 2018-0273965; U.S. Pat. No. 10,584,346; US 2015-0113685; U.S. Pat. No. 10,017,773; WO 2013/096567; US 2019-0352664; and WO 2018/144831, each of which is herein incorporated by reference in its entirety for all purposes. The TBF1 uORFs can comprise, for example, Arabidopsis TBF1 uORFs, such as uORF1 (SEQ ID NO: 162, or encoding SEQ ID NO: 164) and uORF2 (SEQ ID NO: 163, or encoding SEQ ID NO: 165). In one example, the uORFs can comprise uORF1 (SEQ ID NO: 162 or encoding SEQ ID NO: 164), uORF2 (SEQ ID NO: 163 or encoding SEQ ID NO: 165), or both uORF1 and uORF2. In a specific example, the npr1 gene can be operably linked to a regulatory sequence (e.g., 5′ regulatory sequence) comprising SEQ ID NO: 166, which includes both uORF1 and uORF2. In another specific example, the npr1 gene can be operably linked to a regulatory sequence (e.g., 5′ regulatory sequence) comprising SEQ ID NO: 168, which includes a TBF1 promoter, uORF1, and uORF2.


A nucleic acid encoding a npr1 protein may be introduced into a plant or plant cell using a number of methods known in the art, including but not limited to electroporation, DNA bombardment or biolistic approaches, lipofection, nucleofection, microinjection, via the use of various DNA-based vectors such as Agrobacterium tumefaciens and Agrobacterium rhizogenes vectors, and CRISPR or CRISPR/Cas9. Once a plant cell has been successfully transformed, it may be cultivated to regenerate a transgenic plant. Delivery can be to cells (e.g., in vitro or ex vivo administration) or target tissues (e.g., in vivo administration).


In some embodiments, Agrobacterium tumefaciens is used to generate a transgenic plant. There are numerous vectors designed for Agrobacterium transformation. For stable transformation, Agrobacterium systems can utilize “binary” vectors that permit plasmid manipulation in both E. coli and Agrobacterium, and typically contain one or more selectable markers to recover transformed plants. Binary vectors for use in Agrobacterium transformation systems typically comprise the borders of T-DNA, multiple cloning sites, replication functions for Escherichia coli and A. tumefaciens, and selectable marker and reporter genes. Agrobacterium-mediated transformation of a large number of plants are extensively described in the literature (see, for example, Agrobacterium Protocols, Wan, ed., Humana Press, 2nd edition, 2006). Various methods for introducing DNA into Agrobacteria are known, including electroporation, freeze/thaw methods, and triparental mating.


Methods of producing a plant that expresses a npr1 protein as described herein or genetically modifying a plant to express a npr1 protein as described herein using a CRISPR/Cas system are described. Stress resistant plants created using a CRISPR/Cas system and nucleic acids for producing a stress resistant plant using a CRISPR/Cas system are also described.


A CRISPR system can comprise an RNA-guided DNA endonuclease enzyme and a guide RNA. The RNA-guided DNA endonuclease enzyme can be, but is not limited to, a Cas9 protein. A CRISPR system can comprise one or more nucleic acids encoding an RNA-guided DNA endonuclease enzyme (such as, but not limited to a Cas9 protein) and a guide RNA. A guide RNA can comprise a CRISPR RNA (crRNA) and a trans-activating CRISPR RNA (tracrRNA), either as separate molecules or a single chimeric guide RNA (sgRNA). The guide RNA contains a guide sequence having complementarity to a sequence in the target gene genomic region. The Cas protein can be introduced into the plant in the form of a protein or a nucleic acid (DNA or RNA) encoding the Cas protein (e.g., operably linked to a promoter expressible in the plant). The guide RNA can be introduced into the plant in the form of RNA or a DNA encoding the guide RNA (e.g., operably linked to a promoter expressible in the plant). In some embodiments, the CRISPR system can be delivered to a plant or plant cell via a bacterium. The bacterium can be, but is not limited to, Agrobacterium tumefaciens.


The CRISPR system is designed to target insertion of a nucleic acid encoding a npr1 protein into the plant genome. The CRIPSR system can be designed to target insertion of the nucleic acid encoding a npr1 protein into the NPR1 locus. The CRISPR/Cas system can be, but is not limited to, a CRISPR class 1 system, CRISPR class 2 system, CRISPR/Cas system, a CRISPR/Cas9 system, a CRISPR/zCas9 system or CRISPR/Cas3 system.


To transgenic plants may be used to generate subsequent generations (e.g., T1, T2, etc.) by selfing of primary or secondary transformants, or by sexual crossing of primary or secondary transformants with other plants (transformed or untransformed).


Plant Cells and Plants

Plant cells including or expressing any of the npr1 proteins described herein are provided. The plants cells have increased stress tolerance, increased cell survival (decreased cell death) against biotic and/or abiotic stress, and/or increased cell survival against plant immune response, relative to a similar plant cell not expressing the nrp1 protein. The plant cell can be a monocot plant cell or a dicot plant cell. The plant cell can be, but is not limited to, a food crop plant cell, a biofuel plant cell, a corn plant cell, a legume plant cell, a bean plant cell, a rice plant cell, a soybean plant cell, a cotton plant cell, a sugarcane plant cell, a tobacco plant cell, a palm oil plant cell, a date palm cell, a wheat cell, a vegetable plant cell, a squash plant cell, a Solanaceae plant cell, a tomato cell, a banana plant cell, a potato plant cell, a pepper plant cell, a moss plant cell, a parsley plant cell, a sunflower plant cell, a mustard plant cell, a sorghum plant cell, a millet plant cell, a citrus plant cell, an apple plant cell, a strawberry plant cell, a rapeseed plant cell, a cabbage plant cell, a cassava plant cell, a coffee plant cell, a sweet potato plant cell, a jatropha plant cell, or a switchgrass plant cell. The npr1 gene can be integrated into the genome of the plant cell. The npr1 gene can be integrated into the genome of the plant cell at the NPR1 locus or a heterologous locus.


A plant cell can contain a npr1 gene encoding: (a) a protein comprising the amino acid sequence of any of SEQ ID NOS: 134-160 or an ortholog thereof; or (b) a protein having at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identity to a protein comprising the amino acid sequence of any of SEQ ID NOS: 134-160, wherein the protein retains salicylic acid-independent NPR1 condensate formation function.


In some embodiments, the plant cells expresses a wild-type NPR1 gene. In some embodiments, the plant cell does not express a wild-type NPR1 gene. For example, in some embodiments, the plant cell is npr1-null.


Plants including or expressing any of the npr1 proteins described herein are provided. The plant can be a monocot plant or a dicot plant. The plants have increased stress tolerance, increased cell survival (decreased cell death) against biotic and/or abiotic stress, and/or increased cell survival against plant immune response, relative to a similar plant not expressing the nrp1 protein. The plant can be, but is not limited to, a food crop plant, a biofuel plant, a corn plant, a legume plant, a bean plant, a rice plant, a soybean plant, a cotton plant, a sugarcane plant, a tobacco plant, a palm oil plant, a date palm, a wheat, a vegetable plant, a squash plant, a Solanaceae plant, a tomato, a banana plant, a potato plant, a pepper plant, a moss plant, a parsley plant, a sunflower plant, a mustard plant, a sorghum plant, a millet plant, a citrus plant, an apple plant, a strawberry plant, a rapeseed plant, a cabbage plant, a cassava plant, a coffee plant, a sweet potato plant, a jatropha plant, or a switchgrass plant. The npr1 gene can be integrated into the genome of the plant. The npr1 gene can be integrated into the genome of the plant at the NPR1 locus or a heterologous locus.


A plant can contain a npr1 gene encoding: (a) a protein comprising the amino acid sequence of any of SEQ ID NOS: 134-160 or an ortholog thereof; or (b) a protein having at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identity to a protein comprising the amino acid sequence of any of SEQ ID NOS: 134-160, wherein the protein retains salicylic acid-independent NPR1 condensate formation function.


In some embodiments, the plant expresses a wild-type NPR1 gene. In some embodiments, the plant does not express a wild-type NPR1 gene. For example, in some embodiments, the plant is npr1-null.


Methods

Described are methods of increasing stress tolerance, increasing cell survival (decreasing cell death) against biotic and/or abiotic stress, and/or increasing cell survival against plant immune response in a plant or plant cell comprising expressing in the plant or plant cell a npr1 protein that forms salicylic acid-independent NPR1 condensates. The npr1 protein can be any of the npr1 proteins described herein. The methods comprise introducing into the plant, the plant cell, or a progenitor of the plant or plant cell, a nucleic acid encoding any of the described npr1 proteins such that the nucleic acid is expressed in the plant or plant cell. In some embodiments, the nucleic acid is operatively linked to one or more expression control elements that are functional in the plant or plant cell. In some embodiments, the nucleic acid is operatively linked to a promoter, or a promoter and one or more uORFs. In some embodiments, the nucleic acid comprises a npr1 gene encoding: (a) a protein comprising the amino acid sequence of any of SEQ ID NOS: 134-160 or an ortholog thereof; (b) a protein having at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identity to a protein comprising the amino acid sequence of any of SEQ ID NOS: 134-160, wherein the protein retains salicylic acid-independent NPR1 condensate formation function; (c) a npr1 ΔCTD protein; (d) a BTB domain npr1 protein, or (e) a npr1sim3 protein. Expression of the npr1 protein in the plant or plant cell results in the plant or plant cell having increased stress tolerance, increased cell survival (decreased cell death) against biotic and/or abiotic stress, and/or increased cell survival against plant immune response relative to a similar plant or plant cell that does not express the npr1 protein. A biotic stress can be, but is not limited to, a viral or bacterial infection. An abiotic stress can be, but is not limited to, high temperature (heat shock) stress, low temperature (cold shock) stress, oxidative stress, or DNA damage.


In some embodiments, increasing stress tolerance comprises one or more of: decreasing programmed cell death, decreasing effector-triggered immunity (ETI)-induced cell death, increasing formation of NPR1 condensates, and degrading EDS1 and specific WRKY transcription factors required for pathogen ETI.


The plant, plant cell, or progenitor of the plant or plant cell can be, but is not limited to, a monocot or a dicot. The plant, plant cell, or progenitor of the plant or plant cell can be, but is not limited to, a food crop plant, a biofuel plant, a corn plant, a legume plant, a bean plant, a rice plant, a soybean plant, a cotton plant, a sugarcane plant, a tobacco plant, a palm oil plant, a date palm, a wheat, a vegetable plant, a squash plant, a Solanaceae plant, a tomato, a banana plant, a potato plant, a pepper plant, a moss plant, a parsley plant, a sunflower plant, a mustard plant, a sorghum plant, a millet plant, a citrus plant, an apple plant, a strawberry plant, a rapeseed plant, a cabbage plant, a cassava plant, a coffee plant, a sweet potato plant, a jatropha plant, or a switchgrass plant, or a cell derived from any of these plants. The npr1 gene can be integrated into the genome of the plant or plant cell. The npr1 gene can be integrated into the genome of the plant or plant cell at the NPR1 locus or a heterologous locus.


The nucleic acid encoding the npr1 protein can be introduced into a plant, plant cell, or progenitor of the plant or plant cell that expresses a wild-type NPR1 gene. Alternatively, the nucleic acid encoding the npr1 protein can be introduced into a plant, plant cell, or progenitor of the plant or plant cell that does not express a wild-type NPR1 gene (e.g., a npr1-null plant, plant cell, or progenitor of the plant or plant cell). The nucleic acid encoding the npr1 protein can be introduced into a plant, or progenitor of the plant having one genotype and introgressed into a plant having a different genotype. “Introgression” of a gene or locus means introduction of the gene or locus from a donor plant comprising the gene or locus into a recipient plant by standard breeding techniques. Selection of can be done phenotypically or selection can be done with the use of genetic markers through marker-assisted breeding, or combinations of these. The process of introgressing is often referred to as “backcrossing” when the process is repeated two or more times. In introgressing or backcrossing, the “donor” parent refers to the parental plant with the desired gene or locus to be introgressed. The “recipient” parent refers to the parental plant into which the gene or locus is being introgressed. Selection is started in the F1 or any further generation from a cross between the recipient plant and the donor plant.


In some embodiments, producing a plant having increased stress tolerance, increased cell survival (decreased cell death) against biotic and/or abiotic stress, and/or increased cell survival against plant immune response comprises crossing a first plant expressing any of the described npr1 proteins with a second plant to produce at least a first progeny plant, and selecting one or more progeny plants that express the npr1 protein any or have increased stress tolerance, increased cell survival (decreased cell death) against biotic and/or abiotic stress, and/or increased cell survival against plant immune response compared to a control plant that doesn't express the npr1 protein.


Also described are methods of improving plant growth under conditions of stress, the methods comprising introducing into one or more plants a nucleic acid encoding any of the described npr1 proteins such that the npr1 protein is expressed in the plant, subjecting the one or more plants to stress; and selecting a plant having improved plant growth under the stress when compared to a plant that lacks the nucleic acid encoding the npr1 protein.


Another aspect of the present disclosure provides all that is described and illustrated herein.


The following Examples and attached Appendices are provided by way of illustration and not by way of limitation.


Brief Description of the Sequences

The nucleotide and amino acid sequences listed in the accompanying sequence listing are shown using standard letter abbreviations for nucleotide bases, and three-letter code for amino acids. The nucleotide sequences follow the standard convention of beginning at the 5′ end of the sequence and proceeding forward (i.e., from left to right in each line) to the 3′ end. Only one strand of each nucleotide sequence is shown, but the complementary strand is understood to be included by any reference to the displayed strand. When a nucleotide sequence encoding an amino acid sequence is provided, it is understood that codon degenerate variants thereof that encode the same amino acid sequence are also provided. The amino acid sequences follow the standard convention of beginning at the amino terminus of the sequence and proceeding forward (i.e., from left to right in each line) to the carboxy terminus.









TABLE 2







Description of Sequences.









SEQ




ID




NO
Type
Description





  1
Protein

Arabidopsis thaliana npr1 protein





MDTTIDGFADSYEISSTSFVATDNTDSSIVYLAAEQVLTGPDVSALQLLSNSFESVFDSP




DDFYSDAKLVLSDGREVSFHRCVLSARSSFFKSALAAAKKEKDSNNTAAVKLELKEIAKD




YEVGFDSVVTVLAYVYSSRVRPPPKGVSECADENCCHVACRPAVDFMLEVLYLAFIFKIP




ELITLYQRHLLDVVDKVVIEDTLVILKLANICGKACMKLLDRCKEIIVKSNVDMVSLEKS




LPEELVKEIIDRRKELGLEVPKVKKHVSNVHKALDSDDIELVKLLLKEDHTNLDDACALH




FAVAYCNVKTATDLLKLDLADVNHRNPRGYTVLHVAAMRKEPQLILSLLEKGASASEATL




EGRTALMIAKQATMAVECNNIPEQCKHSLKGRLCVEILEQEDKREQIPRDVPPSFAVAAD




ELKMTLLDLENRVALAQRLFPTEAQAAMEIAEMKGTCEFIVTSLEPDRLTGTKRTSPGVK




IAPFRILEEHQSRLKALSKTVELGKRFFPRCSAVLDQIMNCEDLTQLACGEDDTAEKRLQ




KKQRYMEIQETLKKAFSEDNLELGNSSLTDSTSSTSKSTGGKRSNRKLSHRRR





  2
Protein

Nicotiana benthamiana npr1 protein





MDNSGTAFSDSNDISGSSSICCIGGGMTESFSPETSPAEITSLKRLSETLESIFDAASPE




FDYFADAKLVIPGAGKEIPVHRCILSARSPFFKNLFCGKKEKNSNKVELKEIMKEYEVSY




DGVVSVLAYLYSGKIRPSPKDVCVCVDNDCSHVACRPAVAFLAEVLYTSFTFQISELVDK




FQRHLLDILDKIAADDVMVVLSVANICGKACERLLSSCIEIIVKSNVDIITLDKALPHDI




VKQITDSRAELGLQGPESNGFPDKHVKRIHRALDSDDVELLQMLLREGHTTLDDAFALHY




AVAYCDAKTTAELLDLALAEINHQNSRGYTVLHVAAMRKEPKIIVSLLTKGARPSDLTSD




GRKALQIAKRLTRLVDFSKSPEEGKSASKDRLCIEILEQAERRDPLLGEASVSLAMAGDD




LRMKLLYLENRVGLAKLLFPMEAKVAMDIAQVDGTSEFPLASINKKMVNAQRTTVDLNEV




PFKIKEEHLNRLRALSRTVELGKRFFPRCSEVLNKIMDADDLSEIAYMGNDTAEERQLKK




QRYMELQEILSKAFTEDKEEFDMTNNISSSCSSTSKGVDKPNKLPFRK





  3
Protein

Solanum lycopersicon npr1 protein





MDSRTAFSDSNDISGSSSICCMNESETSLADVNSLKRLSETLESIFDASAPDFDFFADAK




LLAPGGKEIPVHRCILSARSPFFKNVFCGKDSNTKLELKELMKEYEVSFDAVVSVLAYLY




SGKVRPASKDVCVCVDNECLHVACRPAVAFMVQVLYASFTFQISQLVDKFQRHLLDILDK




AVADDVMMVLSVANICGKACERLLSRCIDIIVKSNVDIITLDKSLPHDIVKQITDSRAEL




GLQGPESNGFPDKHVKRIHRALDSDDVELLRMLLKEGHTTLDDAYALHYAVAYCDAKTTA




ELLDLSLADVNHQNPRGHTVLHVAAMRKEPKIIVSLLTKGARPSDLTSDGKKALQIAKRL




TRLVDFTKSTEEGKSAPKDRLCIEILEQAERRDPLLGEASLSLAMAGDDLRMKLLYLENR




VGLAKLLFPMEAKVAMDIAQVDGTSELPLASMRKKIADAQRTTVDLNEAPFKMKEEHLNR




LRALSRTVELGKRFFPRCSEVLNKIMDADDLSEIAYMGNDTVEERQLKKQRYMELQEILS




KAFTEDKEEFAKTNMSSSCSSTSKGVDKPNNLPFRK





  4
Protein

Vitis vinifera npr1 protein





MDYRAALSDSNDFSGSSSICCIAATTESLSSEVSPPDISALRRLSENLESVFESPEFDFF




TDARIVVAGGREVPVHRCILAARSVFFKAVLAGARKEKEAKFELKDLAKEFDVGYDSLVA




VLGYLYSGRVGALPKGVCACVDDDCPHSACRPAVDFMVEVLYASFAFQISELVGLYQRRL




MDILDKVASDDILVILSVANLCGKACDRLLARCIDIIIKSDVDVVTLERALPQEMVKQIV




DSRLELGFEEPESTNFPDKHVKRIHRALDSDDVELVRMLLKEGHTTLDDAYALHYAVAFG




DAKTTTELLDLGLADVNHKNHRGYTVLHIAAMRKEPKIIVSLLTKGARPTDITPDGRNAL




QIAKRLTRAVDYHKSTEEGKPSPKDQLCVEVLEQAERRDPLIGEASFSLAIAGDDLRMKL




LYLENRVGLAKLLFPMEAKVAMDIAQVDGTSEFTLTAIRPRNLADAQRTTVDLNEAPFRI




KEEHLNRLRALSKTVDLGKRFFPRCSEVLNKIMDADDLSDLAYLGNGTTEERLLKKRRYK




ELQDQLCKAFNEDKEENDKSRISSSSSSTSLGFGRNNSRLSCKK





  5
Protein

Hordeum vulgare npr1 protein





MEAPSSHVTTSFSDCDSVSMEDAAPDADVEALRRLSDNLAAAFRSPDDFAFLADARFAVP




GAPDLCVHRCVLSARSPFLRALFKRRAAAAGSAGGAEGDRVELRELLGGEVEVGYEALRL




VLDYLYSGRVCDLPKTACACVDEGGCAHVGCHPAVSFMAQVLFAASTFQVGELASLFQRH




LLDLLDKVEADNLPLVLSVANLCNKSCVKLFERCLERVVRSDLDMITLDKALPLDVIKQI




IDSRITLGLASPEDNGFPNKHVRRILSALDSDDVELVRLLLKEGQTNLDDAFALHYAVEH




CDSKITTELLDIALADVNLRNPRGYTVLHIAARRRDPKIVVSLLTKGARPSDFTFDGRKA




VQIAKRLTKHGDYFGNTEEGKPSPNDKLCIEILEEAERRDPQLGEASVSLALAGDCLRGK




LLYLENRVALARIMFPIEARVAMDIAQVDGTLEFTLGSCTNPPPEITTVDLNDTPFKMKD




EHLARMRALSKTVELGKRFFPRCSNVLDKIMDDEPELASLGRDASSERKRRFHDLHDTLL




KAFSEDKEEFARSATLSASSSSTPTVARNLTGRPRR





  6
Protein

Medicago truncatula npr1 protein





MMYLRSGFSEYSNEISNNTSSELCCTTAPNSTITASQDVITFTQPLNRLSDNLASILDDT




GFDFFSDAKIIAKDGREVSVHRCILSARSSFFKDVFKGKKETTLQLKEVAKDYDVGFDAL




NVVLRYLYSERVEDHHLSAKDVCVCVDDDCLHFGCWPVVDFMLQLLYASFTFQISELLAL




YQDHLLDILDKMAIDDMLVVLSIANICGKTCDKLLKRCTDIIVESNVDITTLEKSLPQSI




VKLVTYKRKQLGLDMYETVNLLDKHVTRIHRALDSDDVELVRLLLKEGHTTLDEAHALHY




AVAYCDVKTTTELLDLGLADVNHKNLRGYSVLHVAAKRKEPKIIVSLLTKGAQPSELTMD




GRKALQISKRCTKAVDYYKSTEEGKVSSNDRLCIEILEQAERREPLHGEASLSLAKAGDD




LRMKLLYLENRVGLAKLLFPMEAKVVMDITPIDGTSEFTPNLGGYQRTTMDLNEAPFKIK




EEHLIRMKALSRAVELGKRFFPRCSEVLNKIMDADDLSQLACMGHDSPEDRQVKRRRYAE




LQEVLNKVFHEDKEEFDKSGMSSSSSSTSIGMPRANNSMIAMNH





  7
Protein

Nicotiana tabacum npr1 protein





MDNSRTAFSDSNDISGSSSICCIGGGMTEFFSPETSPAEITSLKRLSETLESIFDASLPE




FDYFADAKLVVSGPCKEIPVHRCILSARSPFFKNLFCGKKEKNSSKVELKEVMKEHEVSY




DAVMSVLAYLYSGKVRPSPKDVCVCVDNDCSHVACRPAVAFLVEVLYTSFTFQISELVDK




FQRHLLDILDKTAADDVMMVLSVANICGKACERLLSSCIEIIVKSNVDIITLDKALPHDI




VKQITDSRAELGLQGPESNGFPDKHVKRIHRALDSDDVELLQMLLREGHTTLDDAYALHY




AVAYCDAKTTAELLDLALADINHQNSRGYTVLHVAAMRKEPKIVVSLLTKGARPSDLTSD




GRKALQIAKRLTRLVDFSKSPEEGKSASNDRLCIEILEQAERRDPLLGEASVSLAMAGDD




LRMKLLYLENRVGLAKLLFPMEAKVAMDIAQVDGTSEFPLASIGKKMANAQRTTVDLNEA




PFKIKEEHLNRLRALSRTVELGKRFFPRCSEVLNKIMDADDLSEIAYMGNDTAEERQLKK




QRYMELQEILTKAFTEDKEEYDKTNNISSSCSSTSKGVDKPNKLPFRK





  8
Protein

Oryza sativa npr1 protein





MEPPTSHVTNAFSDSDSASVEEGGADADADVEALRRLSDNLAAAFRSPEDFAFLADARIA




VPGGGGGGGDLLVHRCVLSARSPFLRGVFARRAAAAAGGGGEDGGERLELRELLGGGGEE




VEVGYEALRLVLDYLYSGRVGDLPKAACLCVDEDCAHVGCHPAVAFMAQVLFAASTFQVA




ELTNLFQRRLLDVLDKVEVDNLLLILSVANLCNKSCMKLLERCLDMVVRSNLDMITLEKS




LPPDVIKQIIDARLSLGLISPENKGFPNKHVRRIHRALDSDDVELVRMLLTEGQTNLDDA




FALHYAVEHCDSKITTELLDLALADVNHRNPRGYTVLHIAARRREPKIIVSLLTKGARPA




DVTFDGRKAVQISKRLTKQGDYFGVTEEGKPSPKDRLCIEILEQAERRDPQLGEASVSLA




MAGESLRGRLLYLENRVALARIMFPMEARVAMDIAQVDGTLEFNLGSGANPPPERQRTTV




DLNESPFIMKEEHLARMTALSKTVELGKRFFPRCSNVLDKIMDDETDPVSLGRDTSAEKR




KRFHDLQDVLQKAFHEDKEENDRSGLSSSSSSTSIGAIRPRR





  9
Protein

Glycine max npr1 protein





MNFRSGSSDSKDASNSSTGEAYLSGVSDVITPLRRLSEQLGSILDGGGVDFFSDAKIVAG




DGREVAVNRCILAARSGFFKHVFAGGGGCVLRLKEVAKDYNVGLEALGIVLAYLYSGRVK




PLPQGGVCVCVDDVCSHFGCRPAIDFLLQLLYASSTFQLNELIALXQGHLLDILEKVAID




DILVVLSVANICGIVCERLLARCTEMILKSDADITTLEKALPQHLVKQITDKRIELDLYM




PENFNFPDKHVNRIHRALDSDDVELVRLLLKEGHTTLDDAYALHYAVAYCDVKTTTELLD




LGLADVNHKNYRGYSVLHVAAMRKEPKIIVSLLTKGAQPSDLTLDGRKALQISKRLTKAV




DYYKSTEEGKVSCSDRLCIEILEQAERREPLLGEASLSLAMAGDDLRMKLLYLENRVGLA




KVLFPMEAKVIMDISQIDGTSEFPSTDMYCPNISDHQRTTVDLNDAPFRMKEEHLVRLRA




LSRTVELGKRFFPRCSEVLNKIMDADDLTQLTCMGDDSPEDRLRKRRRYVELQEVLNKVF




NEDKEEFDRSAMSSSSSSTSIGVVRPNANLAMKN





 10
Protein

Populus trichocarpa npr1 protein





MDNRIGFSDSNEISNGSSTCCIETPSTSKPFTNPEIVALQQLSGNLEAIFDSQDFDYFAD




AKITSSNYNREVPVHRCILSARSPFFKSVFSSPVAKDRSGVAKFELKELAKDYDVGFDSL




MTVLGYLYCGKVRPWPKDVCACVDDDCSHIACRPAVDLLTEVLYASFTFQVNELVALYQR




HLLDILDKVSTDDILVILAVANICGEACERLLTRCVEIIVKSNVDIVTLDKALPQYIVKK




IMDSRLELGLNVPENSNLLDKHVKRIHRALDSDDVELVRMLLKEAHTNLDDAHALHYAVS




YCDAKTTTEILDLGLADVNCRNSRGYTVLHVAAMRKDPKIIVSLLTKGARLSDLTLDGRK




ALQISKRLTRAMDYHKSTEEGKASPKERLCIEILEQAERRDPLLGEASLSLAMAGDDLRM




KLLYLENRVGLAKLLFPMEAKVAMDIAQVDGTSEFPLAGIRPSILSGAQRGAVDLNEAPF




RMHEEHLNRMRALSRTVELGKRFFPRCSDVLNKIMDADDLSQIAYLGNETSEERLVKRQR




HLELQDALSKAFNEDKQEFDRSVISSSSSTKSIGTARSNGKLIDMGGGH





 11
Protein

Cucumis melo npr1 protein





MADSHEPSSSLSFTSSSYTNGSQSCNMSPSSISDPMPSLEVISLNKLSSNLAQLLIHDGC




DYTDADIVVEGVPVGIHRCILAVRSRFFHYLFQKDEKPAMKDGKPQYHMNELLPYGKVGH




EAFLILLSYLYSGKLNSSPANVSTCVDNSCAHDACGPAIDFAVQLTYASSIFQIPELVSL




FQRHLLNYVVKALVENVIQILVVAFHCQLSPLVTQCIDRIARSDLDCASLEKGLPYEVAE




RIKLVRLKSRGGDEQNLVADSPRDKKIKKICLALDSDDVELMKLLLSESDVTLDEANALH




YAAAYCDPKSLTEVLNLNIADVNLRNSRGYTVLHVAAMRKDPSVIMSLLNKGAWAFDLTP




DGRTAANICQRLTRPKDYHAKTEKGQETNKDRLCIDILEREMWRNPTSDSSILSLAMADD




VHMKLIYLENRVAFARLLFPSEARLAMDIANADTTSEFVGLSMPKNSNKNLREVNLNETP




SVQNKRFLSRMQALLKTVEMGRRFFPNCSEALDKFVADDLPDLFYLEKGTVEEQRIKRKR




FKELKNDVQKAFDKDKAAKLNQSGLSPSSSSTSLKHGTNHRNVRRQ





 12
Protein

Zea mays npr1 protein





MEPMDSQLTALALSDSDSASVEGAAADAADADLQALRRLSDNLAAAFRSPDDFAFLADAR




IVVPGAPDLRVHRCVLCARSPFLRDAFARRAASAGEEEKDKDSYMCKVELRDLLGDEVEV




GYDALRLVLDYLYSGRVAALPKAACLCVDEDACAHVGCRPAVAFMAQVLFAASTFDVAEL




TNLFQRRLLDVLDKVEVDNLPLVLSVANLCSKSCVKLLERCLDVVVRSNLDMIALEKKLP




PDVVKEIVDARVSLGLVSPEDKGFPNIHVRRIHRALDSDDVELVRMLLKEGKTNLDDAYA




LHYAVEHCDSKITTELLDLALADVNHRNPRGYTVLHIAAMRREPKIIVSLLTKGARPSDL




TFDDRKAVQISKRLTKHGDYFGPTEDGKPSPKDRLCIEVLEQAERRDPQLGEASVSLAIE




GDSARGRLLYLENRVALARILFPMEARVAMDIAQVDGTLEFTLVSSVNLPAEIQRTVDLN




DTPFTMKEEHLARMRALSKTVEVGKRFFPRCSKVLDTIMDDEAEMASLGRDTSAEKKRRF




HDLQDLVQKAFSEDKEENDRSAARSPSSSSTTTTSIGAVRPRR





 13
Protein

Arabidopsis thaliana RDR2 sequence alignment






 14
Protein

Nicotiana benthamiana RDR2 sequence alignment






 15
Protein

Solanum lycopersicon RDR2 sequence alignment






 16
Protein

Vitis vinifera RDR2 sequence alignment






 17
Protein

Hordeum vulgare RDR2 sequence alignment






 18
Protein

Medicago truncatula RDR2 sequence alignment






 19
Protein

Nicotiana tabacum RDR2 sequence alignment






 20
Protein

Oryza sativa RDR2 sequence alignment






 21
Protein

Glycine max RDR2 sequence alignment






 22
Protein

Populus trichocarpa RDR2 sequence alignment






 23
Protein

Cucumis melo RDR2 sequence alignment






 24
Protein

Zea mays RDR2 sequence alignment






 25
Protein

Raphanus sativus RDR2 sequence alignment






 26
Protein

Brassica napus RDR2 sequence alignment






 27
Protein

Brassica oleracea RDR2 sequence alignment






 28
Protein

Brassica rapa RDR2 sequence alignment






 29
Protein

Brassica juncea RDR2 sequence alignment






 30
Protein

Brassica napus npr1 protein





METIARFDDFYEISSTSFPAAPAPTNNSGSSTVFPTELLTRPEVSAFQLLSNSLESVFDS




PEAFYSDAKLVLSDDKEVSFHRCILSARSLFFKAALAAAEKVQKSTPVKLELKTLAAEYD




VGFDSVVAVLAYVYSGRVRPPPKGVSECADESCCHVACRPAVDFMVEVLYLAFVFQIQEL




VTMYQRHLLDVVDKVMIEDTLVVLKLANICGKACKKLFDKCREIIVKSNVDVVTLKKSLP




ENIAKQVIDIRKELGLEVAEPEKHVSNIHKALESDDLDLVVMLLKEGHTNLDEAYALHFA




VAYCDEKTARNLLELGLADVNRRNPRGYTVLHVAAMRKEPTLIALLLTKGANALETSLDG




RTALLIAKQVTKAAECCILEKGKLAAKGGVCVEILKQPDNKREPFPEDVFPSLAVAADEF




KIRLIDLENRVQMARCLYPMEAQVAMDFARMKGTREFVVTTATDLHMEPFKFVEMHQSRL




TALSKTVEFGKRFFPRCSKVLDDIVDSEDLTILALVEEDTPEQRQQKRQRFMEIQEIVQM




AFSKDKEDLGKSSLSASSSSTSKLTGTDSRGFFGIIFYMLQPSVHHLKKVSRVPPRTTTS




VPSNPEGL





 31
Protein

Brassica rapa npr1 protein





METIAGFDDFYEISSTSFLAAPAPTDNSGSSTVYPTELLTRPEVSAFQLLSNSLESVFDS




PEAFYSDAKLVLSDDKEVSFHRCILSARSLFFKAALAAAEKVQKSTPVKLELKTLAAEYD




VGFDSVVAVLAYVYSGRVRPPPKGVSECADDSCCHVACRPAVDFMVEVLYLAFVFQIQEL




VTMYQRHLLDVVDKVNIEDTLVVLKLANICGKACKKLFDKCREIIVKSNVDVVTLKKSLP




ENIAKQVIDIRKELGLEVAEPEKHVSNIHKALESDDLDLVVMLLKEGHTNLDEAYALHFA




VAYCDEKTARNLLELGLADVNRRNPRGYTVLHVAAMRKEPTLIALLLTKGANALETSLDG




RTALLIAKQVTKAAECCILEKGKLAAKGGVCVEILKQPDNKREPFPEDVFPSLAVAADEF




KIRLIDLENRVQMARCLYPMEAQVAMDFARMKGTREFVVTTATDLHMEPFKFVEMHQSRL




TALSKTVEFGKRFFPRCSKVLDDIVDSEDLTILALVEEDTPEQRQQKRQRFMEIQEIVQM




AFSKDKEDLGKSSLSASSSSTSKLTGKKRSIAKPSHRRR





 32
Protein

Brassica oleracea npr1 protein





METIAGFDDFYEISSTSFLAAPAPTDNSGSSTVYPTELFTRPEVSAFQLLSNSLESVFDS




PEAFYSDAKLVLSDDKEVSFHRCILSARSLFFKAALTAAEKVQKSTPVKLELKTLAAEYD




VGFDSVVAVLAYVYSGRVRPPPKGVSECADESCCHVACRPAVDFMVEVLYLAFVFQIQEL




VTMYQRHLLDVVDKVMIEDTLVVLKLANICGKACKKLFDKCREIIVKSNVDVVTLKKSLP




EDIAKQVIDIRKELGLEVAEPEKHVSNIHKALESDDLDLVVMLLKEGHTNLDEAYALHFA




VAYCDEKTARNLLELGFADVNRRNPRGYTVIHVAAMRKEPTLIALLLTKGANALEMSLDG




RTALLIAKQVTKAAECCILEKGKLAAKGGVCVEILKQPDNTREPFPEDVSPSLAVAADQF




KIRLIDLENRVQMARCLYPMEAQVAMDFARMKGTREFVVTTATDLHMEPFKFVEMHQSRL




TALSKTGIIKSFVTKITETNLCLTDLVFLLFLPVEFGKRFFPRCSKVLDDIVDSEDLTIL




ALVEEDTPEQRQQKRQRFMEIQEIVQMAFSKDKEDLGKSSLSASSSSTSKLTGKKRSIAK




PSHRRR





 33
Protein

Raphanus sativus npr1 protein





METIAGFDDFYEISSTSFLAAPAPTDNSGSSTVYPTELLTTRPEVSASQLLSNSLESVFD




SPEEFYSDAKLVLSDDREVSFHRCILSARSPFFKAELAAAEKVQKSTPVKLELKKLAAEY




DVGFDSVVAVLAYVYCGRVRPPPKGVSECADESCCHVACRPAVDFMVEVLYLAFVEQIPE




LVTMYQRHLLDVIEKVIIEDTLVVLKLANICGKACKKLFDKCKEIIVMSDVDVVTLKKSL




PEDVAKQVIDIRKELGLEVAEPEKHVSNIHKALESDDLALVDMLLNEGHTNLDDAYALHF




AVAYCDVQTAKDLLELELADVNRRNPRGYTVLHVAAMRKEPTLIALLLTKGANASETSLD




GRTALVIAKQVTKATECCILERGKLSAKGGVCVEILKEPDNKREPFPEDVSPSLAVAADE




LKIRLIDLENRVQMARCLYPMEAQVAMDFARMKGTHEFVVTTTTDLNMEPFKFVEMHRSR




LTALSKTVEFGKRFFPRCSKVLDDILNFEDLTILALVEEETPEQRQQKRQRFMEIQEIVR




MAFSKDKEDLGKSSLSPSSSSTSKLNGKKRSIAKLSHRRRR





 34
Protein

Brassicajuncea npr1 protein





METIARFDDFYEISSTSFPAAPAPTDNSGSSTVYPTELLTRPEVSAFQLLSNSLESVFDS




PEAFYSDAKLVLSDDKEVSFHRCILSARSLFFKAALAAAEKVQKSTPVKLELKTLAAEYD




VGFDSVVAVLAYVYSGRVRPPPKGVSECADDSCCHVACRPAVDFMVEVLYLAFVFQIQEL




VTMYQRHLLDVVDKVNIEDTLVVLKLANICGKACKKLFDKCREIIVKSNVDVVTLKKSLP




ENIAKQVIDIRKELGLDVAEPEKHVSNIHKALESDDLDLVVMLLKEGHTNLDEAYALHFA




VAYCDEKTARNLLELGLADVNRRNPRGYTVLHVAAMRKEPTLIALLLTKGANALETSLDG




RTALLIAKQVTKAAECCILEKGKLAAKGGVCVEILKQPDNKREPFPEDVFPSLAVAADEF




KIRLIDLENRVQMARCLYPMEAQVAMDFARMKGTREFVVTTATDLHMEPFKFVEMHQSRL




TALSKTVEFGKRFFPRCSKVLDDIVDSEDLTILALVEEDTPEQRQQKRQRFMEIQEIVQM




AFSKDKEDLGKSSLSASSSSTSKLTGKKRSIAKPSHRRR





 35-
DNA
Primers


133







134
Protein

A. thaliana npr1 rdr2 protein





MDTTIDGFADSYEISSTSFVATDNTDSSIVYLAAEQVLTGPDVSALQLLSNSFESVFDSP




DDFYSDAKLVLSDGREVSFHRCVLSARSSFFKSALAAAKKEKDSNNTAAVKLELKEIAKD




YEVGFDSVVTVLAYVYSSRVRPPPKGVSECADENCCHVACRPAVDFMLEVLYLAFIFKIP




ELITLYQRHLLDVVDKVVIEDTLVILKLANICGKACMKLLDRCKEIIVKSNVDMVSLEKS




LPEELVKEIIDRRKELGLEVPKVKKHVSNVHKALDSDDIELVKLLLKEDHTNLDDACALH




FAVAYCNVKTATDLLKLDLADVNHRNPRGYTVLHVAAMRKEPQLILSLLEKGASASEATL




EGRTALMIAKQATMAVEANNIPEQAKHSLKGRLAVEILEQEDKREQIPRDVPPSFAVAAD




ELKMTLLDLENRVALAQRLFPTEAQAAMEIAEMKGTCEFIVTSLEPDRLTGTKRTSPGVK




IAPFRILEEHQSRLKALSKTVELGKRFFPRCSAVLDQIMNCEDLTQLACGEDDTAEKRLQ




KKQRYMEIQETLKKAFSEDNLELGNSSLTDSTSSTSKSTGGKRSNRKLSHRRR





135
Protein

A. thaliana npr1 rdrl protein





MDTTIDGFADSYEISSTSFVATDNTDSSIVYLAAEQVLTGPDVSALQLLSNSFESVFDSP




DDFYSDAKLVLSDGREVSFHRCVLSARSSFFKSALAAAKKEKDSNNTAAVKLELKEIAKD




YEVGFDSVVTVLAYVYSSRVRPPPKGVSEAADENAAHVAARPAVDFMLEVLYLAFIFKIP




ELITLYQRHLLDVVDKVVIEDTLVILKLANICGKACMKLLDRCKEIIVKSNVDMVSLEKS




LPEELVKEIIDRRKELGLEVPKVKKHVSNVHKALDSDDIELVKLLLKEDHTNLDDACALH




FAVAYCNVKTATDLLKLDLADVNHRNPRGYTVLHVAAMRKEPQLILSLLEKGASASEATL




EGRTALMIAKQATMAVECNNIPEQCKHSLKGRLCVEILEQEDKREQIPRDVPPSFAVAAD




ELKMTLLDLENRVALAQRLFPTEAQAAMEIAEMKGTCEFIVTSLEPDRLTGTKRTSPGVK




IAPFRILEEHQSRLKALSKTVELGKRFFPRCSAVLDQIMNCEDLTQLACGEDDTAEKRLQ




KKQRYMEIQETLKKAFSEDNLELGNSSLTDSTSSTSKSTGGKRSNRKLSHRRR





136
Protein

A. thaliana npr1 rdr3 protein





MDTTIDGFADSYEISSTSFVATDNTDSSIVYLAAEQVLTGPDVSALQLLSNSFESVFDSP




DDFYSDAKLVLSDGREVSFHRCVLSARSSFFKSALAAAKKEKDSNNTAAVKLELKEIAKD




YEVGFDSVVTVLAYVYSSRVRPPPKGVSECADENCCHVACRPAVDFMLEVLYLAFIFKIP




ELITLYQRHLLDVVDKVVIEDTLVILKLANICGKACMKLLDRCKEIIVKSNVDMVSLEKS




LPEELVKEIIDRRKELGLEVPKVKKHVSNVHKALDSDDIELVKLLLKEDHTNLDDACALH




FAVAYCNVKTATDLLKLDLADVNHRNPRGYTVLHVAAMRKEPQLILSLLEKGASASEATL




EGRTALMIAKQATMAVECNNIPEQCKHSLKGRLCVEILEQEDKREQIPRDVPPSFAVAAD




ELKMTLLDLENRVALAQRLFPTEAQAAMEIAEMKGTCEFIVTSLEPDRLTGTKRTSPGVK




IAPFRILEEHQSRLKALSKTVELGKRFFPRASAVLDQIMNAEDLTQLAAGEDDTAEKRLQ




KKQRYMEIQETLKKAFSEDNLELGNSSLTDSTSSTSKSTGGKRSNRKLSHRRR





137
Protein

Nicotianabenthamiana npr1 rdr2 protein





MDNSGTAFSDSNDISGSSSICCIGGGMTESFSPETSPAEITSLKRLSETLESIF




DAASPEFDYFADAKLVIPGAGKEIPVHRCILSARSPFFKNLFCGKKEKNSNKVELKEIMK




EYEVSYDGVVSVLAYLYSGKIRPSPKDVCVCVDNDCSHVACRPAVAFLAEVLYTSFTFQI




SELVDKFQRHLLDILDKIAADDVMVVLSVANICGKACERLLSSCIEIIVKSNVDIITLDK




ALPHDIVKQITDSRAELGLQGPESNGFPDKHVKRIHRALDSDDVELLQMLLREGHTTLDD




AFALHYAVAYCDAKTTAELLDLALAEINHQNSRGYTVLHVAAMRKEPKIIVSLLTKGARP




SDLTSDGRKALQIAKRLTRLVDFSKSPEEGKSASKDRLAIEILEQAERRDPLLGEASVSL




AMAGDDLRMKLLYLENRVGLAKLLFPMEAKVAMDIAQVDGTSEFPLASINKKMVNAQRTT




VDLNEVPFKIKEEHLNRLRALSRTVELGKRFFPRCSEVLNKIMDADDLSEIAYMGNDTAE




ERQLKKQRYMELQEILSKAFTEDKEEFDMTNNISSSCSSTSKGVDKPNKLPFRK





138
Protein

Solanum lycopersicon npr1 rdr2 protein





MDSRTAFSDSNDISGSSSICCMNESETSLADVNSLKRLSETLESIFDASAPDFDFFADAK




LLAPGGKEIPVHRCILSARSPFFKNVFCGKDSNTKLELKELMKEYEVSFDAVVSVLAYLY




SGKVRPASKDVCVCVDNECLHVACRPAVAFMVQVLYASFTFQISQLVDKFQRHLLDILDK




AVADDVMMVLSVANICGKACERLLSRCIDIIVKSNVDIITLDKSLPHDIVKQITDSRAEL




GLQGPESNGFPDKHVKRIHRALDSDDVELLRMLLKEGHTTLDDAYALHYAVAYCDAKTTA




ELLDLSLADVNHQNPRGHTVLHVAAMRKEPKIIVSLLTKGARPSDLTSDGKKALQIAKRL




TRLVDFTKSTEEGKSAPKDRLAIEILEQAERRDPLLGEASLSLAMAGDDLRMKLLYLENR




VGLAKLLFPMEAKVAMDIAQVDGTSELPLASMRKKIADAQRTTVDLNEAPFKMKEEHLNR




LRALSRTVELGKRFFPRCSEVLNKIMDADDLSEIAYMGNDTVEERQLKKQRYMELQEILS




KAFTEDKEEFAKTNMSSSCSSTSKGVDKPNNLPFRK





139
Protein

Vitis vinifera npr1 rdr2 protein





MDYRAALSDSNDFSGSSSICCIAATTESLSSEVSPPDISALRRLSENLESVFESPEFDFF




TDARIVVAGGREVPVHRCILAARSVFFKAVLAGARKEKEAKFELKDLAKEFDVGYDSLVA




VLGYLYSGRVGALPKGVCACVDDDCPHSACRPAVDFMVEVLYASFAFQISELVGLYQRRL




MDILDKVASDDILVILSVANLCGKACDRLLARCIDIIIKSDVDVVTLERALPQEMVKQIV




DSRLELGFEEPESTNFPDKHVKRIHRALDSDDVELVRMLLKEGHTTLDDAYALHYAVAFG




DAKTTTELLDLGLADVNHKNHRGYTVLHIAAMRKEPKIIVSLLTKGARPTDITPDGRNAL




QIAKRLTRAVDYHKSTEEGKPSPKDQLAVEVLEQAERRDPLIGEASFSLAIAGDDLRMKL




LYLENRVGLAKLLFPMEAKVAMDIAQVDGTSEFTLTAIRPRNLADAQRTTVDLNEAPFRI




KEEHLNRLRALSKTVDLGKRFFPRCSEVLNKIMDADDLSDLAYLGNGTTEERLLKKRRYK




ELQDQLCKAFNEDKEENDKSRISSSSSSTSLGFGRNNSRLSCKK





140
Protein

Hordeum vulgare npr1 rdr2 protein





MEAPSSHVTTSFSDCDSVSMEDAAPDADVEALRRLSDNLAAAFRSPDDFAFLADARFAVP




GAPDLCVHRCVLSARSPFLRALFKRRAAAAGSAGGAEGDRVELRELLGGEVEVGYEALRL




VLDYLYSGRVCDLPKTACACVDEGGCAHVGCHPAVSFMAQVLFAASTFQVGELASLFQRH




LLDLLDKVEADNLPLVLSVANLCNKSCVKLFERCLERVVRSDLDMITLDKALPLDVIKQI




IDSRITLGLASPEDNGFPNKHVRRILSALDSDDVELVRLLLKEGQTNLDDAFALHYAVEH




CDSKITTELLDIALADVNLRNPRGYTVLHIAARRRDPKIVVSLLTKGARPSDFTFDGRKA




VQIAKRLTKHGDYFGNTEEGKPSPNDKLAIEILEEAERRDPQLGEASVSLALAGDCLRGK




LLYLENRVALARIMFPIEARVAMDIAQVDGTLEFTLGSCTNPPPEITTVDLNDTPFKMKD




EHLARMRALSKTVELGKRFFPRCSNVLDKIMDDEPELASLGRDASSERKRRFHDLHDTLL




KAFSEDKEEFARSATLSASSSSTPTVARNLTGRPRR





141
Protein

Medicago truncatula npr1 rdr2 protein





MMYLRSGFSEYSNEISNNTSSELCCTTAPNSTITASQDVITFTQPLNRLSDNLASILDDT




GFDFFSDAKIIAKDGREVSVHRCILSARSSFFKDVFKGKKETTLQLKEVAKDYDVGFDAL




NWLRYLYSERVEDHHLSAKDVCVCVDDDCLHFGCWPVVDFMLQLLYASFTFQISELLAL




YQDHLLDILDKMAIDDMLVVLSIANICGKTCDKLLKRCTDIIVESNVDITTLEKSLPQSI




VKLVTYKRKQLGLDMYETVNLLDKHVTRIHRALDSDDVELVRLLLKEGHTTLDEAHALHY




AVAYCDVKTTTELLDLGLADVNHKNLRGYSVLHVAAKRKEPKIIVSLLTKGAQPSELTMD




GRKALQISKRATKAVDYYKSTEEGKVSSNDRLAIEILEQAERREPLHGEASLSLAKAGDD




LRMKLLYLENRVGLAKLLFPMEAKVVMDITPIDGTSEFTPNLGGYQRTTMDLNEAPFKIK




EEHLIRMKALSRAVELGKRFFPRCSEVLNKIMDADDLSQLACMGHDSPEDRQVKRRRYAE




LQEVLNKVFHEDKEEFDKSGMSSSSSSTSIGMPRANNSMIAMNH





142
Protein

Nicotiana tabacum npr1 rdr2 protein





MDNSRTAFSDSNDISGSSSICCIGGGMTEFFSPETSPAEITSLKRLSETLESIFDASLPE




FDYFADAKLVVSGPCKEIPVHRCILSARSPFFKNLFCGKKEKNSSKVELKEVMKEHEVSY




DAVMSVLAYLYSGKVRPSPKDVCVCVDNDCSHVACRPAVAFLVEVLYTSFTFQISELVDK




FQRHLLDILDKTAADDVMMVLSVANICGKACERLLSSCIEIIVKSNVDIITLDKALPHDI




VKQITDSRAELGLQGPESNGFPDKHVKRIHRALDSDDVELLQMLLREGHTTLDDAYALHY




AVAYCDAKTTAELLDLALADINHQNSRGYTVLHVAAMRKEPKIVVSLLTKGARPSDLTSD




GRKALQIAKRLTRLVDFSKSPEEGKSASNDRLAIEILEQAERRDPLLGEASVSLAMAGDD




LRMKLLYLENRVGLAKLLFPMEAKVAMDIAQVDGTSEFPLASIGKKMANAQRTTVDLNEA




PFKIKEEHLNRLRALSRTVELGKRFFPRCSEVLNKIMDADDLSEIAYMGNDTAEERQLKK




QRYMELQEILTKAFTEDKEEYDKTNNISSSCSSTSKGVDKPNKLPFRK





143
Protein

Oryza sativa npr1 rdr2 protein





MEPPTSHVTNAFSDSDSASVEEGGADADADVEALRRLSDNLAAAFRSPEDFAFLADARIA




VPGGGGGGGDLLVHRCVLSARSPFLRGVFARRAAAAAGGGGEDGGERLELRELLGGGGEE




VEVGYEALRLVLDYLYSGRVGDLPKAACLCVDEDCAHVGCHPAVAFMAQVLFAASTFQVA




ELTNLFQRRLLDVLDKVEVDNLLLILSVANLCNKSCMKLLERCLDMVVRSNLDMITLEKS




LPPDVIKQIIDARLSLGLISPENKGFPNKHVRRIHRALDSDDVELVRMLLTEGQTNLDDA




FALHYAVEHCDSKITTELLDLALADVNHRNPRGYTVLHIAARRREPKIIVSLLTKGARPA




DVTFDGRKAVQISKRLTKQGDYFGVTEEGKPSPKDRLAIEILEQAERRDPQLGEASVSLA




MAGESLRGRLLYLENRVALARIMFPMEARVAMDIAQVDGTLEFNLGSGANPPPERQRTTV




DLNESPFIMKEEHLARMTALSKTVELGKRFFPRCSNVLDKIMDDETDPVSLGRDTSAEKR




KRFHDLQDVLQKAFHEDKEENDRSGLSSSSSSTSIGAIRPRR





144
Protein

Glycine max npr1 rdr2 protein





MNFRSGSSDSKDASNSSTGEAYLSGVSDVITPLRRLSEQLGSILDGGGVDFFSDAKIVAG




DGREVAVNRCILAARSGFFKHVFAGGGGCVLRLKEVAKDYNVGLEALGIVLAYLYSGRVK




PLPQGGVCVCVDDVCSHFGCRPAIDFLLQLLYASSTFQLNELIALXQGHLLDILEKVAID




DILVVLSVANICGIVCERLLARCTEMILKSDADITTLEKALPQHLVKQITDKRIELDLYM




PENFNFPDKHVNRIHRALDSDDVELVRLLLKEGHTTLDDAYALHYAVAYCDVKTTTELLD




LGLADVNHKNYRGYSVLHVAAMRKEPKIIVSLLTKGAQPSDLTLDGRKALQISKRLTKAV




DYYKSTEEGKVSCSDRLAIEILEQAERREPLLGEASLSLAMAGDDLRMKLLYLENRVGLA




KVLFPMEAKVIMDISQIDGTSEFPSTDMYCPNISDHQRTTVDLNDAPFRMKEEHLVRLRA




LSRTVELGKRFFPRCSEVLNKIMDADDLTQLTCMGDDSPEDRLRKRRRYVELQEVLNKVF




NEDKEEFDRSAMSSSSSSTSIGVVRPNANLAMKN





145
Protein

Populus trichocarpa npr1 rdr2 protein





MDNRIGFSDSNEISNGSSTCCIETPSTSKPFTNPEIVALQQLSGNLEAIFDSQDFDYFAD




AKITSSNYNREVPVHRCILSARSPFFKSVFSSPVAKDRSGVAKFELKELAKDYDVGFDSL




MTVLGYLYCGKVRPWPKDVCACVDDDCSHIACRPAVDLLTEVLYASFTFQVNELVALYQR




HLLDILDKVSTDDILVILAVANICGEACERLLTRCVEIIVKSNVDIVTLDKALPQYIVKK




IMDSRLELGLNVPENSNLLDKHVKRIHRALDSDDVELVRMLLKEAHTNLDDAHALHYAVS




YCDAKTTTEILDLGLADVNCRNSRGYTVLHVAAMRKDPKIIVSLLTKGARLSDLTLDGRK




ALQISKRLTRAMDYHKSTEEGKASPKERLAIEILEQAERRDPLLGEASLSLAMAGDDLRM




KLLYLENRVGLAKLLFPMEAKVAMDIAQVDGTSEFPLAGIRPSILSGAQRGAVDLNEAPF




RMHEEHLNRMRALSRTVELGKRFFPRCSDVLNKIMDADDLSQIAYLGNETSEERLVKRQR




HLELQDALSKAFNEDKQEFDRSVISSSSSTKSIGTARSNGKLIDMGGGH





146
Protein

Cucumis melo npr1 rdr2 protein





MADSHEPSSSLSFTSSSYTNGSQSCNMSPSSISDPMPSLEVISLNKLSSNLAQLLIHDGC




DYTDADIVVEGVPVGIHRCILAVRSRFFHYLFQKDEKPAMKDGKPQYHMNELLPYGKVGH




EAFLILLSYLYSGKLNSSPANVSTCVDNSCAHDACGPAIDFAVQLTYASSIFQIPELVSL




FQRHLLNYVVKALVENVIQILVVAFHCQLSPLVTQCIDRIARSDLDCASLEKGLPYEVAE




RIKLVRLKSRGGDEQNLVADSPRDKKIKKICLALDSDDVELMKLLLSESDVTLDEANALH




YAAAYCDPKSLTEVLNLNIADVNLRNSRGYTVLHVAAMRKDPSVIMSLLNKGAWAFDLTP




DGRTAANICQRLTRPKDYHAKTEKGQETNKDRLAIDILEREMWRNPTSDSSILSLAMADD




VHMKLIYLENRVAFARLLFPSEARLAMDIANADTTSEFVGLSMPKNSNKNLREVNLNETP




SVQNKRFLSRMQALLKTVEMGRRFFPNCSEALDKFVADDLPDLFYLEKGTVEEQRIKRKR




FKELKNDVQKAFDKDKAAKLNQSGLSPSSSSTSLKHGTNHRNVRRQ





147
Protein

Zea mays npr1 rdr2 protein





MEPMDSQLTALALSDSDSASVEGAAADAADADLQALRRLSDNLAAAFRSPDDFAFLADAR




IVVPGAPDLRVHRCVLCARSPFLRDAFARRAASAGEEEKDKDSYMCKVELRDLLGDEVEV




GYDALRLVLDYLYSGRVAALPKAACLCVDEDACAHVGCRPAVAFMAQVLFAASTFDVAEL




TNLFQRRLLDVLDKVEVDNLPLVLSVANLCSKSCVKLLERCLDVVVRSNLDMIALEKKLP




PDVVKEIVDARVSLGLVSPEDKGFPNIHVRRIHRALDSDDVELVRMLLKEGKTNLDDAYA




LHYAVEHCDSKITTELLDLALADVNHRNPRGYTVLHIAAMRREPKIIVSLLTKGARPSDL




TFDDRKAVQISKRLTKHGDYFGPTEDGKPSPKDRLAIEVLEQAERRDPQLGEASVSLAIE




GDSARGRLLYLENRVALARILFPMEARVAMDIAQVDGTLEFTLVSSVNLPAEIQRTVDLN




DTPFTMKEEHLARMRALSKTVEVGKRFFPRCSKVLDTIMDDEAEMASLGRDTSAEKKRRF




HDLQDLVQKAFSEDKEENDRSAARSPSSSSTTTTSIGAVRPRR





148
Protein

Brassica napus npr1 rdr2 protein





METIARFDDFYEISSTSFPAAPAPTNNSGSSTVFPTELLTRPEVSAFQLLSNSLESVFDS




PEAFYSDAKLVLSDDKEVSFHRCILSARSLFFKAALAAAEKVQKSTPVKLELKTLAAEYD




VGFDSVVAVLAYVYSGRVRPPPKGVSECADESCCHVACRPAVDFMVEVLYLAFVFQIQEL




VTMYQRHLLDVVDKVMIEDTLVVLKLANICGKACKKLFDKCREIIVKSNVDVVTLKKSLP




ENIAKQVIDIRKELGLEVAEPEKHVSNIHKALESDDLDLVVMLLKEGHTNLDEAYALHFA




VAYCDEKTARNLLELGLADVNRRNPRGYTVLHVAAMRKEPTLIALLLTKGANALETSLDG




RTALLIAKQVTKAAECCILEKGKLAAKGGVAVEILKQPDNKREPFPEDVFPSLAVAADEF




KIRLIDLENRVQMARCLYPMEAQVAMDFARMKGTREFVVTTATDLHMEPFKFVEMHQSRL




TALSKTVEFGKRFFPRCSKVLDDIVDSEDLTILALVEEDTPEQRQQKRQRFMEIQEIVQM




AFSKDKEDLGKSSLSASSSSTSKLTGTDSRGFFGIIFYMLQPSVHHLKKVSRVPPRTTTS




VPSNPEGL





149
Protein

Brassica rapa npr1 rdr2 protein





METIAGFDDFYEISSTSFLAAPAPTDNSGSSTVYPTELLTRPEVSAFQLLSNSLESVFDS




PEAFYSDAKLVLSDDKEVSFHRCILSARSLFFKAALAAAEKVQKSTPVKLELKTLAAEYD




VGFDSVVAVLAYVYSGRVRPPPKGVSECADDSCCHVACRPAVDFMVEVLYLAFVFQIQEL




VTMYQRHLLDVVDKVNIEDTLVVLKLANICGKACKKLFDKCREIIVKSNVDVVTLKKSLP




ENIAKQVIDIRKELGLEVAEPEKHVSNIHKALESDDLDLVVMLLKEGHTNLDEAYALHFA




VAYCDEKTARNLLELGLADVNRRNPRGYTVLHVAAMRKEPTLIALLLTKGANALETSLDG




RTALLIAKQVTKAAECCILEKGKLAAKGGVAVEILKQPDNKREPFPEDVFPSLAVAADEF




KIRLIDLENRVQMARCLYPMEAQVAMDFARMKGTREFVVTTATDLHMEPFKFVEMHQSRL




TALSKTVEFGKRFFPRCSKVLDDIVDSEDLTILALVEEDTPEQRQQKRQRFMEIQEIVQM




AFSKDKEDLGKSSLSASSSSTSKLTGKKRSIAKPSHRRR





150
Protein

Brassica oleracea npr1 rdr2 protein





METIAGFDDFYEISSTSFLAAPAPTDNSGSSTVYPTELFTRPEVSAFQLLSNSLESVFDS




PEAFYSDAKLVLSDDKEVSFHRCILSARSLFFKAALTAAEKVQKSTPVKLELKTLAAEYD




VGFDSVVAVLAYVYSGRVRPPPKGVSECADESCCHVACRPAVDFMVEVLYLAFVFQIQEL




VTMYQRHLLDVVDKVMIEDTLVVLKLANICGKACKKLFDKCREIIVKSNVDVVTLKKSLP




EDIAKQVIDIRKELGLEVAEPEKHVSNIHKALESDDLDLVVMLLKEGHTNLDEAYALHFA




VAYCDEKTARNLLELGFADVNRRNPRGYTVIHVAAMRKEPTLIALLLTKGANALEMSLDG




RTALLIAKQVTKAAECCILEKGKLAAKGGVAVEILKQPDNTREPFPEDVSPSLAVAADQF




KIRLIDLENRVQMARCLYPMEAQVAMDFARMKGTREFVVTTATDLHMEPFKFVEMHQSRL




TALSKTGIIKSFVTKITETNLCLTDLVFLLFLPVEFGKRFFPRCSKVLDDIVDSEDLTIL




ALVEEDTPEQRQQKRQRFMEIQEIVQMAFSKDKEDLGKSSLSASSSSTSKLTGKKRSIAK




PSHRRR





151
Protein

Raphanus sativus npr1 rdr2 protein





METIAGFDDFYEISSTSFLAAPAPTDNSGSSTVYPTELLTTRPEVSASQLLSNSLESVFD




SPEEFYSDAKLVLSDDREVSFHRCILSARSPFFKAELAAAEKVQKSTPVKLELKKLAAEY




DVGFDSVVAVLAYVYCGRVRPPPKGVSECADESCCHVACRPAVDFMVEVLYLAFVEQIPE




LVTMYQRHLLDVIEKVIIEDTLVVLKLANICGKACKKLFDKCKEIIVMSDVDVVTLKKSL




PEDVAKQVIDIRKELGLEVAEPEKHVSNIHKALESDDLALVDMLLNEGHTNLDDAYALHF




AVAYCDVQTAKDLLELELADVNRRNPRGYTVLHVAAMRKEPTLIALLLTKGANASETSLD




GRTALVIAKQVTKATECCILERGKLSAKGGVAVEILKEPDNKREPFPEDVSPSLAVAADE




LKIRLIDLENRVQMARCLYPMEAQVAMDFARMKGTHEFVVTTTTDLNMEPFKFVEMHRSR




LTALSKTVEFGKRFFPRCSKVLDDILNFEDLTILALVEEETPEQRQQKRQRFMEIQEIVR




MAFSKDKEDLGKSSLSPSSSSTSKLNGKKRSIAKLSHRRRR





152
Protein

Brassica juncea npr1 rdr2 protein





METIARFDDFYEISSTSFPAAPAPTDNSGSSTVYPTELLTRPEVSAFQLLSNSLESVFDS




PEAFYSDAKLVLSDDKEVSFHRCILSARSLFFKAALAAAEKVQKSTPVKLELKTLAAEYD




VGFDSVVAVLAYVYSGRVRPPPKGVSECADDSCCHVACRPAVDFMVEVLYLAFVFQIQEL




VTMYQRHLLDVVDKVNIEDTLVVLKLANICGKACKKLFDKCREIIVKSNVDVVTLKKSLP




ENIAKQVIDIRKELGLDVAEPEKHVSNIHKALESDDLDLVVMLLKEGHTNLDEAYALHFA




VAYCDEKTARNLLELGLADVNRRNPRGYTVLHVAAMRKEPTLIALLLTKGANALETSLDG




RTALLIAKQVTKAAECCILEKGKLAAKGGVAVEILKQPDNKREPFPEDVFPSLAVAADEF




KIRLIDLENRVQMARCLYPMEAQVAMDFARMKGTREFVVTTATDLHMEPFKFVEMHQSRL




TALSKTVEFGKRFFPRCSKVLDDIVDSEDLTILALVEEDTPEQRQQKRQRFMEIQEIVQM




AFSKDKEDLGKSSLSASSSSTSKLTGKKRSIAKPSHRRR





153
Protein

A. thaliana npr1 rdr2 protein v2





MDTTIDGFADSYEISSTSFVATDNTDSSIVYLAAEQVLTGPDVSALQLLSNSFESVFDSP




DDFYSDAKLVLSDGREVSFHRCVLSARSSFFKSALAAAKKEKDSNNTAAVKLELKEIAKD




YEVGFDSVVTVLAYVYSSRVRPPPKGVSECADENCCHVACRPAVDFMLEVLYLAFIFKIP




ELITLYQRHLLDVVDKVVIEDTLVILKLANICGKACMKLLDRCKEIIVKSNVDMVSLEKS




LPEELVKEIIDRRKELGLEVPKVKKHVSNVHKALDSDDIELVKLLLKEDHTNLDDACALH




FAVAYCNVKTATDLLKLDLADVNHRNPRGYTVLHVAAMRKEPQLILSLLEKGASASEATL




EGRTALMIAKQATMAVECNNIPEQCKHSLKGRLAVEILEQEDKREQIPRDVPPSFAVAAD




ELKMTLLDLENRVALAQRLFPTEAQAAMEIAEMKGTCEFIVTSLEPDRLTGTKRTSPGVK




IAPFRILEEHQSRLKALSKTVELGKRFFPRCSAVLDQIMNCEDLTQLACGEDDTAEKRLQ




KKQRYMEIQETLKKAFSEDNLELGNSSLTDSTSSTSKSTGGKRSNRKLSHRRR





154
Protein

Glycine max npr1 rdr2 protein v2





MNFRSGSSDSKDASNSSTGEAYLSGVSDVITPLRRLSEQLGSILDGGGVDFFSDAKIVAG




DGREVAVNRCILAARSGFFKHVFAGGGGCVLRLKEVAKDYNVGLEALGIVLAYLYSGRVK




PLPQGGVCVCVDDVCSHFGCRPAIDFLLQLLYASSTFQLNELIALXQGHLLDILEKVAID




DILVVLSVANICGIVCERLLARCTEMILKSDADITTLEKALPQHLVKQITDKRIELDLYM




PENFNFPDKHVNRIHRALDSDDVELVRLLLKEGHTTLDDAYALHYAVAYCDVKTTTELLD




LGLADVNHKNYRGYSVLHVAAMRKEPKIIVSLLTKGAQPSDLTLDGRKALQISKRLTKAV




DYYKSTEEGKVSASDRLAIEILEQAERREPLLGEASLSLAMAGDDLRMKLLYLENRVGLA




KVLFPMEAKVIMDISQIDGTSEFPSTDMYCPNISDHQRTTVDLNDAPFRMKEEHLVRLRA




LSRTVELGKRFFPRCSEVLNKIMDADDLTQLTCMGDDSPEDRLRKRRRYVELQEVLNKVF




NEDKEEFDRSAMSSSSSSTSIGVVRPNANLAMKN





155
Protein

Cucumis melo npr1 rdr2 protein v2





MADSHEPSSSLSFTSSSYTNGSQSCNMSPSSISDPMPSLEVISLNKLSSNLAQLLIHDGC




DYTDADIVVEGVPVGIHRCILAVRSRFFHYLFQKDEKPAMKDGKPQYHMNELLPYGKVGH




EAFLILLSYLYSGKLNSSPANVSTCVDNSCAHDACGPAIDFAVQLTYASSIFQIPELVSL




FQRHLLNYVVKALVENVIQILVVAFHCQLSPLVTQCIDRIARSDLDCASLEKGLPYEVAE




RIKLVRLKSRGGDEQNLVADSPRDKKIKKICLALDSDDVELMKLLLSESDVTLDEANALH




YAAAYCDPKSLTEVLNLNIADVNLRNSRGYTVLHVAAMRKDPSVIMSLLNKGAWAFDLTP




DGRTAANIAQRLTRPKDYHAKTEKGQETNKDRLAIDILEREMWRNPTSDSSILSLAMADD




VHMKLIYLENRVAFARLLFPSEARLAMDIANADTTSEFVGLSMPKNSNKNLREVNLNETP




SVQNKRFLSRMQALLKTVEMGRRFFPNCSEALDKFVADDLPDLFYLEKGTVEEQRIKRKR




FKELKNDVQKAFDKDKAAKLNQSGLSPSSSSTSLKHGTNHRNVRRQ





156
Protein

Brassica napus npr1 rdr2 protein v2





METIARFDDFYEISSTSFPAAPAPTNNSGSSTVFPTELLTRPEVSAFQLLSNSLESVFDS




PEAFYSDAKLVLSDDKEVSFHRCILSARSLFFKAALAAAEKVQKSTPVKLELKTLAAEYD




VGFDSVVAVLAYVYSGRVRPPPKGVSECADESCCHVACRPAVDFMVEVLYLAFVFQIQEL




VTMYQRHLLDVVDKVMIEDTLVVLKLANICGKACKKLFDKCREIIVKSNVDVVTLKKSLP




ENIAKQVIDIRKELGLEVAEPEKHVSNIHKALESDDLDLVVMLLKEGHTNLDEAYALHFA




VAYCDEKTARNLLELGLADVNRRNPRGYTVLHVAAMRKEPTLIALLLTKGANALETSLDG




RTALLIAKQVTKAAEAAILEKGKLAAKGGVAVEILKQPDNKREPFPEDVFPSLAVAADEF




KIRLIDLENRVQMARCLYPMEAQVAMDFARMKGTREFVVTTATDLHMEPFKFVEMHQSRL




TALSKTVEEGKREEPRCSKVLDDIVDSEDLTILALVEEDTPEQRQQKRQREMEIQEIVQM




AFSKDKEDLGKSSLSASSSSTSKLTGTDSRGFFGIIFYMLQPSVHHLKKVSRVPPRTTTS




VPSNPEGL





157
Protein

Brassica rapa npr1 rdr2 protein v2





METIAGFDDFYEISSTSFLAAPAPTDNSGSSTVYPTELLTRPEVSAFQLLSNSLESVFDS




PEAFYSDAKLVLSDDKEVSFHRCILSARSLFFKAALAAAEKVQKSTPVKLELKTLAAEYD




VGFDSVVAVLAYVYSGRVRPPPKGVSECADDSCCHVACRPAVDFMVEVLYLAFVFQIQEL




VTMYQRHLLDVVDKVNIEDTLVVLKLANICGKACKKLFDKCREIIVKSNVDVVTLKKSLP




ENIAKQVIDIRKELGLEVAEPEKHVSNIHKALESDDLDLVVMLLKEGHTNLDEAYALHFA




VAYCDEKTARNLLELGLADVNRRNPRGYTVLHVAAMRKEPTLIALLLTKGANALETSLDG




RTALLIAKQVTKAAEAAILEKGKLAAKGGVAVEILKQPDNKREPFPEDVFPSLAVAADEF




KIRLIDLENRVQMARCLYPMEAQVAMDFARMKGTREFVVTTATDLHMEPFKFVEMHQSRL




TALSKTVEFGKRFFPRCSKVLDDIVDSEDLTILALVEEDTPEQRQQKRQRFMEIQEIVQM




AFSKDKEDLGKSSLSASSSSTSKLTGKKRSIAKPSHRRR





158
Protein

Brassica oleracea npr1 rdr2 protein v2





METIAGFDDFYEISSTSFLAAPAPTDNSGSSTVYPTELFTRPEVSAFQLLSNSLESVFDS




PEAFYSDAKLVLSDDKEVSFHRCILSARSLFFKAALTAAEKVQKSTPVKLELKTLAAEYD




VGFDSVVAVLAYVYSGRVRPPPKGVSECADESCCHVACRPAVDFMVEVLYLAFVFQIQEL




VTMYQRHLLDVVDKVMIEDTLVVLKLANICGKACKKLFDKCREIIVKSNVDVVTLKKSLP




EDIAKQVIDIRKELGLEVAEPEKHVSNIHKALESDDLDLVVMLLKEGHTNLDEAYALHFA




VAYCDEKTARNLLELGFADVNRRNPRGYTVIHVAAMRKEPTLIALLLTKGANALEMSLDG




RTALLIAKQVTKAAEAAILEKGKLAAKGGVAVEILKQPDNTREPFPEDVSPSLAVAADQF




KIRLIDLENRVQMARCLYPMEAQVAMDFARMKGTREFVVTTATDLHMEPFKFVEMHQSRL




TALSKTGIIKSFVTKITETNLCLTDLVFLLFLPVEFGKRFFPRCSKVLDDIVDSEDLTIL




ALVEEDTPEQRQQKRQRFMEIQEIVQMAFSKDKEDLGKSSLSASSSSTSKLTGKKRSIAK




PSHRRR





159
Protein

Raphanus sativus npr1 rdr2 protein v2





METIAGFDDFYEISSTSFLAAPAPTDNSGSSTVYPTELLTTRPEVSASQLLSNSLESVFD




SPEEFYSDAKLVLSDDREVSFHRCILSARSPFFKAELAAAEKVQKSTPVKLELKKLAAEY




DVGFDSVVAVLAYVYCGRVRPPPKGVSECADESCCHVACRPAVDFMVEVLYLAFVEQIPE




LVTMYQRHLLDVIEKVIIEDTLVVLKLANICGKACKKLFDKCKEIIVMSDVDVVTLKKSL




PEDVAKQVIDIRKELGLEVAEPEKHVSNIHKALESDDLALVDMLLNEGHTNLDDAYALHF




AVAYCDVQTAKDLLELELADVNRRNPRGYTVLHVAAMRKEPTLIALLLTKGANASETSLD




GRTALVIAKQVTKATEAAILERGKLSAKGGVAVEILKEPDNKREPFPEDVSPSLAVAADE




LKIRLIDLENRVQMARCLYPMEAQVAMDFARMKGTHEFVVTTTTDLNMEPFKFVEMHRSR




LTALSKTVEFGKRFFPRCSKVLDDILNFEDLTILALVEEETPEQRQQKRQRFMEIQEIVR




MAFSKDKEDLGKSSLSPSSSSTSKLNGKKRSIAKLSHRRRR





160
Protein

Brassica juncea npr1 rdr2 protein v2





METIARFDDFYEISSTSFPAAPAPTDNSGSSTVYPTELLTRPEVSAFQLLSNSLESVFDS




PEAFYSDAKLVLSDDKEVSFHRCILSARSLFFKAALAAAEKVQKSTPVKLELKTLAAEYD




VGFDSVVAVLAYVYSGRVRPPPKGVSECADDSCCHVACRPAVDFMVEVLYLAFVFQIQEL




VTMYQRHLLDVVDKVNIEDTLVVLKLANICGKACKKLFDKCREIIVKSNVDVVTLKKSLP




ENIAKQVIDIRKELGLDVAEPEKHVSNIHKALESDDLDLVVMLLKEGHTNLDEAYALHFA




VAYCDEKTARNLLELGLADVNRRNPRGYTVLHVAAMRKEPTLIALLLTKGANALETSLDG




RTALLIAKQVTKAAEAAILEKGKLAAKGGVAVEILKQPDNKREPFPEDVFPSLAVAADEF




KIRLIDLENRVQMARCLYPMEAQVAMDFARMKGTREFVVTTATDLHMEPFKFVEMHQSRL




TALSKTVEFGKRFFPRCSKVLDDIVDSEDLTILALVEEDTPEQRQQKRQRFMEIQEIVQM




AFSKDKEDLGKSSLSASSSSTSKLTGKKRSIAKPSHRRR





161
Protein
SV40 nuclear localization signal




CGGGPKKKRKVED





162
DNA

Arabidopsis thaliana TBF1 uORF1





ATGGTCGTCGTCTTCATCTTCTTCCTCCATCATCAGATTTTTCCTTAA





163
DNA

Arabidopsis thaliana TBF1 uORF2





ATGGAAGAAACCAAACGAAACTCCGATCTTCTCCGTTCTCGTGTTTTCCTCTCTGGCTTT




TATTGCTGGGATTGGGAATTTCTCACCGCTCTCTTGCTTTTTAGTTGCTGA





164
Protein
Protein encoded by Arabidopsis thaliana TBF1 uORF1




MVVVFIFFLHHQIFP





165
Protein
Protein encoded by Arabidopsis thaliana TBF1 uORF2




MEETKRNSDLLRSRVFLSGFYCWDWEFLTALLLFSC





166
DNA

Arabidopsis thaliana TBF1 5′ regulatory sequence with uORF1 and uORF2





TCTAGAAACAGCATCCGTTTTTATAATTTAATTTTCTTACAAAGGTAGGACCAACATTTG




TGATCTATAAATCTTCCTACTACGTTATATAGAGACCCTTCGACATAACACTTAACTCGT




TTATATATTTGTTTTACTTGTTTTGCACATACACACAAAAATAAAAAAGACTTTATATTT




ATTTACTTTTTAATCACACGGATTAGCTCCGGCGAAGTATGGTCGTCGTCTTCATCTTCT




TCCTCCATCATCAGATTTTTCCTTAAATGGAAGAAACCAAACGAAACTCCGATCTTCTCC




GTTCTCGTGTTTTCCTCTCTGGCTTTTATTGCTGGGATTGGGAATTTCTCACCGCTCTCT




TGCTTTTTAGTTGCTGATTCTTTTTCCTTCGACTTTCTATTTCCAATCTTTCTTCTTCTC




TTTGTGTATTAGATTATTTTTAGTTTTATTTTTCTGTGGTAAAATAAAAAAAGTTCGCCG




GAG





167
DNA

Arabidopsis thaliana TBF1 promoter





CGACGACTAGTTTACAGAGAATTTGGACCGTCCGATGTAAAGCGAAAATAGATCTAGGTT




TTCCACGTGTCCCCTATTTTAATGAAACCTTCTGATTCATGTAGAAGTTTTACTCAATTT




AATATTTTTTAGTATGTAGTTTTGTGTGTGTGTGTGTGTGTGTTTTTATGGCTCCACACC




AACTTTTAAAATGGTAGAAGCATGTTGCATGTGATCGAGTAAAAAGCCAATAATGAGATT




CAGAAAAATAAAAATTACTTATATAGTTTTTTAGAGAAAAAATTGTATTTTGTTTAAAGC




CTTAATCCGGTTGTTGAAAGAGCTGTGTCACGAGTTAAAAATATTTTCTTTTCATTTTTT




AAGTAATTAGTTTATAATGCAAAAATGGTTTTTATTTATTTGTCTTCGCTTATAGAACTG




CAAATTGAGAGAGAAAAAAATGAATTAGTGGTGGTGACCAAACATTCAGGAAGCTGTGAT




TGATCATTTGTTTTTGAGGTGAGTGTAGTGGCAACGTATGACGTTAACATATGGCGTACA




TAATAATTAGATGAACTTAATCATAATAATCATATTGCATTTAATTCATATATCATATCC




CATTAGTTGGACCACTTGATTTGAGGTCATGAGAAGAACATTTATGTTTTTTTTAGTTTG




AATCGGAGTGATCACTAAAAACTAGATACTGAAAATTTTCAAACTAAAATCATATTAATC




TTCAAAAAATGTGAAATCTAAAAAAAAAAAAAATTTTAACGCGTTCATTGTAGCCAAGTA




GCCAAGTATTGTTAAAGTAGTAGTAAAAGAAGTTTAGCTTTAAGTGATATAATTTGACAC




AAATCCTACTTAGATATGGATAATAGGATATAGCTTCATGTATATTTTTATCGTTGCTTC




TGTAACCCCAAAATGTGTTGATATAAGCATTTGAATATTCGTATGTATAATGTTTTCTTT




TCACCGTAAAACATATTACAATGTTAGTTTATATTGGATTTTGAATGTGTTTATGAACAG




TTTTTGTCGACTCAAAAGTTAAGATGAGAATATGGAAGAAAGTAAAGTTTAAAAGTCATG




ATGGGAACAAGGAATGGAACTCAAACATTCTAATACTCAACAAACGCAATTATATTATTA




CCATGACTCATCTTTCAAGTTCCATCAAAAAGATTCGTGGAAAATAATAGACTTACGTTT




CAAATCCATGTTTCTTTCTTTATAACAAAAAAAATGGATGTTTCTTGACGCGTGTCGAGA




GTACTCACCATTACTCTGACTTCAGTGAGTTTGGTCAAGTGGTCTTTTTTTTTCTCATGT




CACCAAAGGTCCAAACCCTAGAAATTAGTTCGAACTTTCCATAGAAGAACTGAATAAATG




GTCCAAAATTGTTTTAAAAAGGACCTAAGCCATTAGTTCATTGAATTCGAGTTAATGGGT




GAAGATTTTTATGATAACGAAAGTCGGAGTAATTATGCTTTTGGTCCGATAGTTTTCTAA




TTTGTTTTCTTTCCATTTTTTTTTTTTCAAATACTACATACTATATAAGATAGTGGTTTG




TGTTAATGTCATCGATGTGTTACCATCCGCATTATATTAATTATTTATCCCAACATAAAG




TCAGAATCTGTAATTTCTTTGTTATAAAATACAGTAAATGGTTCCGTTTAAGCTGTTAGA




TGATTTTTGAGTAAAAACTAATGTAAAAAAAACAAAAAAAAAACAATGTAGTTCATAATA




CATGCATGTTTTAAAGAAGTTTCTTGTTTACTATCAACTTGAATAGTATTTCACGAAGTC




AAAATTGTTCATTCCGACTTTTCTATGTGGAGAAAAAAAATTCTATCATTGTGCACAATT




TAACAGAATGTAATTTCTTGTAAAAGAAGAGGAAACAATTCGCTGTTAGTAAATGTGAAG




TATAGAAGTCTAAAATGAGATACCTCAACTAGCTTGAATTAAGAAAAAAAACAAAAACTC




TATCGACATGAAAAAGGTCGCAAATATTTATCATTTATCAATGCCAAAGGAGTATTTGGT




TCACAAAATACTGAATCATTTATATAGATATATAATTAGCTCTAAATTCTACTATAACTT




GCAAAATAAGTATACTGACTCAATTATATAGCGTTTAAAAATAGACGATTTGTATGATGA




GGTCCATATATATGGAGATGTGCATGCAACTATCGACATTTTCACACGTTGATATCGTCT




TTCTCCAATGGAGACTTGAATTTGTGTAAACTATGAATACTCGTCTCTCTAAGACCTTTT




TTCTTCAACCATGCCAACTATTTAGGTAAGATTTTACTGTCTTTGATTGATATTAAATAC




TTAGCCGTGGCGTTATCAATGAATGATAATAAAAATGCGGATAAAAGCCAAAGGTGTTGG




AAATAAATCCAAGAATGAAGACGTAGATGTCGATGGGTATTTTAAGAACTTGAATTTGTC




ACGACTCACACGTTAAAATATATTATCCGAATTGTTTAGTCTAAAGACACACATATATTG




AAAAAGAAAAGGTAAATGAAGCTCATTGGTGCCTAAATGTGAAATGAAGCCGAAATGTGT




TAGGTGAACACATTTAAATATACAAAAAGAAATATAATAGAAACAAAACTAATTAACAAA




GTCGCAATTTGTATTGTATAAAATATCTTTCCGTCTCCCGTCATATTTGAAAAAAAAAAA




ATTACAAATCTGTTAATTTTAAAACTTTCTAGAAAAACACAAGTATATAATTTTCTCTTT




TCGTGCGTGTTTGTTTTAAAATAACATTGTTTTGATTGGCGACTCAACATATTTTAGCAT




TTACATATTTCTGCATATATTAAATGATTTATAAACTCAACTATAGATTAAAATATAATT




TGAGATCTAATAATTTTAACAATAATATAAAATATGAGATTTATAAATTAGGAATATAAA




TATTCAAGGGAGAGAAAAAGTAGAACATAATTCAAAAGATAAGACTTTTTAGACTTTTTT




AACAATATTTTTGATGGATAAAAATTATTCAAAAGAGAAGAAAGTAAGAAGAAAAGATGT




TTCTGAGAATT





168
DNA

Arabidopsis thaliana TBF1 promoter region with uORF1 and uORF2





CGAGGAGTAGTTTACAGAGAATTTGGACCGTCCGATGTAAAGCGAAAATAGATCTAGGTT




TTCCACGTGTCCCCTATTTTAATGAAACCTTCTGATTCATGTAGAAGTTTTACTCAATTT




AATATTTTTTAGTATGTAGTTTTGTGTGTGTGTGTGTGTGTGTTTTTATGGCTCCACACC




AACTTTTAAAATGGTAGAAGCATGTTGCATGTGATCGAGTAAAAAGCCAATAATGAGATT




CAGAAAAATAAAAATTACTTATATAGTTTTTTAGAGAAAAAATTGTATTTTGTTTAAAGC




CTTAATCCGGTTGTTGAAAGAGCTGTGTCACGAGTTAAAAATATTTTCTTTTCATTTTTT




AAGTAATTAGTTTATAATGCAAAAATGGTTTTTATTTATTTGTCTTCGCTTATAGAACTG




CAAATTGAGAGAGAAAAAAATGAATTAGTGGTGGTGACCAAACATTCAGGAAGCTGTGAT




TGATCATTTGTTTTTGAGGTGAGTGTAGTGGCAACGTATGACGTTAACATATGGCGTACA




TAATAATTAGATGAACTTAATCATAATAATCATATTGCATTTAATTCATATATCATATCC




CATTAGTTGGACCACTTGATTTGAGGTCATGAGAAGAACATTTATGTTTTTTTTAGTTTG




AATCGGAGTGATCACTAAAAACTAGATACTGAAAATTTTCAAACTAAAATCATATTAATC




TTCAAAAAATGTGAAATCTAAAAAAAAAAAAAATTTTAACGCGTTCATTGTAGCCAAGTA




GCCAAGTATTGTTAAAGTAGTAGTAAAAGAAGTTTAGCTTTAAGTGATATAATTTGACAC




AAATCCTACTTAGATATGGATAATAGGATATAGCTTCATGTATATTTTTATCGTTGCTTC




TGTAACCCCAAAATGTGTTGATATAAGCATTTGAATATTCGTATGTATAATGTTTTCTTT




TCACCGTAAAACATATTACAATGTTAGTTTATATTGGATTTTGAATGTGTTTATGAACAG




TTTTTGTCGACTCAAAAGTTAAGATGAGAATATGGAAGAAAGTAAAGTTTAAAAGTCATG




ATGGGAACAAGGAATGGAACTCAAACATTCTAATACTCAACAAACGCAATTATATTATTA




CCATGACTCATCTTTCAAGTTCCATCAAAAAGATTCGTGGAAAATAATAGACTTACGTTT




CAAATCCATGTTTCTTTCTTTATAACAAAAAAAATGGATGTTTCTTGACGCGTGTCGAGA




GTACTCACCATTACTCTGACTTCAGTGAGTTTGGTCAAGTGGTCTTTTTTTTTCTCATGT




CACCAAAGGTCCAAACCCTAGAAATTAGTTCGAACTTTCCATAGAAGAACTGAATAAATG




GTCCAAAATTGTTTTAAAAAGGACCTAAGCCATTAGTTCATTGAATTCGAGTTAATGGGT




GAAGATTTTTATGATAACGAAAGTCGGAGTAATTATGCTTTTGGTCCGATAGTTTTCTAA




TTTGTTTTCTTTCCATTTTTTTTTTTTCAAATACTACATACTATATAAGATAGTGGTTTG




TGTTAATGTCATCGATGTGTTACCATCCGCATTATATTAATTATTTATCCCAACATAAAG




TCAGAATCTGTAATTTCTTTGTTATAAAATACAGTAAATGGTTCCGTTTAAGCTGTTAGA




TGATTTTTGAGTAAAAACTAATGTAAAAAAAACAAAAAAAAAACAATGTAGTTCATAATA




CATGCATGTTTTAAAGAAGTTTCTTGTTTACTATCAACTTGAATAGTATTTCACGAAGTC




AAAATTGTTCATTCCGACTTTTCTATGTGGAGAAAAAAAATTCTATCATTGTGCACAATT




TAACAGAATGTAATTTCTTGTAAAAGAAGAGGAAACAATTCGCTGTTAGTAAATGTGAAG




TATAGAAGTCTAAAATGAGATACCTCAACTAGCTTGAATTAAGAAAAAAAACAAAAACTC




TATCGACATGAAAAAGGTCGCAAATATTTATCATTTATCAATGCCAAAGGAGTATTTGGT




TCACAAAATACTGAATCATTTATATAGATATATAATTAGCTCTAAATTCTACTATAACTT




GCAAAATAAGTATACTGACTCAATTATATAGCGTTTAAAAATAGACGATTTGTATGATGA




GGTCCATATATATGGAGATGTGCATGCAACTATCGACATTTTCACACGTTGATATCGTCT




TTCTCCAATGGAGACTTGAATTTGTGTAAACTATGAATACTCGTCTCTCTAAGACCTTTT




TTCTTCAACCATGCCAACTATTTAGGTAAGATTTTACTGTCTTTGATTGATATTAAATAC




TTAGCCGTGGCGTTATCAATGAATGATAATAAAAATGCGGATAAAAGCCAAAGGTGTTGG




AAATAAATCCAAGAATGAAGACGTAGATGTCGATGGGTATTTTAAGAACTTGAATTTGTC




ACGACTCACACGTTAAAATATATTATCCGAATTGTTTAGTCTAAAGACACACATATATTG




AAAAAGAAAAGGTAAATGAAGCTCATTGGTGCCTAAATGTGAAATGAAGCCGAAATGTGT




TAGGTGAACACATTTAAATATACAAAAAGAAATATAATAGAAACAAAACTAATTAACAAA




GTCGCAATTTGTATTGTATAAAATATCTTTCCGTCTCCCGTCATATTTGAAAAAAAAAAA




ATTACAAATCTGTTAATTTTAAAACTTTCTAGAAAAACACAAGTATATAATTTTCTCTTT




TCGTGCGTGTTTGTTTTAAAATAACATTGTTTTGATTGGCGACTCAACATATTTTAGCAT




TTACATATTTCTGCATATATTAAATGATTTATAAACTCAACTATAGATTAAAATATAATT




TGACATCTAATAATTTTAACAATAATATAAAATATGAGATTTATAAATTAGGAATATAAA




TATTCAAGGGAGAGAAAAAGTAGAACATAATTCAAAAGATAAGACTTTTTAGACTTTTTT




AACAATATTTTTGATGGATAAAAATTATTCAAAAGAGAAGAAAGTAAGAAGAAAAGATGT




TTCTGAGAATTTCTAGAAACAGCATCCGTTTTTATAATTTAATTTTCTTACAAAGGTAGG




ACCAACATTTGTGATCTATAAATCTTCCTACTACGTTATATAGAGACCCTTCGACATAAC




ACTTAACTCGTTTATATATTTGTTTTACTTGTTTTGCACATACACACAAAAATAAAAAAG




ACTTTATATTTATTTACTTTTTAATCACACGGATTAGCTCCGGCGAAGTATGGTCGTCGT




CTTCATCTTCTTCCTCCATCATCAGATTTTTCCTTAAATGGAAGAAACCAAACGAAACTC




CGATCTTCTCCGTTCTCGTGTTTTCCTCTCTGGCTTTTATTGCTGGGATTGGGAATTTCT




CACCGCTCTCTTGCTTTTTAGTTGCTGATTCTTTTTCCTTCGACTTTCTATTTCCAATCT




TTCTTCTTCTCTTTGTGTATTAGATTATTTTTAGTTTTATTTTTCTGTGGTAAAATAAAA




AAAGTTCGCCGGAG









EXAMPLES
Example 1
Formation of NPR1 Condensates Promotes Cell Survival During Plant Immune Response
Summary

In plants, pathogen effector-triggered immunity (ETI) often leads to programmed cell death, which is restricted by NPR1, an activator of systemic acquired resistance. However, the biochemical activities of NPR1 enabling it to both promote defense and restrict cell death remain unclear. Here we show that NPR1 promotes cell survival by targeting substrates for ubiquitination and degradation through formation of salicylic acid-induced NPR1 condensates (SINCs). SINCs are enriched in stress response proteins, including nucleotide-binding leucine-rich repeat immune receptors, oxidative and DNA damage response proteins, and protein quality control machineries. Transition of NPR1 into condensates is required for the formation of the NPR1-Cullin 3 E3 ligase complex to ubiquitinate SINC-localized substrates, such as EDS1 and specific WRKY transcription factors, and promote cell survival during ETI. Our analysis of SINCs suggests that NPR1 is centrally integrated into the cell death/survival decisions in plant immunity by modulating multiple stress-responsive processes in this quasi organelle.


Introduction

Eukaryotes have evolved mechanisms to effectively restrict infection while avoiding significant damage to self. Such a regulation is evident during effector-triggered immunity (ETI) in plants, which is activated upon recognition of pathogen effectors by the nucleotide-binding and leucine-rich repeat immune receptors (NB-LRRs). ETI often culminates in rapid programmed cell death (PCD) at the site of infection to restrict pathogen growth. However, without a counteractive mechanism, ETI can severely compromise host survival due to the spread of cell death to uninfected tissues. One of the counteractive mechanisms is the systemic acquired resistance (SAR) mediated by salicylic acid (SA) through the function of NPR1 [non-expresser of pathogenesis related (PR) genes 1]. NPR1 is a master regulator of genes in multiple cellular machineries, including antimicrobial PR genes and endoplasmic reticulum-resident genes, that protect plants against a broad spectrum of diseases and stresses. In addition to NPR1-mediated transcription, the ubiquitin-proteasome system (UPS) and autophagy are sequentially recruited to maintain defense protein homeostasis and promote host survival. Mutants in the autophagy pathway are defective in the containment of age- and immunity-associated PCD due to proteotoxic accumulation of ubiquitinated proteins, which is partly dependent on SA and NPR1. Though early studies have implicated SA and NPR1 in suppressing ETI-induced cell death, the underlying mechanism is unknown.


In NPR1, the presence of a Broad-Complex, Tramtrack and Bric a brac (BTB) domain, in combination with a putative substrate-binding ankyrin-repeat domain, suggests that it may function as a Cullin 3 RING E3 ligase (CRL3) adaptor. However, an early yeast two-hybrid study failed to detect NPR1-CUL3 interaction. Instead, two NPR1 paralogs, NPR3 and NPR4, were later found to function as CRL3 adaptors in mediating NPR1 degradation in the nucleus.


Different activities of NPR1 are likely controlled by posttranslational modifications (PTMs), such as SUMOylation which is preceded by dephosphorylation and phosphorylation at two distinct IKB-like degrons, S55/59 and S11/15, respectively. SUMOylation not only regulates NPR1 nuclear-cytoplasmic partitioning and affects its association with different transcription factors (TFs), but also promotes its degradation by NPR3/4. Another important PTM triggered by SA is the oligomer-to-monomer transition of NPR1 through its conserved cysteines in response to cellular redox changes. Recent studies indicate that PTMs and changes in the cellular redox environment can lead to phase transition in many essential hub proteins enabling them to carry out diverse cellular functions.


In this study, we report that NPR1 contains intrinsically disordered regions (IDRs). In response to SA, NPR1 undergoes transition into cytoplasmic condensate-like structures enriched in proteins regulating ETI cell death, DNA damage response, redox metabolism, and ubiquitination. This SA-triggered NPR1 condensation is mediated through conserved cysteine clusters present within its IDRs and is required for the formation of a functional NPR1-CRL3 adaptor complex in the cytoplasm. Using cell biology, molecular and genetic analyses, we demonstrate that recruitment of the CRL3 ubiquitination machinery into SA-induced NPR1 condensates is an essential function of NPR1 in mediating protein homeostasis and cell survival. We provide evidence that the master immune regulator, EDS1, and TFs WRKY54 and WRKY70 are among the substrates of the NPR1-CRL3 complex for SA-mediated cell survival during ETI.


Results

SA Promotes Cell Survival and Ubiquitination through the Function of NPR1. To elucidate the role of NPR1 in the regulation of cell survival, we first infected half leaves of Arabidopsis plants with Pseudomonas syringae pv. maculicola ES4326 carrying the AvrRpt2 effector (Psm ES4326/AvrRpt2) to systemically activate NPR1 and induce SAR. Then the other halves of the leaves were challenged with the same pathogen to determine how the ETI-associated cell death was affected in the neighboring tissue by measuring tissue collapse and conductivity increases due to electrolyte leakage (FIGS. 1A and 1B).


We found that in wild type (WT) plants, the first inoculation significantly suppressed PCD triggered by the second inoculation in the neighboring tissue. This suppression was SA- and NPR1-dependent because it was not observed in the SA biosynthesis mutant, sid2-2, or in the npr1-2 mutant. Consistent with our hypothesis that systemic activation of NPR1 inhibits ETI-induced cell death in the neighboring tissue, significant growth of the otherwise avirulent Psm ES4326/AvrRpt2, close to the level of the receptor mutant rps2, was observed in the second leaf halves in the WT plants, but not in npr1-2 or sid2-2 mutants (FIG. 1C).


To distinguish whether this SA- and NPR1-dependent cell survival occurs at the host cell level or is due to differential pathogen growth, we made use of an Arabidopsis line carrying the dexamethasone (dex)-inducible AvrRpt2 effector gene (dex:AvrRpt2) in either WT or the npr1-2 background. We found that in WT, induction by Psm ES4326/AvrRpt2 could protect plants against cell death triggered by subsequent in planta expression of AvrRpt2 in the neighboring tissue. This effect was abolished both in npr1-2 (FIG. 1D) and sid2-2 (FIG. 8A).


These results indicate that in pathogen-induced SAR, both SA and NPR1 are required at the host cell level for inhibiting ETI-induced PCD.


To determine whether SA is sufficient to inhibit ETI-triggered cell death, we pretreated plants with SA and found that at 0.5 and 1 mM, SA could fully suppress Psm ES4326/AvrRpt2-mediated cell death (FIGS. 8B, 1E and 1F), accompanied with increased pathogen growth (FIG. 1G), in WT plants, but not in the npr1-2 mutant. Similar to pathogen-induced SAR, SA treatment could protect against cell death triggered by in planta expression of the effector, AvrRpt2 (FIG. 1H). This SA/NPR1-mediated inhibition is not limited to ETI mediated by RPS2, which is a coiled-coil class of NB-LRR (CNL) immune receptor, but also ETI activated by RPS4 (FIGS. 1I and 1J) and RPP1 (FIG. 8C), which are Toll/Interleukin-1 receptor class of NB-LRRs (TNLs) against effectors AvrRps4 and ATR1, respectively. Taken together, these results indicate that SA plays a general role in promoting survival of neighboring cells during ETI through the function of NPR1.


To determine how SA-induced and NPR1-dependent cell survival correlates with protein homeostasis, we examined the accumulation of ubiquitinated proteins after treating WT and npr1-2 plants with SA. We found SA concentration-dependent accumulation of ubiquitinated proteins in WT, which is absent in npr1-2 (FIG. 1K). This result indicates that SA and NPR1 are involved in the accumulation of ubiquitinated proteins and implies that NPR1, considering its predicted structural features, might recruit the ubiquitination machinery and/or directly function as an E3 ligase adaptor in controlling protein homeostasis.


NPR1 Accumulates in the Cytoplasm and Undergoes SA-Triggered Condensate Formation. To determine the likely cellular compartment where NPR1-mediated ubiquitination occurs, we analyzed the subcellular accumulation of the endogenous NPR1 after SA treatment. As expected, NPR1 had predominant cytoplasmic accumulation in the mock-treated sample (0 mM SA), and an increased nuclear accumulation at 0.1 and 0.5 mM SA with corresponding decreases in the cytoplasmic fraction (FIG. 2A, upper panel).


Surprisingly, at 1 mM SA, more NPR1 accumulated in the cytoplasm, accompanied by its relative reduction in the nuclear fraction. With a longer exposure of the western blot, we could observe ubiquitinated NPR1 (higher MW smear) in the nuclear fractions of the SA-treated samples (FIG. 2A, middle panels). In the cytoplasmic fraction, however, no corresponding high MW NPR1 smear was observed, even though significant levels of the unmodified NPR1 and other ubiquitinated proteins were present (FIG. 2A, middle panels). A detailed comparison of protein bands between different SA concentrations showed a good correlation between levels of ubiquitination and the accumulation of NPR1 in both cytoplasm and nucleus (FIG. 8D). These results indicate that nuclear-cytoplasmic partitioning of the endogenous NPR1 is dynamically regulated by the concentrations of SA and the protein is unstable in the nucleus.


To validate the fractionation result, we monitored the nuclear-cytoplasmic partitioning of NPR1-GFP in Arabidopsis using transient expression assay. We observed significant levels of NPR1-GFP in the cytoplasm of untreated plants (FIG. 2B), similar to what was detected in the fractionation experiment with the endogenous protein (FIG. 2A). Treatment with 1 mM SA led to predominant nuclear accumulation of NPR1-GFP; whereas at 5 mM SA, fluorescence was detected also in the cytoplasm. This trend was consistent with the fractionation result, albeit higher SA concentrations had to be used for this imaging experiment. Surprisingly, SA also induced formation of discrete NPR1-GFP bodies, not only in the nucleus, but also in the cytoplasm (FIG. 2B). Importantly, cytoplasmic bodies were also observed at the lower SA concentration when we used the SUMOylation-deficient mutant of NPR1, npr1sim3 (sim3 henceforth), which has a predominant cytoplasmic localization after SA treatment (FIG. 2B). The latter observation indicates that body formation in the cytoplasm is not a result of possible toxicity of the higher SA concentration, but rather is a consequence of a specific PTM of NPR1, in this case, SUMOylation. Moreover, analysis of sim3-GFP localization in transgenic Arabidopsis showed that these bodies form only in the surviving cells adjacent to the ETI-induced cell death zone, ruling out a possible toxic effect of exogenous SA application (FIG. 8E). Interestingly, among immunity-associated paralogs (NPR1-4), only NPR1 had significant SA-inducible cytoplasmic body formation (FIGS. 9A-9C).


Moreover, development-associated NPRS and NPR6 showed constitutive bodies as previously reported. Bimolecular fluorescence complementation (BiFC) showed that NPR1 interactions with other NPRs are unlikely to trigger its cytoplasmic body formation (FIG. 9D). This NPR1-specific process may reflect its functional divergence from NPR2-4. These results reveal that besides dynamically controlling the nuclear-cytoplasmic partitioning of NPR1, SA also triggers formation of NPR1 bodies.


Because formation of NPR1 bodies is an induced process, and the morphology of the bodies is similar to that of phase separated proteins (Banani et al., 2017), we hypothesized that NPR1 undergoes conditional transition from soluble to condensed state, possibly through phase separation, to form the observed structures. To test our hypothesis, we performed single-cell time-lapse imaging of NPR1-GFP body formation (FIG. 2C). Quantification of total fluorescence from each body showed a gradual increase in the signal intensity over time as a result of their growth in size (FIG. 2D). Importantly, in contrast to intensity, the number of bodies started to decrease after 50 min as a result of their fusion (FIG. 2E). These behaviors are features of biomolecular condensates driven by IDRs or multivalent domain/motif interactions.


To determine whether NPR1 harbors IDRs, we used all available prediction algorithms and found cysteine-dependent or redox-sensitive IDRs (RDRs) to have the highest probability (FIG. 2F and Table 3). Remarkably, the size and number of RDRs in NPRs (i.e., NPR1-6) closely correlated with their ability to form cytoplasmic condensates, with NPR1 having the highest score and longest RDRs (FIGS. 9A and 9E). To validate the prediction result, we mutated the cysteine clusters of NPR1 within its three putative RDRs: rdr1 (npr1C150/155/156/160A); rdr2 (npr1C378/385/394A); and rdr3 (npr1C511/521/529A) (FIG. 2F). We found that unlike WT, both rdr1 and rdr2 formed cytoplasmic condensates in the absence of SA treatment (FIGS. 10A-10C), indicating that these cysteine clusters are required for keeping NPR1 out of state transition in uninduced cells.


In contrast, mutating RDR3 had no effect on protein state in untreated cells (FIGS. 10A-10C), but completely abolished the SA-induced condensation in both cytoplasm and nucleus (FIGS. 2G and 2H), indicating that the cysteines in RDR3 are required for triggering NPR1 state transition. Moreover, the lack of SA-induced condensation correlated with the reduced transcriptional co-activation function of rdr3 (FIG. 2I) even though the protein had increased nuclear accumulation compared to WT (FIG. 10D). Consistent with these results, random mutagenesis has found point mutations enriched in these conserved cysteines and RDRs, particularly in RDR3 (FIG. 2F and Table 4). Analysis of the SA-mediated survival phenotype of transgenic plants expressing the rdr mutants in the npr1-2 background revealed that consistent with their nuclear-cytoplasmic partitioning (FIG. 10D) and transcriptional co-activation function (FIGS. 10E and 10F), rdr1 had no protection against cell death induced by Psm ES4326/AvrRpt2 (FIG. 10G), while rdr2 displayed stronger protection (FIG. 10H). Importantly, despite its enhanced nuclear accumulation, the rdr3 mutant partially compromised the protection against cell death (FIG. 10I), supporting our hypothesis that NPR1 condensation is required for its function in promoting survival. These results indicate that SA may trigger conformational change in NPR1 through modulation of the conserved cysteines present within or in vicinity of its disordered regions, which in turn leads to protein condensation. Based on the above cellular and genetic data, we designate the NPR1 bodies as “SINCs” for SA-induced NPR1 condensates. Whether SINCs form through liquid-liquid phase separation will require further biophysical studies. Together, these results show that SA not only induces NPR1 transcriptional activity and turnover in the nucleus, but also triggers SINC formation in the cytoplasm, suggesting that SA regulates protein homeostasis and cell survival through well-coordinated nuclear and cytoplasmic functions of NPR1.


SINCs are Enriched with Stress Proteins and Ubiquitination Components. To uncover the function of cytoplasmic NPR1 condensates, we performed quantitative proteomic analysis using the cytoplasmic sim3 mutant. To ensure that SA-mediated transcription by the nuclear NPR1 is intact, the sim3-GFP was expressed in the WT NPR1 background (sim3-GFP/Col-0). After confirming that the line had proper SINC formation (FIG. 11A) and SA-induced ubiquitination (FIG. 11B), immunoprecipitation was performed against sim3-GFP in mock- and SA-treated plants followed by quantitative LC-MS analysis of co-purified proteins (FIG. 11C).


From these samples with good reproducibility (FIGS. 11D and 11E), we identified 171 proteins (“SINC components”) with statistically significant over two-fold enrichment in the SA-treated samples versus mock (Table 5). Gene Ontology (GO) term analysis revealed enrichment in defense/stress-associated proteins in Biological Process (FIG. 11F), protein modification and catabolism in Molecular Function (FIG. 11G), and cytosol in Cellular Component (FIG. 11H) categories. Based on the GO term analysis and literature search, the SINC components were assembled into six intersecting functional groups: (1) defense response, cell death and SA signaling; (2) protein homeostasis; (3) redox metabolism; (4) inter-organellar trafficking/protein transport; (5) DNA damage response; and (6) RNA binding/translation (FIG. 3A and Table 5).



FIG. 3B lists representatives of the four major functional groups. Notably, among the defense-related proteins, we found 10 NB-LRR disease resistance proteins together with other positive regulators of ETI, such as EDS1 (enhanced disease resistance 1) and PAD4 (phytoalexin deficient 4) (Heidrich et al., 2011); activators of hypersensitive cell death, such as BCS1 (cytochrome bc1 synthase 1); and proteins involved in SA-binding and signaling, such as NPR3. In the redox metabolism group, we found the cysteine-regulating glutathione pathway enzymes, such as glutathione peroxidase 8 (GPX8), glutathione S-transferase F6 (GSTF6) and glutathione S-transferase TAU 19 (GSTU19), which were previously identified in the SA-induced proteome. The second large group of proteins were associated with protein quality control, such as heat shock proteins, the ubiquitination machinery, such as ubiquitin, components of E1, E2, E3 ligase complex, and cysteine proteases, including ubiquitin-specific proteases (FIG. 3B and Table 5). Analysis of selected SINC components, EDS1 and BCS1 from the ETI/cell death group, and GSTU19 from the redox metabolism group, confirmed their full co-localization with sim3-GFP in the SA-induced condensates (FIG. 3C).


We then sought to determine the role of SA/NPR1 in the specific cellular pathways identified in SINCs, such as heat shock, oxidative and DNA damage responses, based on the hypothesis that over-accumulation of these stress-responsive proteins would result in cell death. Indeed, we found that SA significantly suppressed cell death induced by these stresses in WT, but not in the npr1-2 mutant plants (FIG. 3D-3F), supporting our hypothesis that NPR1 promotes cell survival in response to a broad spectrum of stimuli by sequestrating and/or degrading not only key immune regulators, but also other stress proteins in SINCs.


NPR1 recruits CUL3 to Cytoplasmic Condensates. The presence of ubiquitin, ubiquitin ligases and E3 ligase complex components in SINCs suggests that NPR1 may regulate protein homeostasis by recruiting ubiquitination machinery as a CRL3 adaptor. Previous studies have shown that members of the NPR family can associate with CUL3 and serve as adaptors for ubiquitination of cognate substrates.


To test our hypothesis, NPR1 and CUL3 were co-expressed in Nicotiana benthamiana followed by 1 mM SA treatment and co-immunoprecipitation (co-IP). We found that the WT NPR1 had a weak pull-down signal of CUL3 in the SA-treated sample (FIG. 4A).


A similar interaction was also detected with the endogenous CUL3 in Arabidopsis (FIG. 4B). Interestingly, when co-expressed in E. coli, an interaction between the two proteins could be easily observed (FIG. 4C), suggesting that NPR1-CUL3 association might be inhibited in planta by PTMs that are absent in E. coli.


To identify regions and residues that could influence CUL3-NPR1 interaction, we included different truncations and point mutants of NPR1 in our co-IP assay (FIG. 12A).


At the lower concentration of 1 mM SA used in this screen, the WT NPR1 is predominantly nuclear localized (FIG. 12B), allowing us to identify PTMs that could enhance the interaction with CUL3, assuming that it occurs in the cytoplasm. First, we found that unlike the full-length protein, the BTB domain of NPR1 was sufficient to strongly pulldown CUL3 even in the absence of SA (FIGS. 4A and 12C), consistent with the notion that BTB is the CUL3-interacting domain in CRL3 substrate adaptors. The BTB domain was also required for interacting with the endogenous CUL3 in Arabidopsis (FIG. 4B) and in E. coli (FIG. 4C). Similarly, deleting the C-terminal domain (CTD) of NPR1 in ACTD significantly enhanced the interaction with CUL3 in the absence of SA (FIGS. 4A and 12C). Moreover, the CTD interacted with the BTB domain and outcompeted CUL3 for interaction with BTB when co-expressed (FIG. 4D). These data suggest that the full-length NPR1 is inhibited from interacting with CUL3 by its CTD. Among point mutants with enhanced cytoplasmic localization, sim3 and nls showed significantly stronger CUL3 pull-down signals compared to the WT NPR1, while other such mutants, S55/59D and npr1-3, had very little signal (FIGS. 4A, 4B, and 12C). These data indicate that NPR1-CUL3 interaction is controlled by NPR1 PTMs, such as SUMOylation and phosphorylation at S55/59, which affect NPR1 nuclear-cytoplasmic partitioning and, perhaps, SINC formation.


To test this hypothesis, we used the BiFC assay to examine the subcellular localization of NPR1-CUL3 interaction. Both NPR1 and sim3 showed clear interactions with CUL3 in discrete cytoplasmic condensates, with the signal more intense for sim3 (FIGS. 4E and 4F). In contrast, the phosphomimic mutant, S55/59D, showed a significantly weaker BiFC signal. The reduced S55/59D interaction with CUL3 observed in the pull-down and the BiFC assays (FIGS. 4A, 4E and 4F) correlated with its inability to form SINCs (FIGS. 4G and 12B). A correlation was also observed for the stronger CUL3 interactors, sim3, which could form condensates at a lower concentration of SA (FIG. 12B), and ACTD, which formed constitutive condensates (FIG. 12D). Unlike NPR1, NPR2-4 interactions with CUL3 were predominantly in the nucleus (FIGS. 13A and 13B).


In further support of our hypothesis that the NPR1-CUL3 interaction occurs in cytoplasmic condensates, rdr1 and rdr2, which constitutively form condensates, showed strong interactions with CUL3, whereas rdr3, which is deficient in condensate formation, displayed little interaction (FIG. 4H).


To demonstrate that it is NPR1 that recruits CUL3 to the condensate instead of CUL3 engaging NPR1 to a pre-existing complex, we analyzed GFP-CUL3 localization in the NbNPR1 knockdown plants (FIGS. 13C and 13D). We found that compared to control, silencing of NbNPR1 reduced the SA-induced accumulation of GFP-CUL3 in cytoplasmic condensates, even though similar levels of the GFP-CUL3 were present (FIGS. 4I-4L). Together, these results show that NPR1 recruits CUL3 into SINCs through its BTB domain.


NPR1-CUL3 Condensates Are Active Ubiquitination Complexes. To determine whether recruitment of CUL3 into SINCs is associated with increased ubiquitination activity, we first examined the co-localization of NPR1-CUL3 complex with known markers of protein bodies involved in protein homeostasis: ubiquitin, ATG8, NBR1 (a polyubiquitin receptor) and HSC70. Because the sim3 mutant showed a stronger interaction with CUL3, we used the sim3/CUL3 BiFC pair for this analysis. We found that sim3/CUL3 condensates co-localized strongly with all four markers of protein bodies, but not with markers of the morphologically similar membrane-bound bodies such as Golgi, TGN and MVB (FIGS. 5A and 13E).


Importantly, co-localization of sim3-GFP with mCherry-NBR1, was significantly enhanced by the presence of CUL3 (FIG. 5B), suggesting that the recruitment of a functional CUL3 into the NPR1 condensates is required for the accumulation of polyubiquitinated protein species in these structures.


To further establish the correlation between the SA-dependent recruitment of CUL3 into condensates and protein ubiquitination, we performed NPR1-CUL3 and sim3-CUL3 pull down under dose response to SA. We found an increase in the interaction between 0-1 mM SA for both NPR1 and sim3 (FIG. 5C, upper panel). By testing the level of total protein ubiquitination in the same samples, we observed a clear correlation between formation of the NPR1-CUL3 complex and the accumulation of ubiquitinated proteins (FIGS. 5C, lower panel, and 13F). Notably, the baseline SA-dependent ubiquitination was lower for sim3 than NPR1, possibly because sim3 is defective in its nuclear function in inducing transcription of potential substrates and/or ubiquitination machinery components. Interestingly, the reduction in ubiquitination at 3 mM SA correlated with reduced neddylation of CUL3 (FIG. 5C, upper Myc-CUL3 band), suggesting that ubiquitination observed in this experiment was a result of active CUL3. To confirm that this NPR1-mediated ubiquitination is dependent on CUL3 activity, we created an inactive, neddylation-deficient form of CUL3 (CUL3ARBX1) and observed a reduction in its ubiquitination activity (FIG. 5D). A similar reduction was observed when we silenced the endogenous N. benthamiana CUL3 (NbCUL3) (FIGS. 5E, 13C and 13D). Together, these results indicate that recruitment of CUL3 into SINCs is associated with increased ubiquitination activity, and further support our hypothesis that SINCs and SINC components can be targeted for degradation by the cytoplasmic NPR1-CRL3 complex to promote cell survival.


NPR1 Targets SINC-localized Proteins for Ubiquitination and Degradation. Many SINC proteins identified in our proteomic analysis, such as NB-LRRs and EDS1/PAD4 involved in ETI signaling (FIG. 3; Table 5), are prime candidates for explaining the role of NPR1 condensates in preventing ETI-induced cell death (FIGS. 1A-1K). The presence of diverse stress-responsive proteins in the NPR1 condensates is consistent with the central role that NPR1 plays in promoting cell survival under a broad range of adverse conditions that could lead to cell death (FIGS. 3A-3F). We selected EDS1 to test our hypothesis. First, we found that EDS1 could interact both with WT and cytoplasmic sim3 mutant in planta (FIG. 6A) and in E. coli (FIG. 6B), indicating that NPR1 recruits EDS1 into SINCs through a direct interaction.


Next, we observed complete co-localization of EDS1 with NPR1/CUL3 and sim3/CUL3 bodies (FIG. 6C) suggesting that NPR1 may target EDS1 for degradation in SINCs through NPR1-CRL3-mediated ubiquitination. To test this hypothesis, we examined the stability of EDS1 in the WT and npr1-2 plants in the presence of SA and protein synthesis inhibitor cycloheximide (CHX). We found that in WT plants, the amount of EDS1 significantly decreased in the absence of new protein synthesis, and this decrease was dependent on SA-mediated activation of NPR1 (FIGS. 6D and 14A).


In npr1-2, while the accumulation of EDS1 was low, the protein levels remained unchanged after SA treatment. Similar results were obtained with another SINC-localized and NPR1-dependent and interacting protein, NIM1-interacting 1 (NIMIN1) (FIGS. 14A and 14B). These results indicate that specific immune regulators directly interacting with NPR1 could be targeted for degradation in SINCs through NPR1-CRL3-mediated ubiquitination. Indeed, we observed increased SA-mediated ubiquitination of EDS1 in WT, but not in npr1-2 nor eds1-2 which is a mutant of one of the two homologous EDS1 genes in Col-0 (FIG. 6E, upper blot). Interestingly, eds1-2 mutant showed reduced levels of SA-induced ubiquitination (FIG. 6E, bottom blot), consistent with the requirement of EDS1 for amplification of SA signaling in plants. Together, these results support our hypothesis that NPR1 targets EDS1 to promote survival during ETI.


WRKY TFs Required for ETI Are Targets of the NPR1-CRL3 Complex. Because EDS1 is a major upstream immune regulator involved in not only ETI, but also SA synthesis, it would be difficult to use genetic epistasis to test the specific effect of NPR1 in recruiting EDS1 to SINCs for ubiquitination and degradation. To remedy this problem, we sought other potential candidates. Among the known NPR1-interacting proteins, WRKY70 TF has been shown to play opposing roles as a repressor of SA synthesis and SA-responsive genes and a positive regulator of various ETI. Like EDS1, WRKY70 interacts more strongly with the cytoplasmic sim3 mutant than the WT NPR1, suggesting that this WRKY TF and perhaps its close homolog WRKY54 may be recruited to SINCs. In support of this hypothesis, we found that these WRKYs could indeed co-localize with sim3/CUL3 bodies (FIG. 6F).


Moreover, analysis of the constitutively expressed WRKY70-GFP in WT and npr1-2 plants showed that while NPR1 was required for stabilization of WRKY70-GFP in the absence of SA, the protein level was reduced in an NPR1- and proteasome-dependent manner in the presence of SA (FIG. 6G). Consistently, we observed increased ubiquitination of WRKY70-GFP in the SA-treated WT but not in the npr1-2 mutant (FIG. 6H). In addition to the in vivo data, we reconstituted the NPR1-CRL3-mediated ubiquitination cascade in E. coli and showed that both WT NPR1 and the sim3 could mediate ubiquitination of WRKY70 (FIGS. 6I, 14C and 14D).


We next sought to put NPR1-mediated degradation of these WRKY TFs in the context of NPR1's function in promoting cell survival by testing ETI induced by Psm ES4326/AvrRpt2 in wrky54 wrky70 double and npr1 wrky54 wrky70 triple mutants. Mutating WRKY54 and WRKY70 diminished the ETI-triggered cell death (FIGS. 7A and 7B) and led to enhanced pathogen growth (FIG. 7C) independent of SA pre-treatment, confirming the positive role of these TFs in ETI.


Moreover, these wrky54 wrky70 phenotypes were epistatic to those of npr1-2 in the npr1 wrky54 wrky70 triple mutant, once again rendering strong support for our hypothesis that NPR1 inhibits cell death by degrading positive regulators of ETI such as WRKY54 and WRKY70. Based on the molecular, cellular, and genetic data, we present the following model to describe the molecular function of NPR1 in mediating cell survival (FIG. 7D). During ETI, infected cells turn on their cell death program as a result of NB-LRR activation by the pathogen effector and signal transduction through components such as EDS1/PAD4 and WRKY54/70 TFs. Concurrently, an increase in SA leads to dephosphorylation of NPR1 at S55/59, releasing NPR1 monomers to enter the nucleus. SUMOylation of NPR1 in the nucleus is not only required for its transcription cofactor activity, but also facilitates its degradation by the NPR3/4-CRL3 complex to remove its inhibitory effect on ETI. In adjacent cells, where ETI becomes unnecessary due to the low pathogen load, the cell survival program becomes predominant through SA-mediated activation of nuclear NPR1 to induce transcription of SAR genes, including SINC components, and the formation of SINCs in the cytoplasm to sequester and degrade proteins involved in cell death, such as NB-LRRs, EDS1, and WRKY54/70. Even though the tipping point of this cell death and survival decision is unknown, it is likely to involve PTMs of NPR1 regulated by the level of the pathogen signal. If the cell survival program is activated by treating plants with SA prior to being exposed to an ETI-inducing signal, they become deficient in ETI (FIGS. 7A-7C).


Discussion

In this study, we found that NPR1 has a major role in controlling protein homeostasis through formation of previously unknown subcellular structures, SINCs, to sequester distinct stress-responsive components in the cytoplasm. Importantly, this cytoplasmic function of NPR1 likely occurs subsequent to its nuclear function in SA/NPR1-mediated transcriptional reprogramming, explaining why such a function was obscured in previous studies. Indeed, many of the proteins found in SINCs are SA-inducible (FIGS. 3A-3F; Table 5). Moreover, functional validation of the pathways identified in SINCs showed that NPR1 promotes survival in response to not only pathogen-induced cell death, but also to heat shock, oxidative and DNA damage responses (FIGS. 3A-3F). Importantly, many of the defense-associated SINC components are also part of ubiquitination machinery, such as E1, E2 and Cullin-associated NEDD8-dissociated protein 1 (CAND1) (FIG. 3B and Table 5). Because the great majority of SA-regulated transcriptome is NPR1-dependent without SA/NPR1-mediated transcriptional induction of defense genes and protein quality control machineries, it would not be necessary, nor possible to maintain protein homeostasis. For example, NPR1 not only induces NIMIN1, WRKY54 and WRKY70 gene transcription in the nucleus, but also mediates degradation of these TFs in the cytoplasmic SINCs. Therefore, mutants blocking the nuclear function of NPR1, such as sim3 and nls, are compromised in SAR even though they still maintain their abilities to interact with CUL3 and ubiquitinate substrates. By applying SA to first activate NPR1 condensate formation, we were able to observe the striking effect that NPR1 has on cell survival in the subsequent ETI tests using a high pathogen inoculant at which SA-mediated SAR is insufficient in rendering resistance (FIGS. 1A-1K and 7A-7D).


The dynamic distribution of NPR1 between nucleus and cytoplasm induced by SA allows coordination of NPR1′s function between the two compartments to achieve proper control of plant immune responses. This process is regulated at multiple steps: Pathogen-induced SA increase is known to change the cellular redox state, leading to the release of NPR1 monomer from the homo-oligomer to translocate into the nucleus. In the absence of SA, the NPR1 homo-oligomer does not form cytoplasmic condensates, nor interact with CUL3, probably due to phosphorylation at S55/59, because the phosphomimic mutant, S55/59D, is defective in both of these processes. SA-induced dephosphorylation at these two residues is required for activation of NPR1 to either enter the nucleus or to form SINCs in the cytoplasm as the phospho-deficient mutant S55/59A has autoimmunity and is severely retarded in growth. Dephosphorylation at S55/59 is also a pre-requisite for SUMOylation in the nucleus, because S55/59D is incompetent for this PTM (Saleh et al., 2015). SUMOylation and subsequent ubiquitination and degradation of nuclear NPR1 mediated by NPR3/4-CRL3 also interplay with SINC formation in the cytoplasm, as shown by the increased SINC formation in sim3 (FIG. 2B) and the sequestration of NPR3 in SINCs (FIG. 3B and Table 5).


Importantly, at all SA concentrations tested, the endogenous NPR1 was never completely depleted from the cytoplasm. In fact, we observed a clear increase in the levels of NPR1 protein in the cytoplasm at higher SA concentrations which correlated with protein condensation. However, we cannot rule out the presence of NPR1 condensates at lower SA concentrations because of the limitation in detection. Though high protein levels are required for visualizing condensates through microscopy, their formation is determined by the biological properties of the proteins. The phosphomimic S55/59D mutant and paralogs, NPR2, NPR3 and NPR4, all fail to form cytoplasmic condensates (FIGS. 4A-4L and 9A-9E), whereas NPR1's ability to form condensates is dependent on the specific redox-sensitive cysteine clusters within the predicted RDRs of the protein. A similar regulation was found in the E. coli heat shock protein 33 (Hsp33). This redox-sensing chaperone can form active bodies upon oxidative stress, which induces transition to a more disordered state, exposing the substrate-binding surface of the protein. Thus, SA-dependent transition of NPR1 into condensates could be triggered by its ability to sense the redox state of the cell, which is consistent with the enriched accumulation of glutathione pathway components in SINCs (FIGS. 3A-3F and Table 5). Formation of NPR1 condensates is required for its ability to recruit CUL3 (FIGS. 4A-4L). Accumulation of multiple interactors of NPR1 may facilitate its condensation and subsequent recruitment of CUL3. Indeed, for the well-studied CRL3 adaptor Speckle-type POZ protein (SPOP), substrate binding is necessary for its phase separation and formation of an active E3 ligase complex with CUL3.


Condensate formation is a feature of proteins that occupy essential hub positions in chromatin organization, transcription, translation, maintenance of cell architecture and protein quality control. Recent development in NPR1 research expanded the list of its interactors and cellular processes in histone modification, cold acclimation, unfolded protein response and SAR. Carrying out these functions would require formation of multi-protein complexes with diverse signaling and metabolic activities. The intrinsic ability of NPR1 to transition from one conformational state to another by forming condensates is a remarkable adaptation enabling it to regulate complex cellular processes, such as signal transduction and protein homeostasis under stress, to promote host survival. This may explain why overexpressing Arabidopsis NPR1 in heterologous plant backgrounds proved to be effective in engineering broad-spectrum disease resistance. Besides serving as a hub for regulating protein homeostasis during cell stress, SINCs may also play a signaling role in plant immunity. The presence of 10 NB-LRR immune receptors, their downstream components EDS1/PAD4, cysteine proteases, cellular redox regulators, ubiquitination, and DNA damage response proteins opens new areas of inquiry for possible interplay between these processes inside SINCs to uncover novel signaling mechanisms.


Experimental Model and Subject Details


Arabidopsis thaliana (At) wild type (WT), mutants, and transgenic plants used in this study were all in the Col-0 ecotype background, with the exception of the Ws-2 ecotype which was used for Pseudomonas fluorescens (Pf) Pf0-1 AvrRps4 infection. Unless otherwise indicated, transgenic Arabidopsis over-expressing GFP-fused NPR1 or its mutant/truncation variants, are all in the npr1-2 mutant background. Arabidopsis mutants npr1-2, sid2-2, rps2, wrky54 wrky70 double and eds1-2; and transgenic lines over-expressing NPR1-GFP and sim3-GFP in the npr1-2 background, the dex:AvrRpt2/rps2 line, and the estradiol-inducible AvrRpt2 (est:AvrRpt2) lines in the Col-0, sid2-2 and rps2 backgrounds were described previously. Transgenic Arabidopsis over-expressing sim3-GFP in the Col-0 background, ABTB-GFP and rdr1/2/3-GFP in the npr1-2 background, and WRKY70-GFP in the Col-0 background, were generated and plants homozygous for the transgenes were used. Transgenic Arabidopsis over-expressing WRKY70-GFP in the npr1-2 background was generated by crossing WRKY70-GFP/Col-0 with the npr1-2 mutant. The dexamethasone-inducible AvrRpt2 line in the npr1-2 mutant background (dex:AvrRpt2/npr1-2) was generated by crossing dex:AvrRpt2/Col-0 (McNellis et al., 1998) with the npr1-2 mutant. The npr1 wrky54 wrky70 triple mutant was generated by crossing wrky54 wrky70 double mutant with npr1-2. Seeds were stratified at 4° C. for three days and plants were grown under a 12 hr light and 12 hr dark cycle at 22° C. Nicotiana benthamiana WT plants were grown under the same conditions. Unless otherwise indicated, in all experiments, soil-grown Arabidopsis and N. benthamiana plants were used at three-week-old and four-week-old age, respectively.


Method Details

Plasmid construction and E. coli-based ubiquitination: The coding sequences for all Arabidopsis genes were amplified from cDNA. Point mutations of AtNPR1 (AT1G64280) were generated using the QuikChange II site-directed mutagenesis kit (Agilent). Overlap PCR was used to generate the deletion/truncation mutations of AtCUL3A (AT1G26830) and AtNPR1. The position of NPR1 truncations and point mutations are indicated in FIG. 12A and Table 4. The WT and mutated coding sequences for all genes and gene fusions were sub-cloned into the pDONR207 gateway donor vector and confirmed by sequencing. The obtained entry vectors were recombined into either plant or E. coli destination vectors without or with an N- or C-terminal tag. For in planta expression, genes were recombined into the plant binary vectors pK7FWG2, pSITE-4NB and pLN462 to generate C-terminal eGFP, mCherry and HA fusions, respectively; into pK7WGF2, pEG201, pEG202, pEG203 and pEG204 to generate N-terminal eGFP, HA, FLAG, Myc and V5 fusions, respectively. For co-expression of NPR1 and CUL3 in E. coli, NPR1 or its mutant/truncation variants were first recombined into pDEST15 vector to generate N-terminal GST fusions (GST-NPR1). Next, E. coli-codon-optimized coding sequence of AtCUL3A fused to the Myc tag was amplified from pEG203-CUL3 and inserted between NdeI and XhoI in the MCS-II of pCDFDuet-1 to generate pCDFDuet-1:Myc-CUL3 plasmid. The two plasmids, pDEST15-NPR1 and pCDFDuet-1:Myc-CUL3, were co-transformed into the E. coli strain BL21(DE3) and protein expression was induced with 0.25 mM IPTG for 12 hr at 20° C. For co-expression of NPR1 and EDS1 in E. coli, the coding sequence of AtEDS1 (AT3G48090) fused to FLAG tag was inserted between NcoI and NotI in MCS-I of pETDuet-1 to first generate the pETDuet-1:FLAG-EDS1 plasmid. Next, the coding sequences of GST-NPR1 fusion or GST alone were amplified from the corresponding pDEST15-based constructs and inserted between NdeI and AvrII in MCS-II of pETDuet-1:FLAG-EDS1 to generate pETDuet-1:FLAG-EDS1+GST-NPR1 or pETDuet-1:FLAG-EDS1+GST plasmid. The obtained plasmids were transformed into the E. coli strain BL21(DE3) and protein expression was induced with 0.25 mM IPTG for 12 hr at 20° C. The neddylation-deficient CUL3□RBX1 mutant was generated by deleting the RBX1 binding motif (F563-E581) in AtCUL3A based on the corresponding deletion in the HsCUL3 (Furukawa et al., 2003). mCherry-fused organelle markers were described previously: TGN (trans-Golgi network/early endosome), MVB (multivehicular body/late endosome); Golgi and Peroxisome; and HSC70 (heat shock cognate 70). The N-terminal mCherry-fusions of AtUbiquitin (AT5G03240), ATG8 (autophagy-related 8a; AT4G21980) and polyubiquitin receptor NBR1 (next to BRCA1 gene 1; AT4G24690) were generated by recombining entry vectors carrying the mCherry-fused coding sequences into the pEG100 plant binary vector. The C-terminal mCherry fusions of AtEDS1, AtGSTU19 (AT1G78380), AtBCS1 (AT3G50930), AtNIMIN1 (AT1G02450), AtWRKY54 (AT2G40750) and AtWRKY70 (AT3G56400) were generated by recombining entry vectors carrying the coding sequences into the pSITE-4NB plant binary vector. The mCherry-NLS nuclear marker was generated by recombining entry vector carrying the coding sequence of mCherry fused to the SV40 nuclear localization signal (CGGGPKKKRKVED (SEQ ID NO: 161)) into the pEG100 plant binary vector. For bimolecular fluorescence complementation (BiFC), entry vectors carrying the coding sequences of genes and their mutant variants were recombined into the pSITE-cEYFP-N1 binary vector for C-terminal fusion with the cYFP half (YC), or into the pSITE-nEYFP-C1 for N-terminal fusion with the nYFP half (YN). To construct the PR1 promoter reporter, entry vector carrying the 2367-bp upstream fragment of AtPR1 (AT2G14610) gene was recombined into a dual luciferase reporter system adapted for Gateway cloning, to generate the pPR1:DUAL-LUC (pPR1:FLUC/35S:RLUC) plant binary vector.


To generate the RNAi silencing vectors for NbNPR1 and NbCUL3, protein sequences for all six AtNPRs [AtNPR1, AtNPR2 (AT4G26120), AtNPR3 (AT5G45110), AtNPR4 (AT4G19660), AtNPR5 (AT2G41370) and AtNPR6 (AT3G57130)] and all six AtCULLINs [AtCUL1 (AT4G02570), AtCUL2 (AT1G02980), AtCUL3A (AT1G26830), AtCUL3B (AT1G69670), AtCUL4 (AT5G46210) and AtCUL5 (AT4g12100)] were used to retrieve orthologs in the N. benthamiana genome assembly (Fernandez-Pozo et al., 2015a). The coding sequences of two genes found in the NPR1 clade [Niben101Scf14780g01001.1 (NbNPR1a) and Niben101Scf11512g01004.1 (NbNPR1b)], and four genes found in the CUL3 clade [Niben101Scf01326g05017.1 (NbCUL3Aa), Niben101Scf05060g00001.1 (NbCUL3Ab), Niben101Scf06545g03015.1 (NbCUL3Ba) and Niben101Scf00272g10015.1 (NbCUL3Bb)] were further submitted to the virus-induced gene silencing (VIGS) tool to predict conserved gene fragments for silencing each clade (Fernandez-Pozo et al., 2015b). A 300-bp fragment was designed to silence the two NbNPR1 genes, and a 600-bp fusion fragment was designed to silence the four NbCUL3 genes. The fragments were amplified from N. benthamiana genomic DNA using gene-specific primers (Table 6) and cloned into the pTRV2-LIC plasmid to generate pTRV2-NbNPR1 and pTRV2-NbCUL3 plant binary vectors. The control vector carrying the N. benthamiana phytoene desaturase gene (pTRV2-NbPDS) was described previously. The ubiquitination reaction was carried out according to the previously described principle of reconstituting basic ubiquitination cascade in E. coli. To reconstitute the complex, CUL3-mediated ubiquitination cascade, the reaction components consisting total of seven proteins (Substrate, NPR1, CUL3, RBX1, E1, E2 and Ubiquitin) were co-expressed in E. coli using a modified Duet vector system (Novagen). Three expression vectors were constructed: (1) pETDuet-1:FLAG-WRKY70+GST-NPR1 or pETDuet-1:FLAG-WRKY70+GST-sim3 or pETDuet-1:FLAG-WRKY70+GST (pET-AdS); (2) pACYCDuet-1:RBX1+Myc-CUL3 (pACYC-RC3); and (3) pCDFDuet-1:HA-Ub+UBC8+UBA1 (pCDF-Ub; FIG. 14C). To construct pET-AdS, the coding sequence of AtWRKY70 fused to the FLAG tag was amplified from pEG202-WRKY70 and inserted between NcoI and NotI in MCS-I of the pETDuet-1 to generate the pETDuet-1:FLAG-WRKY70 plasmid. Next, the coding sequences of NPR1 or sim3 fused to GST, or GST alone, were amplified from the corresponding pDEST15-based constructs and inserted between NdeI and AvrII in MCS-II of the pETDuet-1:FLAG-WRKY70 to generate pETDuet-1:FLAG-WRKY70+GST-NPR1, pETDuet-1:FLAG-WRKY70+GST-sim3 or pETDuet-1:FLAG-WRKY70+GST plasmids. To construct pACYC-RC3, the E. coli-codon-optimized sequence of AtRBX1 (AT5G20570) was inserted between NcoI and HindIII in the MCS-I of pACYCDuet-1 to generate pACYCDuet-1:RBX1. Next, E. coli-codon-optimized sequence of AtCUL3A fused to the Myc tag was amplified from pEG203-CUL3 and inserted between NdeI and XhoI in the MCS-II of pACYCDuet-1:RBX1 to generate the pACYCDuet-1:RBX1+Myc-CUL3 plasmid. To construct pCDF-Ub, the coding sequence of AtUbiquitin (Ub) fused to HA was amplified from pEG201-Ub and inserted between NcoI and EcoRI in the MCS-I of pCDFDuet-1 to generate pCDFDuet-1:HA-Ub. Next, coding sequence of AtUBC8 (AT5G41700), in which its single NcoI restriction site was eliminated by introducing a silent mutation, was inserted between NcoI and HindIII in the MCS-I of pCDFDuet-1 to generate pCDFDuet-1:UBC8. Next, the entire fragment required for expression of UBC8 (T7 promoter, lac operator, rbs and UBC8) was amplified from pCDFDuet-1:UBC8 and inserted between EcoRI and NotI in the MCS-I of pCDFDuet-1:HA-Ub, downstream to HA-Ub, to generate the pCDFDuet-1:HA-Ub+UBC8 plasmid. Next, coding sequence of AtUBA1 (AT2G30110) was inserted between FseI and AvrII in the MCS-II of pCDFDuet-1:HA-Ub+UBC8 to generate the pCDFDuet-1:HA-Ub+UBC8+UBA1 plasmid. The three vectors, pET-AdS, pACYC-RC3 and pCDF-Ub, were co-transformed into the E. coli strain BL21(DE3) and ubiquitination reaction was initiated by inducing protein expression with 0.5 mM IPTG for 3 hr at 28° C. in the presence of 1 mM sodium salicylate (SA; Sigma). Proteins were extracted by mechanical disruption with lysis buffer containing 125 mM Tris HCl (pH 7.5), 150 mM NaCl, cocktail of protease inhibitors, 1 mM PMSF (phenylmethylsulfonyl fluoride, Sigma), 7.15 mM BME (β-mercaptoethanol), 1 mM EDTA, 10 mM NEM (N-ethylmaleimide, Sigma). Expression of proteins was confirmed with SDS-PAGE on the total lysate. To detect ubiquitination of FLAG-WRKY70 under denaturing conditions, 1% SDS was added to the lysate and heated at 95° C. for 10 min, then diluted 10 times with the lysis buffer and subjected to immunoprecipitation (IP) using α-FLAG magnetic agarose beads 888 (ThermoFisher). Eluted proteins were subjected to SDS-PAGE and probed with α-FLAG and α-HA. Table 6 lists all primer sequences used in this study.


Plant transformation: For plant transformations, the Agrobacterium tumefaciens strain GV3101 was transformed with plant binary vectors carrying the indicated transgenes. For stable expression in Arabidopsis, a floral dipping method was used. For transient expression in N benthamiana, the Agrobacterium carrying the indicated construct was cultured overnight at 28° C. in Luria-Bertani (LB) broth medium supplemented with appropriate antibiotics: spectinomycin (100 μg/ml), kanamycin (50 μg/ml), gentamycin (50 μg/ml), and rifampicin (25 μg/ml). The obtained culture was re-inoculated at 1:10 into fresh growth media with antibiotics and grown for another 4 hr. Cells were then spun down at 1,600 g for 10 min, and inoculum was prepared by resuspending cells to OD600 nm=1 in double distilled water (DDW) containing 200 μM acetosyringone (Sigma). Unless otherwise stated, for co-IP, co-localization, and BiFC assays in N. benthamiana, the proteins were co-expressed at 1:1 mixture of the relevant Agrobacteria inoculums. In all BiFC assays, the pair of YN/YC fusions was co-expressed together with free mCherry to mark the cytoplasm and nucleus, mCherry-NLS to mark the nucleus only, or mCherry-fused test proteins for co-localization analysis. The inoculum was pressure infiltrated into N. benthamiana leaves at the abaxial side using 1 ml syringe without the needle. Due to low overall levels of NPR1-GFP in transgenic plants, a transient expression assay in Arabidopsis seedlings was used to monitor NPR1-GFP subcellular localization after SA treatment (FIG. 2B). To limit the imaging time in this transient assay (2 hours), a higher baseline SA concentration had to be used. Seeds of WT (Col-0) Arabidopsis were germinated on solid half-strength Murashige and Skoog (1/2 MS) medium and grown for 4 days. Agrobacterium carrying the indicated constructs was grown overnight in LB medium supplemented with appropriate antibiotics. The obtained culture was re-inoculated at 1:10 into virulence induction medium [50.78 mM MES, 0.5% Glucose, 1.734 mM NaH2PO4, 5% of 20X-AB mix (373.9 mM NH4C1, 24.34 mM MgSO4, 40.23 mM KCl, 1.36 mM CaCl2 and 0.18 mM FeSO4·7H2O), 200 μM acetosyringone] supplemented with 25 μg/ml rifampicin and grown for another 24 hr at 28° C. to OD600=0.8 (inoculum). Seedlings were vacuum-infiltrated with the inoculum, and at 48 hpi (hours post inoculation), treatments were performed by submerging the transformed seedlings in water or SA solution at indicated concentrations for 2 hr. Entire cotyledons were sampled for microscopy.


Chemical treatment, pathogen infection and cell death assays. For soil-grown Arabidopsis plants, SA treatment was carried out with spray at indicated concentrations. For seedlings grown vertically on solid 1/2 MS medium for 10-12 days, SA 925 treatment (1 mM), with or without the proteasome inhibitor MG132 (50 μM), and protein synthesis 926 inhibitor cycloheximide (100 μM) was done by submerging them in solutions for indicated periods. Unless otherwise stated, in N. benthamiana, SA treatment was done by infiltrating leaves 24 hr after agroinfiltration. SA pre-treatment of mature Arabidopsis was done by spray 24 hr before bacterial infection or cell death induction. For bacterial infections, Pseudomonas syringae pv. maculicola ES4326 carrying AvrRpt2 or AvrRpm1 effectors, and Pf Pf0-1 carrying functional AvrRps4 or non-functional AvrRps4KRVY-AAAA effectors were grown for 2 days on solid King's B medium supplemented with appropriate antibiotics. An inoculum was prepared by resuspending cells in 10 mM MgSO4 to obtain the desired optical density: Psm ES4326/AvrRpt2 (OD600 nm=0.02); Psm ES4326/AvrRpm1 (OD600 nm=0.1); Pf Pf0-1/AvrRps4 and Pf Pf0-1/AvrRps4KRVY-AAAA (OD600 nm=0.2). Bacteria were pressure infiltrated into mature leaves of three-week-old Arabidopsis plants and cell death or bacterial growth were assessed at indicated times post inoculation (hpi, hours post inoculation; dpi, days post inoculation). Induction of cell death in dex:AvrRpt2 transgenic plants was performed by spraying plants or infiltrating individual leaves with 25 μM dexamethasone (Sigma). Induction of cell death in est:AvrRpt2 transgenic plants was performed by infiltrating individual leaves with 941 50 μM β-estradiol (Sigma). Heat stress was applied by incubating mature leaf disks from three-942 week-old Arabidopsis plants in 45° C. water bath for 45 min. Oxidative stress was induced by spraying three-week-old Arabidopsis plants with 0.25 mM water solution of MV (Methyl viologen dichloride hydrate; Sigma). UV-C irradiation was performed on leaf disks from three-week-old Arabidopsis plants using UV crosslinker with total dose of 20 kJ/m2. Cell death was monitored using electrolyte leakage assay 1 hr after pathogen infection, or induction of dex:AvrRpt2 and est:AvrRpt2, or application of stresses. For electrolyte leakage, 12 leaf disks were sampled from four plants for each treatment/genotype in three replicates. After sampling, the disks were washed with DDW and conductivity was measured every 3 hr using Orion Star™ A222 Portable Conductivity Meter (ThermoFisher). Monitoring the RPP1/ATR1-induced cell death in the presence of SA was done by addition of SA into the leaf disks incubation solution with subsequent subtraction of the conductivity reads contributed by SA from the total reads. For bacterial growth assay, leaf disks were sampled at 1 dpi from eight infected plants per treatment/genotype, ground in 10 mM MgSO4, and plated with sequential dilutions on King's B medium plates supplemented with appropriate antibiotics. At 2 days, the bacterial colonies were scored.


Trypan blue staining. Leaves of three-week-old Arabidopsis infected with Psm ES4326/AvrRpt2 were sampled at 1 dpi, boiled in 95% ethanol until completely bleached, followed by boiling for 3 min in a 1:1 mixture of 95% ethanol and staining solution (10 ml lactic acid, 10 ml glycerol, 10 g phenol and 10 mg trypan blue, dissolved in 10 ml DDW). The leaves were then de-stained in 2.5 g/ml chloral hydrate solution and transferred to 70% glycerol for subsequent imaging.


VIGS assay. The silencing of NbNPR1 (NbNPR1-RNAi) and NbCUL3 (NbCUL3-RNAi) was done using VIGS assay performed as previously described. Ten-day-old WT N. benthamiana plants were inoculated with Agrobacteria (GV3101) carrying the helper plasmid pTRV1-LIC mixed at 1:1 with a strain carrying either pTRV2-LIC (empty vector control, E.V.), pTRV2-NbPDS (positive control), pTRV2-NbNPR1 or pTRV2-NbCUL3 vectors. Ten days later, gene silencing in the mock and SA-treated plants was verified in the systemic leaves by qPCR using gene-specific and reference gene (eIF4a) primers (Table 6). NbNPR1 silencing was additionally confirmed by analysis of NbPR1 expression. The silenced leaves were used in the standard transient expression assay by agroinfiltration using strains carrying the indicated test genes; and gene expression was assayed at 2 dpi.


Quantitative PCR. Total RNA was extracted from fresh leaf tissue with Trizol reagent (Sigma). cDNA was synthetized using the SuperScript III cDNA Synthesis (Thermofisher). QPCR was performed with FastStart Universal SYBR Green Master Kit (Roche) using Mastercycler ep realplex (Eppendorf). Gene specific primers used for qPCR are listed in Table 6.


PR1 promoter activity and dual luciferase assay. For promoter transactivation assays, the PR1 promoter reporter (pPR1:DUAL-LUC) was transiently co-expressed in N. benthamiana together with free HA, or HA-fused WT NPR1 or npr1 mutants (effectors) followed by treatment with SA at 1 dpi. At 2 dpi (24 hr after SA treatment), leaf discs were collected, ground in liquid nitrogen, and lysed with the PLB buffer of the Dual-Luciferase Reporter Assay System (Promega, E1910). Lysate was spun down at 12,000 g for 1 min, and 10 μl was taken for measuring FLUC and RLUC activities according to manufacturer's instructions using a Victor3 plate reader (PerkinElmer). At 25° C., substrates for FLUC and RLUC were added using the automatic injector and after 3 s shaking and 3 s delay, the signals were captured for 3 s and recorded as counts per second. To obtain the PR1 promoter activity, the ratio of F-LUC and R-LUC activities was calculated for each effector and plotted relative to that of free HA.


Confocal laser scanning microscopy. Unless otherwise indicated, all imaging data and micrographs for single protein imaging, co-localizations, BiFC and time-lapse were obtained from the transient expression in N. benthamiana using the relevant Agrobacteria strains. All imaging was done with confocal laser scanning fluorescence microscopy using Zeiss 880 airyscan inverted confocal microscope with a 40×/1.2 water correction objective. GFP (eGFP) was excited with a 488 nm argon laser and emission was collected with a 505-530 nm band pass filter. YFP was excited with an argon laser using a 514 nm beam splitter, and emission was detected with a 520-555 nm band pass filter. mCherry was excited with a 561 nm diode laser, and emission was detected with a 575-615 nm band pass filter. When eGFP/YFP were imaged together with mCherry, a spectral GASP detector was used to collect emission from eGFP/YFP. Propidium iodide (PI) was excited with 488 nm argon laser and emission was detected with a 590-620 nm band pass filter. Time-lapse imaging was carried out on live leaf tissue samples from N. benthamiana plants transiently expressing the protein of interest. Image acquisition was done in 5 min intervals for the duration of 2 hr by scanning 30 consecutive focal planes along the Z-axis covering the entire thickness of an epidermal cell. Z-projection was done to each time frame stack before composing a final time-lapse file.


Protein analysis and IP. Recombinant protein analysis was performed using transient expression in N. benthamiana, or stable over-expression in transgenic Arabidopsis, or expression in E. coli. Total protein extraction from plants was performed by homogenizing leaf tissue in the plant extraction buffer [50 mM Tris-HCl (pH 7.5), 150 mM NaCl, 5 mM EDTA, 0.2% Triton X-100, 0.2% Nonidet P-40] supplemented with 1 mM PMSF, 100 μM MG132, and EDTA-free protease inhibitor cocktail (Roche). For ubiquitinated protein analysis in plants, 100 μM of DUB (deubiquitinase) inhibitor (LifeSensors) and 10 mM NEM were added. Next, the lysates were cleared by centrifugation at 14,000 rpm for 15 min followed by filtering through a 0.2 μm filter. Unless otherwise indicated, total protein extraction from E. coli was performed by mechanical disruption of cells with lysis buffer containing 125 mM Tris HCl (pH 7.5), 150 mM NaCl, cocktail of protease inhibitors, 1 mM PMSF, 7.15 mM BME, 1 mM EDTA. Pull-downs or IP experiments were done on total protein extracts by incubating protein samples in the lysis buffer overnight with indicated affinity tag or antibody conjugated to agarose or magnetic beads: GFP-trap agarose beads (Chromotek) for GFP fusions; RFP-trap agarose beads (Chromotek) for mCherry fusions; anti-HA magnetic beads (ThermoFisher) for HA tag fusions; anti-DYKDDDDK coupled magnetic agarose (ThermoFisher) for FLAG tag fusions; and glutathione magnetic agarose (ThermoFisher) for GST fusions. Unless otherwise indicated, after pull-down/IP, beads were washed 3 times and proteins were eluted by boiling in the 2×SDS sample buffer. For Western blotting, the SDS sample buffer was added to the protein extracts from a 4×stock solution supplemented with 50 mM DTT (dithiothreitol) and 715 mM BME. Protein samples were heated to 95° C. for 10 min, separated on SDS-PAGE gels, and transferred to nitrocellulose membranes. Western blots were probed with α-AtNPR1, α-AtEDS1 (Agrisera), α-AtNIMIN1 (ABclonal), α-HA (Biolegend), α-Myc (Santa 1036 Cruz), α-FLAG-HRP (Biolegend), α-V5 (Santa Cruz), α-GST HRP (GE Healthcare), α-GFP (Clonetech), α-RFP (Chromotek), α-AtCUL3A, α-Ubiquitin (Ub; P4D1; Santa Cruz), α-TUB (β-Tubulin F1; Santa Cruz), α-Histone H3 (H3; Agrisera), or α-Actin (ACT; Agrisera) primary antibodies. In Western blots, asterisks indicate non-specific bands from the α-NPR1 (FIGS. 1K, 2A, 6D and 6E) and α-HA (FIGS. 4H, 5C and 12C) immunoblots. Equal loading was confirmed by probing either with α-TUB antibody, or by the ˜55 kDa Rubisco band from the Coomassie blue (CB) staining.


Cell fractionation. Cytoplasmic and nuclear proteins were sequentially isolated from three-week-old Arabidopsis (Col-0) plants using 1 g of leaf tissue and a sucrose gradient protocol described previously with modifications. Tissue was homogenized in lysis buffer (20 mM Tris-HCl, pH 7.5, 20 mM KCl, 2 mM EDTA, 2.5 mM MgCl2, 25% glycerol, 0.25 M Sucrose) supplemented with 100 μM MG132, EDTA-free protease inhibitor cocktail, 1 mM PMSF and 5 mM DTT. The lysate was filtered through a 70 μm filter and centrifuged at 20,000 g for 15 min at 4° C., and the supernatant was collected (cytoplasmic fraction). The pellet was washed four times with 5 ml of NRBT buffer (20 mM Tris-HCl, pH 7.4, 25% glycerol, 2.5 mM MgCl2, and 0.2% Triton X-100). After the last wash, the pellet was resuspended with 500 μl of NRB2 buffer (20 mM Tris-HCl, pH 7.5, 0.25 M Sucrose, 10 mM MgCl2, 0.5% Triton X-100) supplemented with protease inhibitor cocktail and 5 mM BME. The obtained suspension was layered at 1:1 on top of the NRB3 buffer (20 mM Tris-HCl, pH 7.5, 1.7 M Sucrose, 10 mM MgCl2, 0.5% Triton X-100) supplemented with protease inhibitor cocktail and 5 mM BME, centrifuged at 16,000 g for 45 min at 4° C. The top layer was removed and the pellet was resuspended with 200 μl of plant extraction buffer containing 1% Triton X-100, protease inhibitor cocktail and 5 mM BME (nuclear fraction). Samples were run on a reducing SDS-PAGE. Cell fractionation was confirmed by immunoblotting with antibodies against cytoplasmic marker actin (α-ACT) and nuclear marker histone H3 (α-H3).


Prediction of redox-sensitive disorder regions. Protein sequences of AtNPRs were submitted to the IUPred2a tool (iupred2a.elte.hu/; (Meszaros et al., 2018)) for prediction of intrinsically disordered regions (IDRs) with experimental redox-state option turned on. The differential IDR score per residue (FIG. 2F) was calculated by subtracting the predicted redox-plus (WT protein) values from redox-minus (mutated cysteines) values (Table 3).


Mass spectrometry. For proteomic analysis of NPR1 condensates, total proteins from mock- and SA-treated transgenic Arabidopsis plants expressing sim3-GFP in the WT NPR1 background (sim3-GFP/Col-0) were isolated, followed by immunoprecipitation of sim3-GFP and a quantitative LC-MS analysis of the co-purified proteins. Lysates were prepared from 6 g of tissue from three-week-old plants treated with water (mock) or 1 mM SA for 24 hr using IP buffer (plant extraction buffer containing 1% Triton X-100) supplemented with 1 mM PMSF, 100 μM MG132, 100 μM DUB inhibitor, 10 mM NEM, 1.43 mM BME, EDTA-free protease inhibitor cocktail (Roche), and 100 μM SA for SA-treated sample. For each treatment the obtained lysate was filtered through a 0.2 μm filter, split into three replicates, mixed with GFP-trap agarose beads (Chromotek) under saturating conditions [25 μl beads (50% slurry)/3 ml of lysate] and subjected to three independent IP reactions per each sample by overnight incubation at 4° C. After incubation, the beads were washed five times with the IP buffer and three times with 50 mM ammonium bicarbonate (NH4HCO3). For silver stain, 5% of the beads were mixed with ×2 SDS sample buffer, boiled at 95° C. for 10 min and the supernatant was run on a 4-12% polyacrylamide gel. The gel was stained with Pierce™ Silver Stain Kit (ThermoFisher) according to the manufacturer's instructions. The remaining beads were submitted to the Duke Proteomics Core Facility for an on-bead trypsin digestion, peptide lyophilization and LC-MS/MS analysis. Quantitative one-dimensional liquid chromatography, tandem mass spectrometry (1D-LC-MS/MS) was performed on equal volumes of peptide digests of the three replicates from each treatment. Following the LC-MS/MS runs, data were imported into Rosetta Elucidator v. 4 (Rosetta Biosoftware, Inc.), and analyses were aligned based on the accurate mass and retention time of detected ions (“features”) using PeakTeller algorithm in Elucidator. Relative peptide abundance (expression intensity) was calculated based on area-under-the curve (AUC) of the selected ion chromatograms of the aligned features across all runs. The MS/MS data were searched against a custom Araport11 database with an additional entry for the sim3-GFP sequence and an equal number of reversed-sequence “decoys” for false discovery rate determination (96,720 total entries). Mascot Distiller and Mascot Server (v 2.5, Matrix Sciences) were utilized to produce fragment ion spectra and to perform the database searches. Database search parameters included precursor mass tolerance of 5 ppm, product ion mass tolerance of 0.8 Da, trypsin specificity with up to 2 missed cleavages, fixed modification on Cys (carbamidomethyl) and variable modification of deamidation (Asn/Gln), oxidation (Met) and N-terminal protein acetylation. After individual peptide scoring using the PeptideProphet algorithm in Elucidator, the data were annotated at a 1% peptide and 0.8% protein false discovery rates, respectively. The data were filtered to remove low quality peptides with poor chromatographic peak shape, and those quantified by less than two peptides. Only those proteins quantified from at least two replicates in each sample were accepted. Due to differences in the intensity values of sim3-GFP peptides between mock and SA treated samples, the data were normalized to the mean sim3-GFP expression across all 6 samples. In the normalized data the intensities of sim3-GFP were equalized, while other identified protein intensities varied based on their abundance. The variability between the samples and replicates were visualized from the normalized data by principal component analysis (PCA) and 2-dimentional hierarchical clustering (FIGS. 11A-11H). Fold change (FC) of the mean intensities from the three replicates of SA-treated samples over mock was calculated and a t-test was applied to calculate the p-value. The final list of sim3-GFP interactors (171 proteins) was obtained by applying FC cut-off above 2, and a p-value below 0.05. The GO term analysis of the interactome list was performed using the ShinyGO v0.60: Gene Ontology Enrichment Analysis tool (Ge et al., 2019). For intersection analysis of SINC functional groups, the UpSet plot (FIG. 3A) was generated using Intervene Shiny App.


Quantification And Statistical Analysis. For all image quantifications, 8-16 randomly sampled unsaturated confocal images (512×512 pixels, 225×225 μm) were used with an automated image analysis algorithm implemented in the ImageJ software as previously described. Briefly, for each experiment, images from control and test samples were grouped into a dataset. Next, a random image was selected from the dataset and parameters such as local threshold, background noise, object size and shape were determined. The obtained parameters were fed into an algorithm for automated analysis of the entire dataset. The output values, such as body number, size, and intensity/body, were used for statistical analysis between test and control groups using Student's t tests or one-way ANOVA tests. For quantification of co-localization, Pearson's correlation coefficients were calculated between GFP/BiFC and mCherry signals using the JACoP plugin in the ImageJ software with the default settings.


All experiments involving measurements/quantifications, imaging and quantifications from images were repeated at least two times with similar results. Data plotting and statistical tests were performed in GraphPad Prism 8. Statistical parameters such as mean±SD (standard deviation), SE (standard error), 95% confidence intervals are indicated in figure legends. In graphs showing quantification of co-localization and nuclear-cytoplasmic partitioning, all data points (number of images used, n) are plotted using box & whiskers with min/max range indication. In all graphs, asterisks indicate statistical significance (*, p<0.05; **, p<0.01; ***, p<0.001; ****, p<0.0001, ns, not significant) tested by Student's t test (two groups) or one/two-way ANOVA (multiple groups). Lowercase letters indicate statistical significance tested between multiple groups by one-way ANOVA at p<0.05. In conductivity assays n=3; in bacterial growth assays n=8; in PR1 promoter transactivation assay n=3.


TABLES









TABLE 3







Prediction Scores for Redox-Sensitive Disorder Regions (RDRs) in Arabidopsis NPRs.


Related to FIGS. 2A-2I and 9A-9E. The RDR regions were predicted with the IUPred2a algorithm


(iupred2a.elte.hu/). Differential IDR score was calculated by subtracting the redox-plus


(WT protein) scores from the redox-minus (mutated cysteines) scores for each residue.














IUPRED2
IUPRED2
REDOX SENSITIVE
DIFFERENTIAL IDR


AMINO ACID
AMINO
REDOX
REDOX
DISORDER
SCORE [(REDOX MINUS) −


POSITION
ACID
PLUX
MINUS
REGION, RDR (1)
(REDOX PLUS)]















>AtNPR1







(AT1G64280)







1
M
0.8595
0.8595
0
0


2
D
0.7573
0.7573
0
0


3
T
0.7458
0.7458
0
0


4
T
0.6412
0.6412
0
0


5
I
0.5941
0.5941
0
0


6
D
0.5514
0.5514
0
0


7
G
0.5008
0.5008
0
0


8
F
0.4556
0.4556
0
0


9
A
0.3359
0.3359
0
0


10
D
0.2385
0.2385
0
0


11
S
0.1698
0.1698
0
0


12
Y
0.1844
0.1844
0
0


13
E
0.1921
0.1921
0
0


14
I
0.1998
0.1998
0
0


15
S
0.2041
0.2041
0
0


16
S
0.282
0.282
0
0


17
T
0.27
0.27
0
0


18
S
0.2602
0.2602
0
0


19
F
0.27
0.27
0
0


20
V
0.2483
0.2483
0
0


21
A
0.1698
0.1698
0
0


22
T
0.1178
0.1178
0
0


23
D
0.1456
0.1456
0
0


24
N
0.1018
0.1018
0
0


25
T
0.1766
0.1766
0
0


26
D
0.1921
0.1921
0
0


27
S
0.1456
0.1456
0
0


28
S
0.1018
0.1018
0
0


29
I
0.0991
0.0991
0
0


30
V
0.1532
0.1532
0
0


31
Y
0.2292
0.2292
0
0


32
L
0.2786
0.2786
0
0


33
A
0.2209
0.2209
0
0


34
A
0.1998
0.1998
0
0


35
E
0.1698
0.1698
0
0


36
Q
0.1178
0.1178
0
0


37
V
0.1178
0.1178
0
0


38
L
0.0744
0.0744
0
0


39
T
0.0478
0.0478
0
0


40
G
0.0789
0.0789
0
0


41
P
0.115
0.115
0
0


42
D
0.1635
0.1635
0
0


43
V
0.1456
0.1456
0
0


44
S
0.1921
0.1921
0
0


45
A
0.2209
0.2209
0
0


46
L
0.1456
0.1456
0
0


47
Q
0.0789
0.0789
0
0


48
L
0.124
0.124
0
0


49
L
0.1766
0.1766
0
0


50
S
0.2122
0.2167
0
0.0045


51
N
0.2209
0.2255
0
0.0046


52
S
0.1998
0.2041
0
0.0043


53
F
0.1117
0.1178
0
0.0061


54
E
0.115
0.1178
0
0.0028


55
S
0.115
0.1178
0
0.0028


56
V
0.1456
0.1532
0
0.0076


57
F
0.1805
0.1878
0
0.0073


58
D
0.1635
0.1698
0
0.0063


59
S
0.1602
0.1698
0
0.0096


60
P
0.1667
0.1766
0
0.0099


61
D
0.1088
0.1178
0
0.009


62
D
0.1018
0.1088
0
0.007


63
F
0.106
0.1178
0
0.0118


64
Y
0.1805
0.1958
0
0.0153


65
S
0.1602
0.1766
0
0.0164


66
D
0.1732
0.1921
0
0.0189


67
A
0.1732
0.1921
0
0.0189


68
K
0.2558
0.2748
0
0.019


69
L
0.1566
0.1732
0
0.0166


70
V
0.1602
0.1805
0
0.0203


71
L
0.1322
0.1495
0
0.0173


72
S
0.0858
0.1349
0
0.0491


73
D
0.0567
0.0965
0
0.0398


74
G
0.0723
0.1178
0
0.0455


75
R
0.1041
0.1566
0
0.0525


76
E
0.0884
0.138
0
0.0496


77
V
0.0832
0.1322
0
0.049


78
S
0.1018
0.1532
0
0.0514


79
F
0.1041
0.1566
0
0.0525


80
H
0.0965
0.1456
0
0.0491


81
R
0.0832
0.1292
0
0.046


82
S
0.1349
0.1958
0
0.0609


83
V
0.138
0.1998
0
0.0618


84
L
0.115
0.1698
0
0.0548


85
S
0.0771
0.1205
0
0.0434


86
A
0.0643
0.1041
0
0.0398


87
R
0.0502
0.0813
0
0.0311


88
S
0.0621
0.1041
0
0.042


89
S
0.0643
0.106
0
0.0417


90
F
0.1088
0.1667
0
0.0579


91
F
0.1178
0.1732
0
0.0554


92
K
0.1178
0.1732
0
0.0554


93
S
0.1667
0.1844
0
0.0177


94
A
0.2041
0.2209
0
0.0168


95
L
0.27
0.2865
0
0.0165


96
A
0.2786
0.3005
0
0.0219


97
A
0.3005
0.3225
0
0.022


98
A
0.2657
0.2865
0
0.0208


99
K
0.2333
0.2558
0
0.0225


100
K
0.1766
0.1958
0
0.0192


101
E
0.2531
0.2748
0
0.0217


102
K
0.2602
0.282
0
0.0218


103
D
0.27
0.2913
0
0.0213


104
S
0.1958
0.2122
0
0.0164


105
N
0.2167
0.2333
0
0.0166


106
N
0.2913
0.3053
0
0.014


107
T
0.2333
0.2483
0
0.015


108
A
0.2292
0.2385
0
0.0093


109
A
0.2531
0.2602
0
0.0071


110
V
0.27
0.2748
0
0.0048


111
K
0.2041
0.2122
0
0.0081


112
L
0.1958
0.2041
0
0.0083


113
E
0.1532
0.1566
0
0.0034


114
L
0.1532
0.1566
0
0.0034


115
K
0.0991
0.1018
0
0.0027


116
E
0.1041
0.106
0
0.0019


117
I
0.0991
0.1018
0
0.0027


118
A
0.0744
0.0771
0
0.0027


119
K
0.066
0.0677
0
0.0017


120
D
0.0813
0.0832
0
0.0019


121
Y
0.0858
0.0935
0
0.0077


122
E
0.0607
0.0677
0
0.007


123
V
0.0832
0.0965
0
0.0133


124
G
0.0502
0.0587
0
0.0085


125
F
0.0587
0.0723
0
0.0136


126
D
0.0405
0.0514
0
0.0109


127
S
0.0395
0.049
0
0.0095


128
V
0.066
0.0813
0
0.0153


129
V
0.0789
0.0991
0
0.0202


130
T
0.0567
0.0744
0
0.0177


131
V
0.0502
0.066
0
0.0158


132
L
0.0884
0.1178
0
0.0294


133
A
0.0965
0.1292
0
0.0327


134
Y
0.1456
0.1878
0
0.0422


135
V
0.1349
0.1805
0
0.0456


136
Y
0.1998
0.2657
0
0.0659


137
S
0.1349
0.1921
0
0.0572


138
S
0.1349
0.1878
0
0.0529


139
R
0.1878
0.2531
0
0.0653


140
V
0.1266
0.3005
1
0.1739


141
R
0.1018
0.2657
1
0.1639


142
P
0.1456
0.3359
1
0.1903


143
P
0.208
0.4037
1
0.1957


144
P
0.2385
0.4379
1
0.1994


145
K
0.1998
0.4967
1
0.2969


146
G
0.1602
0.5412
1
0.381


147
V
0.1998
0.6035
1
0.4037


148
S
0.1349
0.5296
1
0.3947


149
E
0.1088
0.5008
1
0.392


150
S
0.0514
0.5008
1
0.4494


151
A
0.0677
0.5412
1
0.4735


152
D
0.0832
0.5711
1
0.4879


153
E
0.0567
0.5253
1
0.4686


154
N
0.0316
0.4282
1
0.3966


155
S
0.0308
0.4245
1
0.3937


156
S
0.0157
0.3359
1
0.3202


157
H
0.0121
0.2963
1
0.2842


158
V
0.009
0.2657
1
0.2567


159
A
0.0099
0.282
1
0.2721


160
S
0.0061
0.1958
0
0.1897


161
R
0.0074
0.1266
0
0.1192


162
P
0.0055
0.0991
0
0.0936


163
A
0.0015
0.0478
0
0.0463


164
V
0.0009
0.035
0
0.0341


165
D
0.0005
0.0144
0
0.0139


166
F
0.0006
0.0078
0
0.0072


167
M
0.0005
0.0033
0
0.0028


168
L
0.0005
0.0029
0
0.0024


169
E
0.0004
0.0021
0
0.0017


170
V
0.0006
0.0035
0
0.0029


171
L
0.0013
0.0042
0
0.0029


172
Y
0.0007
0.0012
0
0.0005


173
L
0.0003
0.0005
0
0.0002


174
A
0.0004
0.0006
0
0.0002


175
F
0.0003
0.0005
0
0.0002


176
I
0.0002
0.0003
0
0.0001


177
F
0.0003
0.0004
0
0.0001


178
K
0.0003
0.0005
0
0.0002


179
I
0.0005
0.0007
0
0.0002


180
P
0.0002
0.0004
0
0.0002


181
E
0.0002
0.0003
0
0.0001


182
L
0.0003
0.0005
0
0.0002


183
I
0.0003
0.0004
0
0.0001


184
T
0.0003
0.0004
0
0.0001


185
L
0.0004
0.0005
0
0.0001


186
Y
0.0007
0.0009
0
0.0002


187
Q
0.0008
0.0009
0
1E−04


188
R
0.0009
0.0013
0
0.0004


189
H
0.0006
0.0007
0
0.0001


190
L
0.001
0.0015
0
0.0005


191
L
0.0008
0.001
0
0.0002


192
D
0.0008
0.0009
0
1E−04


193
V
0.0008
0.001
0
0.0002


194
V
0.001
0.0024
0
0.0014


195
D
0.0007
0.0008
0
0.0001


196
K
0.0007
0.0009
0
0.0002


197
V
0.0013
0.0028
0
0.0015


198
V
0.0007
0.0009
0
0.0002


199
I
0.0006
0.0008
0
0.0002


200
E
0.0007
0.0009
0
0.0002


201
D
0.0007
0.0009
0
0.0002


202
T
0.0008
0.0037
0
0.0029


203
L
0.0008
0.0035
0
0.0027


204
V
0.0018
0.0075
0
0.0057


205
I
0.0031
0.0099
0
0.0068


206
L
0.001
0.0097
0
0.0087


207
K
0.0009
0.0084
0
0.0075


208
L
0.0024
0.0157
0
0.0133


209
A
0.0024
0.016
0
0.0136


210
N
0.0028
0.02
0
0.0172


211
I
0.0028
0.0212
0
0.0184


212
S
0.0028
0.02
0
0.0172


213
G
0.001
0.0212
0
0.0202


214
K
0.0033
0.0414
0
0.0381


215
A
0.0067
0.0723
0
0.0656


216
S
0.0069
0.0744
0
0.0675


217
M
0.0078
0.0813
0
0.0735


218
K
0.0049
0.0526
0
0.0477


219
L
0.0094
0.1018
0
0.0924


220
L
0.0137
0.1266
0
0.1129


221
D
0.0131
0.1266
0
0.1135


222
R
0.0179
0.1566
0
0.1387


223
S
0.0376
0.1566
0
0.119


224
K
0.0336
0.1416
0
0.108


225
E
0.0226
0.1041
0
0.0815


226
I
0.0316
0.1322
0
0.1006


227
I
0.035
0.0884
0
0.0534


228
V
0.0425
0.1041
0
0.0616


229
K
0.0441
0.1088
0
0.0647


230
S
0.0813
0.1698
0
0.0885


231
N
0.0858
0.1766
0
0.0908


232
V
0.0991
0.1958
0
0.0967


233
D
0.0991
0.1921
0
0.093


234
M
0.1602
0.1878
0
0.0276


235
V
0.1117
0.1349
0
0.0232


236
S
0.0771
0.0965
0
0.0194


237
L
0.1322
0.1635
0
0.0313


238
E
0.2041
0.2385
0
0.0344


239
K
0.1958
0.2292
0
0.0334


240
S
0.1349
0.1602
0
0.0253


241
L
0.1349
0.1602
0
0.0253


242
P
0.1349
0.1566
0
0.0217


243
E
0.1805
0.2041
0
0.0236


244
E
0.1766
0.1958
0
0.0192


245
L
0.1958
0.2122
0
0.0164


246
V
0.1878
0.2041
0
0.0163


247
K
0.1921
0.208
0
0.0159


248
E
0.1958
0.2041
0
0.0083


249
I
0.1958
0.208
0
0.0122


250
I
0.1495
0.1566
0
0.0071


251
D
0.1698
0.1766
0
0.0068


252
R
0.2385
0.2432
0
0.0047


253
R
0.1602
0.1635
0
0.0033


254
K
0.1602
0.1635
0
0.0033


255
E
0.1566
0.1602
0
0.0036


256
L
0.2292
0.2292
0
0


257
G
0.2255
0.2255
0
0


258
L
0.2292
0.2292
0
0


259
E
0.2385
0.2385
0
0


260
V
0.2602
0.2602
0
0


261
P
0.3491
0.3491
0
0


262
K
0.3359
0.3359
0
0


263
V
0.3184
0.3184
0
0


264
K
0.2432
0.2483
0
0.0051


265
K
0.2432
0.2531
0
0.0099


266
H
0.2432
0.2483
0
0.0051


267
V
0.3096
0.3184
0
0.0088


268
S
0.3005
0.3096
0
0.0091


269
N
0.282
0.2913
0
0.0093


270
V
0.2913
0.3005
0
0.0092


271
H
0.27
0.282
0
0.012


272
K
0.1805
0.1921
0
0.0116


273
A
0.1805
0.1958
0
0.0153


274
L
0.1667
0.1844
0
0.0177


275
D
0.1178
0.1322
0
0.0144


276
S
0.0771
0.0909
0
0.0138


277
D
0.0723
0.0858
0
0.0135


278
D
0.1088
0.1292
0
0.0204


279
I
0.1041
0.124
0
0.0199


280
E
0.0965
0.124
0
0.0275


281
L
0.1266
0.1602
0
0.0336


282
V
0.1205
0.1602
0
0.0397


283
K
0.0723
0.1018
0
0.0295


284
L
0.0832
0.115
0
0.0318


285
L
0.1322
0.1698
0
0.0376


286
L
0.1117
0.1495
0
0.0378


287
K
0.0587
0.1456
0
0.0869


288
E
0.0502
0.124
0
0.0738


289
D
0.0279
0.0723
0
0.0444


290
H
0.0464
0.1266
0
0.0802


291
T
0.0218
0.0621
0
0.0403


292
N
0.0316
0.0935
0
0.0619


293
L
0.0308
0.0909
0
0.0601


294
D
0.0268
0.0771
0
0.0503


295
D
0.0279
0.0789
0
0.051


296
A
0.0226
0.124
0
0.1014


297
S
0.0387
0.1844
0
0.1457


298
A
0.0259
0.1349
0
0.109


299
L
0.0231
0.1266
0
0.1035


300
H
0.0231
0.1266
0
0.1035


301
F
0.0179
0.1041
0
0.0862


302
A
0.0182
0.106
0
0.0878


303
V
0.0182
0.1041
0
0.0859


304
A
0.02
0.1088
0
0.0888


305
Y
0.0116
0.0677
0
0.0561


306
S
0.0118
0.0701
0
0.0583


307
N
0.0083
0.0526
0
0.0443


308
V
0.0167
0.0526
0
0.0359


309
K
0.0118
0.0405
0
0.0287


310
T
0.0179
0.0567
0
0.0388


311
A
0.02
0.0587
0
0.0387


312
T
0.0259
0.0723
0
0.0464


313
D
0.0316
0.0884
0
0.0568


314
L
0.0464
0.1266
0
0.0802


315
L
0.0554
0.1456
0
0.0902


316
K
0.0909
0.208
0
0.1171


317
L
0.1844
0.2385
0
0.0541


318
D
0.1844
0.2333
0
0.0489


319
L
0.2432
0.2963
0
0.0531


320
A
0.1698
0.2209
0
0.0511


321
D
0.1766
0.2255
0
0.0489


322
V
0.1602
0.1998
0
0.0396


323
N
0.1117
0.1416
0
0.0299


324
H
0.1178
0.1495
0
0.0317


325
R
0.1292
0.1602
0
0.031


326
N
0.1698
0.1998
0
0.03


327
P
0.1495
0.1766
0
0.0271


328
R
0.1921
0.2209
0
0.0288


329
G
0.1878
0.2167
0
0.0289


330
Y
0.27
0.2963
0
0.0263


331
T
0.3184
0.3399
0
0.0215


332
V
0.3491
0.3668
0
0.0177


333
L
0.4282
0.4458
0
0.0176


334
H
0.3535
0.3668
0
0.0133


335
V
0.282
0.2913
0
0.0093


336
A
0.2167
0.2255
0
0.0088


337
A
0.2167
0.2209
0
0.0042


338
M
0.1349
0.1416
0
0.0067


339
R
0.0909
0.0965
0
0.0056


340
K
0.1018
0.1018
0
0


341
E
0.1566
0.1566
0
0


342
P
0.1566
0.1566
0
0


343
Q
0.1732
0.1766
0
0.0034


344
L
0.2483
0.2483
0
0


345
I
0.2041
0.2041
0
0


346
L
0.27
0.27
0
0


347
S
0.3096
0.3096
0
0


348
L
0.3005
0.3053
0
0.0048


349
L
0.3311
0.3399
0
0.0088


350
E
0.2602
0.27
0
0.0098


351
K
0.27
0.2786
0
0.0086


352
G
0.2558
0.27
0
0.0142


353
A
0.2292
0.2483
0
0.0191


354
S
0.2167
0.2385
0
0.0218


355
A
0.2602
0.2865
0
0.0263


356
S
0.27
0.3005
0
0.0305


357
E
0.3225
0.3535
0
0.031


358
A
0.2385
0.27
0
0.0315


359
T
0.27
0.3096
0
0.0396


360
L
0.3359
0.3762
0
0.0403


361
E
0.3225
0.3717
0
0.0492


362
G
0.282
0.3399
0
0.0579


363
R
0.282
0.3399
0
0.0579


364
T
0.2963
0.3578
0
0.0615


365
A
0.2657
0.3359
0
0.0702


366
L
0.2483
0.3146
0
0.0663


367
M
0.2558
0.3263
0
0.0705


368
I
0.1495
0.3184
1
0.1689


369
A
0.1732
0.3535
1
0.1803


370
K
0.1698
0.3535
1
0.1837


371
Q
0.1766
0.3578
1
0.1812


372
A
0.1998
0.3806
1
0.1808


373
T
0.208
0.3885
1
0.1805


374
M
0.2041
0.3885
1
0.1844


375
A
0.124
0.3939
1
0.2699


376
V
0.138
0.4149
1
0.2769


377
E
0.1878
0.4918
1
0.304


378
S
0.2122
0.5173
1
0.3051


379
N
0.2292
0.5374
1
0.3082


380
N
0.2602
0.5623
1
0.3021


381
I
0.2657
0.5711
1
0.3054


382
P
0.2657
0.5623
1
0.2966


383
E
0.2333
0.5331
1
0.2998


384
Q
0.1416
0.5331
1
0.3915


385
S
0.1178
0.5008
1
0.383


386
K
0.1456
0.5331
1
0.3875


387
H
0.1456
0.5296
1
0.384


388
S
0.0991
0.4651
1
0.366


389
L
0.1805
0.4703
1
0.2898


390
K
0.1844
0.4825
1
0.2981


391
G
0.1921
0.4825
1
0.2904


392
R
0.2657
0.5583
1
0.2926


393
L
0.2255
0.5229
1
0.2974


394
S
0.2122
0.5084
1
0.2962


395
V
0.2209
0.5126
1
0.2917


396
E
0.3359
0.5229
1
0.187


397
I
0.2748
0.46
1
0.1852


398
L
0.3053
0.4781
1
0.1728


399
E
0.2865
0.4651
1
0.1786


400
Q
0.3578
0.5296
1
0.1718


401
E
0.2963
0.4703
1
0.174


402
D
0.3311
0.4967
1
0.1656


403
K
0.3762
0.5331
1
0.1569


404
R
0.4458
0.5992
0
0.1534


405
E
0.4703
0.5173
0
0.047


406
Q
0.5008
0.5412
0
0.0404


407
I
0.4203
0.4651
0
0.0448


408
P
0.4556
0.5043
0
0.0487


409
R
0.4879
0.5296
0
0.0417


410
D
0.4967
0.5374
0
0.0407


411
V
0.5043
0.5374
0
0.0331


412
P
0.4203
0.4556
0
0.0353


413
P
0.4037
0.4282
0
0.0245


414
S
0.3806
0.4078
0
0.0272


415
F
0.3939
0.4149
0
0.021


416
A
0.3096
0.3311
0
0.0215


417
V
0.2333
0.2483
0
0.015


418
A
0.3184
0.3359
0
0.0175


419
A
0.208
0.2255
0
0.0175


420
D
0.2333
0.2483
0
0.015


421
E
0.2292
0.2432
0
0.014


422
L
0.2913
0.3053
0
0.014


423
K
0.1921
0.1998
0
0.0077


424
M
0.138
0.1495
0
0.0115


425
T
0.0832
0.0935
0
0.0103


426
L
0.1117
0.124
0
0.0123


427
L
0.1322
0.1416
0
0.0094


428
D
0.1805
0.1958
0
0.0153


429
L
0.1322
0.1456
0
0.0134


430
E
0.0909
0.1018
0
0.0109


431
N
0.0991
0.1088
0
0.0097


432
R
0.0909
0.1018
0
0.0109


433
V
0.1566
0.1698
0
0.0132


434
A
0.1349
0.1532
0
0.0183


435
L
0.1602
0.1805
0
0.0203


436
A
0.1322
0.1532
0
0.021


437
Q
0.1635
0.1878
0
0.0243


438
R
0.1998
0.2255
0
0.0257


439
L
0.1958
0.2255
0
0.0297


440
F
0.1958
0.2255
0
0.0297


441
P
0.1602
0.1844
0
0.0242


442
T
0.1667
0.1921
0
0.0254


443
E
0.1495
0.1766
0
0.0271


444
A
0.1958
0.2255
0
0.0297


445
Q
0.2255
0.2602
0
0.0347


446
A
0.3096
0.3399
0
0.0303


447
A
0.282
0.3762
0
0.0942


448
M
0.2963
0.3847
0
0.0884


449
E
0.2255
0.3184
0
0.0929


450
I
0.2531
0.3399
0
0.0868


451
A
0.282
0.3668
0
0.0848


452
E
0.2531
0.3399
0
0.0868


453
M
0.2558
0.3399
0
0.0841


454
K
0.1732
0.2531
0
0.0799


455
G
0.2167
0.3005
0
0.0838


456
T
0.2385
0.3225
0
0.084


457
S
0.282
0.363
0
0.081


458
E
0.3096
0.3885
0
0.0789


459
F
0.27
0.3491
0
0.0791


460
I
0.2558
0.3399
0
0.0841


461
V
0.3399
0.4203
0
0.0804


462
T
0.3668
0.4513
0
0.0845


463
S
0.3491
0.4333
0
0.0842


464
L
0.3717
0.4556
0
0.0839


465
E
0.3806
0.4651
0
0.0845


466
P
0.3762
0.4556
0
0.0794


467
D
0.4037
0.4879
0
0.0842


468
R
0.4703
0.4918
0
0.0215


469
L
0.3939
0.4149
0
0.021


470
T
0.4651
0.4879
0
0.0228


471
G
0.4556
0.4781
0
0.0225


472
T
0.4967
0.5173
0
0.0206


473
K
0.5253
0.5473
0
0.022


474
R
0.4379
0.46
0
0.0221


475
T
0.5126
0.5331
0
0.0205


476
S
0.4379
0.4556
0
0.0177


477
P
0.3535
0.3717
0
0.0182


478
G
0.3399
0.363
0
0.0231


479
V
0.3399
0.3578
0
0.0179


480
K
0.4078
0.4333
0
0.0255


481
I
0.4203
0.4458
0
0.0255


482
A
0.4149
0.4379
0
0.023


483
P
0.4149
0.4379
0
0.023


484
F
0.3491
0.3717
0
0.0226


485
R
0.3535
0.3762
0
0.0227


486
I
0.3225
0.3491
0
0.0266


487
L
0.2531
0.282
0
0.0289


488
E
0.2255
0.2531
0
0.0276


489
E
0.2209
0.2483
0
0.0274


490
H
0.2786
0.3096
0
0.031


491
Q
0.2167
0.2432
0
0.0265


492
S
0.2865
0.3184
0
0.0319


493
R
0.2209
0.2558
0
0.0349


494
L
0.1921
0.2292
0
0.0371


495
K
0.27
0.3146
0
0.0446


496
A
0.2558
0.3053
0
0.0495


497
L
0.2333
0.2865
0
0.0532


498
S
0.2122
0.2657
0
0.0535


499
K
0.2483
0.3053
0
0.057


500
T
0.2432
0.3005
0
0.0573


501
V
0.1416
0.2963
0
0.1547


502
E
0.1349
0.282
0
0.1471


503
L
0.1205
0.27
0
0.1495


504
G
0.0858
0.2122
0
0.1264


505
K
0.0909
0.2255
0
0.1346


506
R
0.0909
0.2255
0
0.1346


507
F
0.1088
0.2602
0
0.1514


508
F
0.1088
0.2602
0
0.1514


509
P
0.0991
0.2483
0
0.1492


510
R
0.1018
0.2531
1
0.1513


511
S
0.0502
0.2558
1
0.2056


512
S
0.0813
0.3263
1
0.245


513
A
0.0789
0.3263
1
0.2474


514
V
0.0909
0.3491
1
0.2582


515
L
0.0884
0.3399
1
0.2515


516
D
0.0909
0.3491
1
0.2582


517
Q
0.0607
0.2963
1
0.2356


518
I
0.0884
0.3491
1
0.2607


519
M
0.0771
0.4333
1
0.3562


520
N
0.0607
0.3992
1
0.3385


521
S
0.0643
0.4116
1
0.3473


522
E
0.1322
0.4149
1
0.2827


523
D
0.1322
0.4203
1
0.2881


524
L
0.1456
0.4379
1
0.2923


525
T
0.1667
0.4703
1
0.3036


526
Q
0.2385
0.5374
1
0.2989


527
L
0.2209
0.5229
1
0.302


528
A
0.2122
0.5043
1
0.2921


529
S
0.2122
0.5126
1
0.3004


530
G
0.2292
0.5331
1
0.3039


531
E
0.2122
0.5126
1
0.3004


532
D
0.3096
0.4967
1
0.1871


533
D
0.3096
0.5008
1
0.1912


534
T
0.3005
0.4918
1
0.1913


535
A
0.3184
0.5043
1
0.1859


536
E
0.3146
0.5008
1
0.1862


537
K
0.3263
0.5043
1
0.178


538
R
0.3311
0.5043
1
0.1732


539
L
0.363
0.5331
0
0.1701


540
Q
0.4825
0.5412
0
0.0587


541
K
0.4749
0.5296
0
0.0547


542
K
0.4245
0.4825
0
0.058


543
Q
0.4078
0.46
0
0.0522


544
R
0.3847
0.4379
0
0.0532


545
Y
0.3762
0.4282
0
0.052


546
M
0.3535
0.3992
0
0.0457


547
E
0.3456
0.3847
0
0.0391


548
I
0.363
0.4037
0
0.0407


549
Q
0.3668
0.4078
0
0.041


550
E
0.442
0.4781
0
0.0361


551
T
0.4037
0.4282
0
0.0245


552
L
0.4116
0.4379
0
0.0263


553
K
0.3806
0.4078
0
0.0272


554
K
0.3847
0.4037
0
0.019


555
A
0.3992
0.4149
0
0.0157


556
F
0.4513
0.4651
0
0.0138


557
S
0.46
0.4703
0
0.0103


558
E
0.4078
0.4149
0
0.0071


559
D
0.4703
0.4781
0
0.0078


560
N
0.4556
0.46
0
0.0044


561
L
0.442
0.4513
0
0.0093


562
E
0.4513
0.4556
0
0.0043


563
L
0.4967
0.5008
0
0.0041


564
G
0.5084
0.5126
0
0.0042


565
N
0.5229
0.5229
0
0


566
S
0.5331
0.5331
0
0


567
S
0.5846
0.5846
0
0


568
L
0.5846
0.5846
0
0


569
T
0.5802
0.5802
0
0


570
D
0.59
0.59
0
0


571
S
0.5941
0.5941
0
0


572
T
0.6334
0.6334
0
0


573
S
0.6442
0.6442
0
0


574
S
0.6827
0.6827
0
0


575
T
0.6827
0.6827
0
0


576
S
0.687
0.687
0
0


577
K
0.6944
0.6944
0
0


578
S
0.6756
0.6756
0
0


579
T
0.7079
0.7079
0
0


580
G
0.7275
0.7275
0
0


581
G
0.7501
0.7501
0
0


582
K
0.7724
0.7724
0
0


583
R
0.7951
0.7951
0
0


584
S
0.835
0.835
0
0


585
N
0.865
0.865
0
0


586
R
0.8984
0.8984
0
0


587
K
0.9235
0.9235
0
0


588
L
0.9423
0.9423
0
0


589
S
0.9624
0.9624
0
0


590
H
0.9746
0.9746
0
0


591
R
0.9831
0.9831
0
0


592
R
0.9899
0.9899
0
0


593
R
0.996
0.996
0
0


>AtNPR2







(AT4G26120)







1
M
0.928
0.928
0
0


2
A
0.8556
0.8556
0
0


3
T
0.8158
0.8158
0
0


4
T
0.7772
0.7772
0
0


5
T
0.7317
0.7317
0
0


6
T
0.6293
0.6293
0
0


7
T
0.6174
0.6174
0
0


8
T
0.5084
0.5084
0
0


9
T
0.4556
0.4556
0
0


10
A
0.4149
0.4149
0
0


11
R
0.3717
0.3717
0
0


12
F
0.3806
0.3806
0
0


13
S
0.4078
0.4078
0
0


14
D
0.4149
0.4149
0
0


15
S
0.4149
0.4149
0
0


16
Y
0.3456
0.3456
0
0


17
E
0.2786
0.2786
0
0


18
F
0.2602
0.2602
0
0


19
S
0.2333
0.2385
0
0.0052


20
N
0.2657
0.2657
0
0


21
T
0.2865
0.2865
0
0


22
S
0.2748
0.2748
0
0


23
G
0.2748
0.2748
0
0


24
N
0.2963
0.3005
0
0.0042


25
S
0.2167
0.2209
0
0.0042


26
F
0.2558
0.2602
0
0.0044


27
F
0.3225
0.3311
0
0.0086


28
A
0.3225
0.3263
0
0.0038


29
A
0.3096
0.3225
0
0.0129


30
E
0.2558
0.27
0
0.0142


31
S
0.2531
0.2657
0
0.0126


32
S
0.282
0.2963
0
0.0143


33
L
0.3225
0.3359
0
0.0134


34
D
0.3456
0.3578
0
0.0122


35
Y
0.2786
0.2963
0
0.0177


36
P
0.2786
0.2963
0
0.0177


37
T
0.3225
0.3399
0
0.0174


38
E
0.3146
0.3359
0
0.0213


39
F
0.3184
0.3399
0
0.0215


40
L
0.27
0.2913
0
0.0213


41
T
0.1766
0.1958
0
0.0192


42
P
0.1766
0.1998
0
0.0232


43
P
0.1878
0.208
0
0.0202


44
E
0.1958
0.27
0
0.0742


45
V
0.1292
0.1878
0
0.0586


46
S
0.208
0.2786
0
0.0706


47
A
0.1766
0.2432
0
0.0666


48
L
0.1322
0.1878
0
0.0556


49
K
0.066
0.1041
0
0.0381


50
L
0.115
0.1698
0
0.0548


51
L
0.1602
0.2167
0
0.0565


52
S
0.1844
0.2531
0
0.0687


53
N
0.1732
0.2385
0
0.0653


54
S
0.1495
0.2122
0
0.0627


55
L
0.0723
0.115
0
0.0427


56
E
0.066
0.106
0
0.04


57
S
0.0677
0.1117
0
0.044


58
V
0.0909
0.138
0
0.0471


59
F
0.1117
0.1698
0
0.0581


60
D
0.1205
0.1805
0
0.06


61
S
0.115
0.1732
0
0.0582


62
P
0.1178
0.1766
0
0.0588


63
E
0.0677
0.1178
0
0.0501


64
T
0.0526
0.0935
0
0.0409


65
F
0.0771
0.0991
0
0.022


66
Y
0.115
0.1495
0
0.0345


67
S
0.0991
0.1292
0
0.0301


68
D
0.1088
0.1456
0
0.0368


69
A
0.1041
0.138
0
0.0339


70
K
0.1667
0.208
0
0.0413


71
L
0.0935
0.124
0
0.0305


72
V
0.0991
0.1322
0
0.0331


73
L
0.0832
0.115
0
0.0318


74
A
0.0502
0.1018
0
0.0516


75
G
0.0327
0.0643
0
0.0316


76
G
0.0405
0.0771
0
0.0366


77
R
0.0621
0.1178
0
0.0557


78
E
0.0502
0.0965
0
0.0463


79
V
0.0502
0.0965
0
0.0463


80
S
0.0376
0.0677
0
0.0301


81
F
0.0464
0.0884
0
0.042


82
H
0.0526
0.0965
0
0.0439


83
R
0.0464
0.0858
0
0.0394


84
S
0.0832
0.1416
0
0.0584


85
I
0.106
0.1698
0
0.0638


86
L
0.0884
0.1416
0
0.0532


87
S
0.0526
0.0909
0
0.0383


88
A
0.0455
0.0744
0
0.0289


89
R
0.0405
0.0677
0
0.0272


90
I
0.0425
0.0701
0
0.0276


91
P
0.0425
0.0701
0
0.0276


92
V
0.0771
0.1266
0
0.0495


93
F
0.0771
0.124
0
0.0469


94
K
0.0723
0.1178
0
0.0455


95
S
0.106
0.1205
0
0.0145


96
A
0.1532
0.1698
0
0.0166


97
L
0.208
0.2292
0
0.0212


98
A
0.2041
0.2255
0
0.0214


99
T
0.1667
0.1844
0
0.0177


100
V
0.1566
0.1698
0
0.0132


101
K
0.1532
0.1698
0
0.0166


102
E
0.1292
0.1456
0
0.0164


103
Q
0.1178
0.1322
0
0.0144


104
K
0.1844
0.1998
0
0.0154


105
S
0.1878
0.2041
0
0.0163


106
S
0.1205
0.1322
0
0.0117


107
T
0.1178
0.1266
0
0.0088


108
T
0.1805
0.1921
0
0.0116


109
V
0.2167
0.2292
0
0.0125


110
K
0.1602
0.1667
0
0.0065


111
L
0.2209
0.2292
0
0.0083


112
Q
0.1667
0.1732
0
0.0065


113
L
0.1635
0.1698
0
0.0063


114
K
0.0991
0.1018
0
0.0027


115
E
0.1088
0.1117
0
0.0029


116
I
0.1088
0.1117
0
0.0029


117
A
0.0789
0.0813
0
0.0024


118
R
0.0567
0.0587
0
0.002


119
D
0.0478
0.0502
0
0.0024


120
Y
0.0554
0.0607
0
0.0053


121
E
0.0387
0.0425
0
0.0038


122
V
0.0542
0.0621
0
0.0079


123
G
0.0336
0.0405
0
0.0069


124
F
0.0405
0.049
0
0.0085


125
D
0.0268
0.0327
0
0.0059


126
S
0.0252
0.0316
0
0.0064


127
V
0.0414
0.0554
0
0.014


128
V
0.0514
0.0701
0
0.0187


129
A
0.035
0.0502
0
0.0152


130
V
0.0308
0.0455
0
0.0147


131
L
0.049
0.0677
0
0.0187


132
A
0.0542
0.0789
0
0.0247


133
Y
0.0935
0.1322
0
0.0387


134
V
0.0858
0.1266
0
0.0408


135
Y
0.138
0.1958
0
0.0578


136
S
0.1018
0.1566
0
0.0548


137
G
0.1018
0.1566
0
0.0548


138
R
0.1088
0.1698
0
0.061


139
V
0.0677
0.2122
0
0.1445


140
R
0.0542
0.1805
0
0.1263


141
S
0.0813
0.2385
1
0.1572


142
P
0.1292
0.3184
1
0.1892


143
P
0.1667
0.363
1
0.1963


144
K
0.1322
0.4203
1
0.2881


145
G
0.1041
0.4749
1
0.3708


146
A
0.138
0.5374
1
0.3994


147
S
0.0935
0.4749
1
0.3814


148
A
0.0771
0.4379
1
0.3608


149
S
0.0336
0.4379
1
0.4043


150
V
0.0464
0.4825
1
0.4361


151
D
0.049
0.4879
1
0.4389


152
D
0.0464
0.4825
1
0.4361


153
D
0.0259
0.3885
1
0.3626


154
S
0.0245
0.3806
1
0.3561


155
S
0.0116
0.2865
1
0.2749


156
H
0.009
0.2531
1
0.2441


157
V
0.0078
0.2167
1
0.2089


158
A
0.0082
0.2333
1
0.2251


159
S
0.0069
0.1998
0
0.1929


160
R
0.0082
0.1322
0
0.124


161
S
0.0078
0.1266
0
0.1188


162
K
0.0029
0.0621
0
0.0592


163
V
0.0028
0.0567
0
0.0539


164
D
0.0008
0.0259
0
0.0251


165
F
0.0009
0.0144
0
0.0135


166
M
0.0009
0.007
0
0.0061


167
V
0.0009
0.007
0
0.0061


168
E
0.0007
0.0053
0
0.0046


169
V
0.0008
0.0067
0
0.0059


170
L
0.0035
0.0074
0
0.0039


171
Y
0.001
0.0028
0
0.0018


172
L
0.0006
0.0009
0
0.0003


173
S
0.0006
0.0009
0
0.0003


174
F
0.0005
0.0007
0
0.0002


175
V
0.0003
0.0004
0
0.0001


176
F
0.0005
0.0008
0
0.0003


177
Q
0.0006
0.0008
0
0.0002


178
I
0.0008
0.0013
0
0.0005


179
Q
0.0004
0.0006
0
0.0002


180
E
0.0003
0.0005
0
0.0002


181
L
0.0006
0.0008
0
0.0002


182
V
0.0005
0.0006
0
1E−04


183
T
0.0005
0.0006
0
1E−04


184
L
0.0005
0.0007
0
0.0002


185
Y
0.0008
0.0012
0
0.0004


186
E
0.0008
0.0009
0
1E−04


187
R
0.0009
0.0012
0
0.0003


188
Q
0.0006
0.0007
0
0.0001


189
F
0.0012
0.0022
0
0.001


190
L
0.0013
0.0026
0
0.0013


191
E
0.0007
0.0007
0
0


192
I
0.0007
0.0008
0
0.0001


193
V
0.0007
0.0008
0
0.0001


194
D
0.0005
0.0005
0
0


195
K
0.0005
0.0006
0
1E−04


196
V
0.0007
0.0008
0
0.0001


197
V
0.0004
0.0004
0
0


198
V
0.0004
0.0005
0
0.0001


199
E
0.0004
0.0005
0
0.0001


200
D
0.0005
0.0006
0
1E−04


201
I
0.0006
0.0009
0
0.0003


202
L
0.0006
0.0009
0
0.0003


203
V
0.0009
0.0031
0
0.0022


204
I
0.0027
0.0067
0
0.004


205
F
0.0009
0.0029
0
0.002


206
K
0.0009
0.0029
0
0.002


207
L
0.0022
0.0059
0
0.0037


208
D
0.0018
0.0055
0
0.0037


209
T
0.0013
0.0053
0
0.004


210
L
0.0013
0.0052
0
0.0039


211
S
0.0012
0.0042
0
0.003


212
G
0.0022
0.009
0
0.0068


213
T
0.0024
0.009
0
0.0066


214
T
0.0052
0.0182
0
0.013


215
Y
0.0053
0.0194
0
0.0141


216
K
0.0059
0.0212
0
0.0153


217
K
0.0031
0.0121
0
0.009


218
L
0.0074
0.0268
0
0.0194


219
L
0.007
0.0259
0
0.0189


220
D
0.0078
0.0274
0
0.0196


221
R
0.0082
0.0304
0
0.0222


222
S
0.0141
0.0316
0
0.0175


223
I
0.0074
0.015
0
0.0076


224
E
0.0042
0.009
0
0.0048


225
I
0.0052
0.0099
0
0.0047


226
I
0.0044
0.0094
0
0.005


227
V
0.0059
0.0118
0
0.0059


228
K
0.0062
0.0124
0
0.0062


229
S
0.0121
0.0274
0
0.0153


230
D
0.0121
0.0274
0
0.0153


231
I
0.015
0.0327
0
0.0177


232
E
0.0157
0.0363
0
0.0206


233
L
0.0279
0.0376
0
0.0097


234
V
0.0308
0.0414
0
0.0106


235
S
0.0144
0.0218
0
0.0074


236
L
0.0308
0.0425
0
0.0117


237
E
0.0587
0.0858
0
0.0271


238
K
0.0554
0.0789
0
0.0235


239
S
0.0336
0.0464
0
0.0128


240
L
0.035
0.049
0
0.014


241
P
0.0182
0.0274
0
0.0092


242
Q
0.035
0.049
0
0.014


243
H
0.035
0.049
0
0.014


244
I
0.0554
0.0771
0
0.0217


245
F
0.0514
0.0701
0
0.0187


246
K
0.0376
0.0701
0
0.0325


247
Q
0.0387
0.0701
0
0.0314


248
I
0.0387
0.0701
0
0.0314


249
I
0.049
0.0909
0
0.0419


250
D
0.0587
0.1117
0
0.053


251
I
0.1088
0.1805
0
0.0717


252
R
0.0502
0.0909
0
0.0407


253
E
0.0526
0.0935
0
0.0409


254
A
0.0514
0.0884
0
0.037


255
L
0.0909
0.1495
0
0.0586


256
S
0.1041
0.1635
0
0.0594


257
L
0.1041
0.1602
0
0.0561


258
E
0.1041
0.1566
0
0.0525


259
P
0.106
0.1602
0
0.0542


260
P
0.1178
0.1766
0
0.0588


261
K
0.106
0.1635
0
0.0575


262
L
0.1495
0.2167
0
0.0672


263
E
0.0909
0.1456
0
0.0547


264
R
0.0909
0.1416
0
0.0507


265
H
0.1088
0.1667
0
0.0579


266
V
0.1766
0.2531
0
0.0765


267
K
0.2292
0.2558
0
0.0266


268
N
0.2483
0.2748
0
0.0265


269
I
0.2558
0.282
0
0.0262


270
Y
0.1456
0.1667
0
0.0211


271
K
0.0813
0.0991
0
0.0178


272
A
0.0789
0.0965
0
0.0176


273
L
0.1117
0.1292
0
0.0175


274
D
0.0621
0.0771
0
0.015


275
S
0.0405
0.049
0
0.0085


276
D
0.0226
0.0274
0
0.0048


277
D
0.0395
0.0464
0
0.0069


278
V
0.0387
0.0464
0
0.0077


279
E
0.0363
0.0455
0
0.0092


280
L
0.0607
0.0771
0
0.0164


281
V
0.0991
0.1205
0
0.0214


282
K
0.0542
0.0677
0
0.0135


283
M
0.0677
0.0858
0
0.0181


284
L
0.1349
0.1602
0
0.0253


285
L
0.106
0.1266
0
0.0206


286
L
0.0587
0.0771
0
0.0184


287
E
0.0464
0.0587
0
0.0123


288
G
0.0231
0.0297
0
0.0066


289
H
0.035
0.0464
0
0.0114


290
T
0.0137
0.0194
0
0.0057


291
N
0.0226
0.0297
0
0.0071


292
L
0.0157
0.0226
0
0.0069


293
D
0.0124
0.0167
0
0.0043


294
E
0.016
0.0226
0
0.0066


295
A
0.016
0.0387
0
0.0227


296
Y
0.0231
0.0502
0
0.0271


297
A
0.0268
0.0542
0
0.0274


298
L
0.0231
0.0502
0
0.0271


299
H
0.0252
0.0514
0
0.0262


300
F
0.0194
0.0414
0
0.022


301
A
0.0102
0.0259
0
0.0157


302
I
0.0109
0.0259
0
0.015


303
A
0.0121
0.0279
0
0.0158


304
H
0.0069
0.0137
0
0.0068


305
S
0.0066
0.0128
0
0.0062


306
A
0.004
0.0086
0
0.0046


307
V
0.0081
0.0173
0
0.0092


308
K
0.0059
0.0118
0
0.0059


309
T
0.0084
0.0194
0
0.011


310
A
0.0087
0.02
0
0.0113


311
Y
0.0116
0.0259
0
0.0143


312
D
0.0144
0.0316
0
0.0172


313
L
0.0144
0.0316
0
0.0172


314
L
0.0194
0.0405
0
0.0211


315
E
0.0212
0.0425
0
0.0213


316
L
0.0425
0.0502
0
0.0077


317
E
0.0526
0.0643
0
0.0117


318
L
0.0832
0.1018
0
0.0186


319
A
0.0478
0.0587
0
0.0109


320
D
0.049
0.0587
0
0.0097


321
V
0.0395
0.0464
0
0.0069


322
N
0.0387
0.0455
0
0.0068


323
L
0.0376
0.0441
0
0.0065


324
R
0.0405
0.0464
0
0.0059


325
N
0.0554
0.0643
0
0.0089


326
P
0.0414
0.0478
0
0.0064


327
R
0.0587
0.0677
0
0.009


328
G
0.0542
0.0621
0
0.0079


329
Y
0.0991
0.1088
0
0.0097


330
T
0.1292
0.1416
0
0.0124


331
V
0.1532
0.1635
0
0.0103


332
L
0.2209
0.2385
0
0.0176


333
H
0.1416
0.1532
0
0.0116


334
V
0.1532
0.1635
0
0.0103


335
A
0.0909
0.0965
0
0.0056


336
A
0.0935
0.0965
0
0.003


337
M
0.0455
0.0464
0
0.0009


338
R
0.0259
0.0268
0
0.0009


339
K
0.0212
0.0218
0
0.0006


340
E
0.0395
0.0405
0
0.001


341
P
0.0395
0.0395
0
0


342
K
0.049
0.049
0
0


343
L
0.0884
0.0884
0
0


344
I
0.049
0.049
0
0


345
I
0.0464
0.0464
0
0


346
S
0.0554
0.0554
0
0


347
L
0.0677
0.0677
0
0


348
L
0.0813
0.0813
0
0


349
M
0.0502
0.0502
0
0


350
K
0.049
0.049
0
0


351
G
0.0455
0.0455
0
0


352
A
0.0387
0.0387
0
0


353
N
0.0376
0.0376
0
0


354
I
0.0542
0.0542
0
0


355
L
0.0643
0.0643
0
0


356
D
0.0832
0.0832
0
0


357
T
0.049
0.049
0
0


358
T
0.0567
0.0567
0
0


359
L
0.0935
0.0965
0
0.003


360
D
0.115
0.1178
0
0.0028


361
G
0.0701
0.0723
0
0.0022


362
R
0.0677
0.0701
0
0.0024


363
T
0.0813
0.0858
0
0.0045


364
A
0.066
0.0701
0
0.0041


365
L
0.1178
0.124
0
0.0062


366
V
0.1805
0.1878
0
0.0073


367
I
0.1322
0.1416
0
0.0094


368
V
0.1266
0.1349
0
0.0083


369
K
0.1266
0.138
0
0.0114


370
R
0.1921
0.2041
0
0.012


371
L
0.1878
0.2041
0
0.0163


372
T
0.1998
0.2122
0
0.0124


373
K
0.1958
0.2122
0
0.0164


374
A
0.2041
0.2209
0
0.0168


375
D
0.2255
0.2432
0
0.0177


376
D
0.3263
0.3456
0
0.0193


377
Y
0.3806
0.4037
0
0.0231


378
K
0.3847
0.4116
0
0.0269


379
T
0.4333
0.4556
0
0.0223


380
S
0.4458
0.4703
0
0.0245


381
T
0.4458
0.4749
0
0.0291


382
E
0.4513
0.4781
0
0.0268


383
D
0.4037
0.4825
0
0.0788


384
G
0.3456
0.4245
0
0.0789


385
T
0.3885
0.4703
0
0.0818


386
P
0.3399
0.4203
0
0.0804


387
S
0.2865
0.3668
0
0.0803


388
L
0.3717
0.4458
0
0.0741


389
K
0.3762
0.46
0
0.0838


390
G
0.3992
0.4781
0
0.0789


391
G
0.4037
0.4918
0
0.0881


392
L
0.3992
0.4825
0
0.0833


393
S
0.3184
0.4037
0
0.0853


394
I
0.3311
0.4203
0
0.0892


395
E
0.2602
0.3456
0
0.0854


396
V
0.1958
0.282
0
0.0862


397
L
0.1732
0.2531
0
0.0799


398
E
0.1921
0.2786
0
0.0865


399
H
0.1805
0.2602
0
0.0797


400
E
0.1998
0.282
0
0.0822


401
Q
0.1698
0.2483
0
0.0785


402
K
0.1698
0.2432
0
0.0734


403
L
0.1495
0.2209
0
0.0714


404
E
0.1998
0.2209
0
0.0211


405
Y
0.1732
0.1958
0
0.0226


406
L
0.1805
0.2041
0
0.0236


407
S
0.1532
0.1732
0
0.02


408
P
0.2041
0.2292
0
0.0251


409
I
0.2167
0.2385
0
0.0218


410
E
0.2292
0.2531
0
0.0239


411
A
0.2255
0.2432
0
0.0177


412
S
0.1416
0.1566
0
0.015


413
L
0.1416
0.1532
0
0.0116


414
S
0.1635
0.1732
0
0.0097


415
L
0.1416
0.1495
0
0.0079


416
P
0.1292
0.138
0
0.0088


417
V
0.124
0.1292
0
0.0052


418
T
0.0744
0.0789
0
0.0045


419
P
0.0387
0.0395
0
0.0008


420
E
0.0723
0.0771
0
0.0048


421
E
0.0677
0.0723
0
0.0046


422
L
0.0789
0.0832
0
0.0043


423
R
0.049
0.0514
0
0.0024


424
M
0.0723
0.0771
0
0.0048


425
R
0.0441
0.0464
0
0.0023


426
L
0.066
0.0701
0
0.0041


427
L
0.0514
0.0542
0
0.0028


428
Y
0.0526
0.0567
0
0.0041


429
Y
0.0316
0.035
0
0.0034


430
E
0.0137
0.015
0
0.0013


431
N
0.015
0.0167
0
0.0017


432
R
0.0083
0.009
0
0.0007


433
V
0.0173
0.02
0
0.0027


434
A
0.0212
0.0245
0
0.0033


435
L
0.0304
0.0336
0
0.0032


436
A
0.0336
0.0387
0
0.0051


437
R
0.0376
0.0425
0
0.0049


438
L
0.0643
0.0771
0
0.0128


439
L
0.1088
0.1266
0
0.0178


440
F
0.1088
0.1266
0
0.0178


441
P
0.0858
0.1041
0
0.0183


442
V
0.0771
0.0935
0
0.0164


443
E
0.0526
0.0643
0
0.0117


444
T
0.0935
0.1117
0
0.0182


445
E
0.1205
0.1416
0
0.0211


446
T
0.1844
0.208
0
0.0236


447
V
0.1566
0.2385
0
0.0819


448
Q
0.1805
0.27
0
0.0895


449
G
0.1766
0.2657
0
0.0891


450
I
0.2483
0.3359
0
0.0876


451
A
0.3096
0.4037
0
0.0941


452
K
0.2865
0.3806
0
0.0941


453
L
0.363
0.4513
0
0.0883


454
E
0.282
0.3717
0
0.0897


455
E
0.2963
0.3847
0
0.0884


456
T
0.3146
0.4037
0
0.0891


457
S
0.3184
0.4078
0
0.0894


458
E
0.3939
0.4879
0
0.094


459
F
0.3847
0.4825
0
0.0978


460
T
0.3184
0.4116
0
0.0932


461
A
0.4037
0.5008
0
0.0971


462
S
0.442
0.5374
0
0.0954


463
S
0.4556
0.5473
0
0.0917


464
L
0.5229
0.6124
0
0.0895


465
E
0.5043
0.5992
0
0.0949


466
P
0.4967
0.5846
0
0.0879


467
D
0.4245
0.5253
0
0.1008


468
H
0.4967
0.5253
0
0.0286


469
H
0.4078
0.4458
0
0.038


470
I
0.4918
0.5296
0
0.0378


471
G
0.4749
0.5126
0
0.0377


472
E
0.4749
0.5173
0
0.0424


473
K
0.5043
0.5412
0
0.0369


474
R
0.4078
0.4513
0
0.0435


475
T
0.4879
0.5331
0
0.0452


476
S
0.4037
0.4458
0
0.0421


477
L
0.3668
0.4245
0
0.0577


478
D
0.3578
0.4149
0
0.0571


479
L
0.363
0.4149
0
0.0519


480
N
0.3578
0.4149
0
0.0571


481
M
0.3456
0.4078
0
0.0622


482
A
0.3399
0.4037
0
0.0638


483
P
0.3311
0.3885
0
0.0574


484
F
0.2558
0.3184
0
0.0626


485
Q
0.2602
0.3225
0
0.0623


486
I
0.2385
0.3005
0
0.062


487
H
0.1667
0.2255
0
0.0588


488
E
0.1456
0.2913
0
0.1457


489
K
0.1495
0.2963
0
0.1468


490
H
0.1998
0.3578
0
0.158


491
L
0.1456
0.2865
0
0.1409


492
S
0.1667
0.3096
0
0.1429


493
R
0.1205
0.2531
0
0.1326


494
L
0.1018
0.2209
0
0.1191


495
R
0.1667
0.3146
0
0.1479


496
A
0.1456
0.2865
0
0.1409


497
L
0.1456
0.2913
0
0.1457


498
S
0.0909
0.1998
0
0.1089


499
K
0.0858
0.1958
0
0.11


500
T
0.0789
0.1844
0
0.1055


501
V
0.0455
0.1805
0
0.135


502
E
0.0744
0.2531
0
0.1787


503
L
0.049
0.1878
0
0.1388


504
G
0.0464
0.1844
0
0.138


505
K
0.0744
0.2602
0
0.1858


506
R
0.0455
0.1878
0
0.1423


507
Y
0.049
0.1958
0
0.1468


508
F
0.0744
0.2602
0
0.1858


509
K
0.1266
0.2602
0
0.1336


510
R
0.124
0.2531
0
0.1291


511
S
0.124
0.2531
0
0.1291


512
S
0.124
0.2558
0
0.1318


513
L
0.124
0.2558
0
0.1318


514
D
0.1878
0.3399
0
0.1521


515
H
0.138
0.2786
0
0.1406


516
F
0.1266
0.2602
0
0.1336


517
M
0.138
0.2748
0
0.1368


518
D
0.1495
0.2865
0
0.137


519
T
0.2255
0.3762
0
0.1507


520
E
0.2333
0.3806
0
0.1473


521
D
0.2432
0.3885
0
0.1453


522
L
0.3311
0.3847
0
0.0536


523
N
0.3668
0.4203
0
0.0535


524
H
0.442
0.4918
0
0.0498


525
L
0.4379
0.4825
0
0.0446


526
A
0.4245
0.4651
0
0.0406


527
S
0.4556
0.4918
0
0.0362


528
V
0.4825
0.5173
0
0.0348


529
E
0.4703
0.5084
0
0.0381


530
E
0.46
0.4967
0
0.0367


531
D
0.4749
0.5084
0
0.0335


532
T
0.4703
0.5043
0
0.034


533
P
0.4879
0.5229
0
0.035


534
E
0.4825
0.5126
0
0.0301


535
K
0.4918
0.5173
0
0.0255


536
R
0.5126
0.5374
0
0.0248


537
L
0.5412
0.5711
0
0.0299


538
Q
0.5412
0.5711
0
0.0299


539
K
0.5941
0.6219
0
0.0278


540
K
0.5583
0.59
0
0.0317


541
Q
0.5549
0.5846
0
0.0297


542
R
0.5473
0.5762
0
0.0289


543
Y
0.5514
0.5802
0
0.0288


544
M
0.4703
0.5043
0
0.034


545
E
0.4651
0.4967
0
0.0316


546
L
0.4749
0.5043
0
0.0294


547
Q
0.4879
0.5126
0
0.0247


548
E
0.5374
0.5667
0
0.0293


549
T
0.5229
0.5473
0
0.0244


550
L
0.5229
0.5473
0
0.0244


551
M
0.4825
0.5583
0
0.0758


552
K
0.4825
0.5583
0
0.0758


553
T
0.4918
0.5667
0
0.0749


554
F
0.5374
0.6124
0
0.075


555
S
0.5473
0.6174
0
0.0701


556
E
0.5374
0.6079
0
0.0705


557
D
0.5992
0.665
0
0.0658


558
K
0.5846
0.6516
0
0.067


559
E
0.6124
0.6756
0
0.0632


560
E
0.6124
0.6756
0
0.0632


561
S
0.6412
0.7034
0
0.0622


562
G
0.6334
0.6944
0
0.061


563
K
0.6035
0.6681
0
0.0646


564
S
0.6174
0.6756
0
0.0582


565
S
0.6557
0.7147
0
0.059


566
T
0.6604
0.7232
0
0.0628


567
P
0.6681
0.7317
0
0.0636


568
K
0.6715
0.7317
0
0.0602


569
P
0.6334
0.6944
0
0.061


570
T
0.6412
0.7034
0
0.0622


571
S
0.6604
0.7275
0
0.0671


572
A
0.7147
0.7342
0
0.0195


573
V
0.7192
0.7342
0
0.015


574
R
0.6827
0.7034
0
0.0207


575
S
0.6906
0.7111
0
0.0205


576
N
0.6516
0.6756
0
0.024


577
R
0.6474
0.6681
0
0.0207


578
K
0.6334
0.6557
0
0.0223


579
L
0.6474
0.6681
0
0.0207


580
S
0.6124
0.6334
0
0.021


581
H
0.5549
0.5762
0
0.0213


582
R
0.5229
0.5412
0
0.0183


583
R
0.5412
0.5623
0
0.0211


584
L
0.59
0.6079
0
0.0179


585
K
0.6124
0.6293
0
0.0169


586
V
0.5583
0.5762
0
0.0179


587
D
0.5583
0.5762
0
0.0179


588
K
0.5667
0.5846
0
0.0179


589
R
0.5711
0.59
0
0.0189


590
D
0.59
0.6035
0
0.0135


591
F
0.6293
0.6412
0
0.0119


592
L
0.6604
0.6681
0
0.0077


593
K
0.687
0.6944
0
0.0074


594
R
0.7147
0.7192
0
0.0045


595
P
0.7817
0.7869
0
0.0052


596
Y
0.8118
0.8158
0
0.004


597
G
0.8746
0.8746
0
0


598
N
0.9119
0.9119
0
0


599
G
0.9257
0.9257
0
0


600
D
0.9392
0.9392
0
0


>AtNPR3







(AT5G45110)







1
M
0.9009
0.9009
0
0


2
A
0.8626
0.8626
0
0


3
T
0.7573
0.7573
0
0


4
L
0.7192
0.7192
0
0


5
T
0.6715
0.6715
0
0


6
E
0.6255
0.6255
0
0


7
P
0.5846
0.5846
0
0


8
S
0.4703
0.4703
0
0


9
S
0.4149
0.4149
0
0


10
S
0.3005
0.3005
0
0


11
L
0.2657
0.2657
0
0


12
S
0.2748
0.2748
0
0


13
F
0.2385
0.2385
0
0


14
T
0.2483
0.2483
0
0


15
S
0.2963
0.2963
0
0


16
S
0.3053
0.3053
0
0


17
H
0.2865
0.2865
0
0


18
F
0.1844
0.1844
0
0


19
S
0.1878
0.1878
0
0


20
Y
0.1921
0.1921
0
0


21
G
0.1958
0.1958
0
0


22
S
0.2292
0.2292
0
0


23
I
0.2122
0.2167
0
0.0045


24
G
0.282
0.282
0
0


25
S
0.2865
0.2865
0
0


26
N
0.3263
0.3311
0
0.0048


27
H
0.3578
0.363
0
0.0052


28
F
0.3053
0.3096
0
0.0043


29
S
0.3399
0.3491
0
0.0092


30
S
0.3456
0.3491
0
0.0035


31
S
0.3456
0.3535
0
0.0079


32
S
0.3311
0.3399
0
0.0088


33
A
0.3311
0.3456
0
0.0145


34
S
0.3263
0.3399
0
0.0136


35
N
0.3184
0.3311
0
0.0127


36
P
0.3263
0.3359
0
0.0096


37
E
0.3225
0.3359
0
0.0134


38
V
0.2483
0.2602
0
0.0119


39
V
0.3491
0.3668
0
0.0177


40
S
0.3762
0.3939
0
0.0177


41
L
0.3184
0.3399
0
0.0215


42
T
0.2602
0.2865
0
0.0263


43
K
0.2657
0.2913
0
0.0256


44
L
0.2913
0.3225
0
0.0312


45
S
0.3005
0.3263
0
0.0258


46
S
0.3146
0.3399
0
0.0253


47
N
0.208
0.3096
0
0.1016


48
L
0.1998
0.3005
0
0.1007


49
E
0.1766
0.2786
0
0.102


50
Q
0.2209
0.3184
0
0.0975


51
L
0.2385
0.3399
0
0.1014


52
L
0.27
0.3762
0
0.1062


53
S
0.2913
0.3939
0
0.1026


54
N
0.2122
0.3184
0
0.1062


55
S
0.2041
0.3005
0
0.0964


56
D
0.1495
0.2385
0
0.089


57
S
0.1566
0.2531
0
0.0965


58
D
0.1566
0.2531
0
0.0965


59
Y
0.1566
0.2558
0
0.0992


60
S
0.1698
0.2748
0
0.105


61
D
0.1088
0.1921
0
0.0833


62
A
0.1532
0.2531
0
0.0999


63
E
0.1532
0.2531
0
0.0999


64
I
0.1532
0.2602
0
0.107


65
I
0.1495
0.2558
0
0.1063


66
V
0.0965
0.2558
0
0.1593


67
D
0.0587
0.1805
0
0.1218


68
G
0.0643
0.1349
0
0.0706


69
V
0.049
0.1088
0
0.0598


70
P
0.0621
0.138
0
0.0759


71
V
0.0621
0.138
0
0.0759


72
G
0.0567
0.1292
0
0.0725


73
V
0.0723
0.1532
0
0.0809


74
H
0.0395
0.0858
0
0.0463


75
R
0.0405
0.0909
0
0.0504


76
S
0.0677
0.1495
0
0.0818


77
I
0.1088
0.208
0
0.0992


78
L
0.0643
0.1416
0
0.0773


79
A
0.0376
0.0832
0
0.0456


80
A
0.0554
0.124
0
0.0686


81
R
0.0464
0.1018
0
0.0554


82
S
0.0723
0.1495
0
0.0772


83
K
0.0744
0.1495
0
0.0751


84
F
0.115
0.208
0
0.093


85
F
0.0723
0.138
0
0.0657


86
Q
0.0723
0.138
0
0.0657


87
D
0.1205
0.1416
0
0.0211


88
L
0.1635
0.1878
0
0.0243


89
F
0.2209
0.2483
0
0.0274


90
K
0.2531
0.2748
0
0.0217


91
K
0.3146
0.3359
0
0.0213


92
E
0.3146
0.3359
0
0.0213


93
K
0.2255
0.2483
0
0.0228


94
K
0.2385
0.2602
0
0.0217


95
I
0.2432
0.2602
0
0.017


96
S
0.3359
0.3491
0
0.0132


97
K
0.3311
0.3456
0
0.0145


98
T
0.2786
0.2913
0
0.0127


99
E
0.2657
0.2748
0
0.0091


100
K
0.3847
0.3939
0
0.0092


101
P
0.3005
0.3096
0
0.0091


102
K
0.2963
0.3053
0
0.009


103
Y
0.2558
0.2602
0
0.0044


104
Q
0.1844
0.1878
0
0.0034


105
L
0.1566
0.1566
0
0


106
R
0.2209
0.2292
0
0.0083


107
E
0.2255
0.2333
0
0.0078


108
M
0.1878
0.1998
0
0.012


109
L
0.1205
0.1292
0
0.0087


110
P
0.0744
0.0813
0
0.0069


111
Y
0.0464
0.0502
0
0.0038


112
G
0.0194
0.0231
0
0.0037


113
A
0.0109
0.0128
0
0.0019


114
V
0.0218
0.0259
0
0.0041


115
A
0.0102
0.0128
0
0.0026


116
H
0.0109
0.0131
0
0.0022


117
E
0.0066
0.0078
0
0.0012


118
A
0.0061
0.0078
0
0.0017


119
F
0.0078
0.0099
0
0.0021


120
L
0.0131
0.02
0
0.0069


121
Y
0.0062
0.0086
0
0.0024


122
F
0.0094
0.015
0
0.0056


123
L
0.0109
0.0179
0
0.007


124
S
0.0067
0.0099
0
0.0032


125
Y
0.0118
0.0218
0
0.01


126
I
0.0078
0.0131
0
0.0053


127
Y
0.0083
0.015
0
0.0067


128
T
0.0044
0.0083
0
0.0039


129
G
0.0062
0.0099
0
0.0037


130
R
0.0102
0.02
0
0.0098


131
L
0.0074
0.0316
0
0.0242


132
K
0.007
0.0308
0
0.0238


133
P
0.0137
0.0607
0
0.047


134
F
0.0297
0.1117
0
0.082


135
P
0.016
0.0701
0
0.0541


136
L
0.0109
0.1117
0
0.1008


137
E
0.0194
0.1635
0
0.1441


138
V
0.0304
0.2292
0
0.1988


139
S
0.035
0.2531
0
0.2181


140
T
0.0173
0.2483
0
0.231


141
S
0.0084
0.2483
0
0.2399


142
V
0.015
0.3263
0
0.3113


143
D
0.02
0.3578
0
0.3378


144
P
0.0128
0.3053
0
0.2925


145
V
0.0179
0.3456
0
0.3277


146
S
0.0173
0.3399
0
0.3226


147
S
0.0167
0.3359
0
0.3192


148
H
0.009
0.2602
0
0.2512


149
D
0.0097
0.27
0
0.2603


150
S
0.0097
0.2865
0
0.2768


151
S
0.0062
0.2122
0
0.206


152
R
0.0121
0.1958
0
0.1837


153
P
0.0128
0.208
0
0.1952


154
A
0.0087
0.1698
0
0.1611


155
I
0.0081
0.1495
0
0.1414


156
D
0.0141
0.2167
0
0.2026


157
F
0.0245
0.1635
0
0.139


158
V
0.0124
0.1088
0
0.0964


159
V
0.0141
0.115
0
0.1009


160
Q
0.0078
0.0643
0
0.0565


161
L
0.0182
0.0789
0
0.0607


162
M
0.0414
0.0858
0
0.0444


163
Y
0.0226
0.049
0
0.0264


164
A
0.0097
0.0252
0
0.0155


165
S
0.0131
0.0297
0
0.0166


166
S
0.0252
0.049
0
0.0238


167
V
0.0084
0.0182
0
0.0098


168
L
0.0179
0.0376
0
0.0197


169
Q
0.0279
0.0514
0
0.0235


170
V
0.0425
0.0789
0
0.0364


171
P
0.0218
0.0376
0
0.0158


172
E
0.0218
0.0607
0
0.0389


173
L
0.0279
0.0744
0
0.0465


174
V
0.0194
0.0526
0
0.0332


175
S
0.0137
0.0387
0
0.025


176
S
0.015
0.0425
0
0.0275


177
F
0.0144
0.0441
0
0.0297


178
Q
0.0245
0.0643
0
0.0398


179
R
0.0218
0.0587
0
0.0369


180
R
0.0121
0.0336
0
0.0215


181
L
0.0231
0.0554
0
0.0323


182
S
0.0194
0.0502
0
0.0308


183
N
0.0094
0.0279
0
0.0185


184
F
0.0094
0.0286
0
0.0192


185
V
0.0231
0.0567
0
0.0336


186
E
0.0109
0.0308
0
0.0199


187
K
0.0061
0.016
0
0.0099


188
T
0.0099
0.0308
0
0.0209


189
L
0.0066
0.0173
0
0.0107


190
V
0.0052
0.0141
0
0.0089


191
E
0.0015
0.007
0
0.0055


192
N
0.0044
0.0144
0
0.01


193
V
0.0033
0.0144
0
0.0111


194
L
0.0029
0.0137
0
0.0108


195
P
0.0033
0.0157
0
0.0124


196
I
0.0066
0.0297
0
0.0231


197
L
0.0055
0.0286
0
0.0231


198
M
0.0028
0.015
0
0.0122


199
V
0.0009
0.0082
0
0.0073


200
A
0.0033
0.0179
0
0.0146


201
F
0.0062
0.0316
0
0.0254


202
N
0.0026
0.0304
0
0.0278


203
S
0.0008
0.0137
0
0.0129


204
K
0.0026
0.0279
0
0.0253


205
L
0.0049
0.0478
0
0.0429


206
T
0.0015
0.0245
0
0.023


207
Q
0.0031
0.0363
0
0.0332


208
L
0.0067
0.0607
0
0.054


209
L
0.0081
0.0771
0
0.069


210
D
0.015
0.1292
0
0.1142


211
Q
0.0099
0.0965
0
0.0866


212
S
0.0137
0.1178
0
0.1041


213
I
0.0131
0.1117
0
0.0986


214
E
0.0194
0.0677
0
0.0483


215
R
0.0094
0.0723
0
0.0629


216
V
0.0118
0.0813
0
0.0695


217
A
0.0128
0.0858
0
0.073


218
R
0.0124
0.0789
0
0.0665


219
S
0.0268
0.1349
0
0.1081


220
D
0.0304
0.1495
0
0.1191


221
L
0.0363
0.1698
0
0.1335


222
Y
0.0464
0.1958
0
0.1494


223
R
0.0909
0.1998
0
0.1089


224
F
0.1117
0.2385
0
0.1268


225
S
0.0935
0.2122
0
0.1187


226
I
0.1018
0.2209
0
0.1191


227
E
0.1495
0.2913
0
0.1418


228
K
0.124
0.2483
0
0.1243


229
E
0.124
0.2483
0
0.1243


230
V
0.1266
0.2558
0
0.1292


231
P
0.0789
0.1805
0
0.1016


232
P
0.1292
0.2558
0
0.1266


233
E
0.138
0.2657
0
0.1277


234
V
0.0991
0.1998
0
0.1007


235
A
0.1602
0.282
0
0.1218


236
E
0.282
0.3146
0
0.0326


237
K
0.363
0.3992
0
0.0362


238
I
0.3668
0.3992
0
0.0324


239
K
0.3806
0.4116
0
0.031


240
Q
0.3806
0.4078
0
0.0272


241
L
0.4458
0.4781
0
0.0323


242
R
0.4149
0.442
0
0.0271


243
L
0.4149
0.442
0
0.0271


244
I
0.4037
0.4245
0
0.0208


245
S
0.3806
0.4037
0
0.0231


246
P
0.4116
0.4282
0
0.0166


247
Q
0.4149
0.4333
0
0.0184


248
D
0.4149
0.4282
0
0.0133


249
E
0.4078
0.4245
0
0.0167


250
E
0.3399
0.3578
0
0.0179


251
T
0.3456
0.3535
0
0.0079


252
S
0.4116
0.4149
0
0.0033


253
P
0.3263
0.3359
0
0.0096


254
K
0.4078
0.4116
0
0.0038


255
I
0.46
0.4651
0
0.0051


256
S
0.3717
0.3806
0
0.0089


257
E
0.2657
0.27
0
0.0043


258
K
0.2432
0.2483
0
0.0051


259
L
0.2122
0.2122
0
0


260
L
0.1456
0.1456
0
0


261
E
0.1495
0.1495
0
0


262
R
0.1532
0.1532
0
0


263
I
0.1532
0.1532
0
0


264
G
0.1292
0.1292
0
0


265
K
0.0935
0.0935
0
0


266
I
0.1602
0.1602
0
0


267
L
0.0935
0.0935
0
0


268
K
0.0567
0.0567
0
0


269
A
0.0567
0.0567
0
0


270
L
0.0542
0.0542
0
0


271
D
0.0526
0.0526
0
0


272
S
0.0286
0.0286
0
0


273
D
0.0279
0.0279
0
0


274
D
0.0542
0.0542
0
0


275
V
0.0514
0.0514
0
0


276
E
0.0587
0.0587
0
0


277
L
0.0514
0.0514
0
0


278
V
0.0789
0.0789
0
0


279
K
0.0478
0.0478
0
0


280
L
0.0567
0.0567
0
0


281
L
0.0935
0.0935
0
0


282
L
0.0701
0.0701
0
0


283
T
0.0701
0.0701
0
0


284
E
0.0677
0.0677
0
0


285
S
0.0363
0.0363
0
0


286
D
0.0542
0.0542
0
0


287
I
0.0316
0.0316
0
0


288
T
0.0554
0.0554
0
0


289
L
0.0567
0.0567
0
0


290
D
0.0414
0.0414
0
0


291
Q
0.0455
0.0455
0
0


292
A
0.0744
0.0744
0
0


293
N
0.1322
0.1322
0
0


294
G
0.1635
0.1635
0
0


295
L
0.1456
0.1456
0
0


296
H
0.1018
0.1018
0
0


297
Y
0.0643
0.0643
0
0


298
S
0.1018
0.1018
0
0


299
V
0.115
0.115
0
0


300
V
0.1205
0.1205
0
0


301
Y
0.0701
0.0701
0
0


302
S
0.0542
0.0542
0
0


303
D
0.0425
0.0425
0
0


304
P
0.0441
0.0441
0
0


305
K
0.0327
0.0327
0
0


306
V
0.0567
0.0567
0
0


307
V
0.0621
0.0621
0
0


308
A
0.0621
0.0621
0
0


309
E
0.0621
0.0621
0
0


310
I
0.0514
0.0514
0
0


311
L
0.0744
0.0744
0
0


312
A
0.1178
0.1178
0
0


313
L
0.1178
0.1178
0
0


314
D
0.1088
0.1088
0
0


315
M
0.0909
0.0909
0
0


316
G
0.0554
0.0554
0
0


317
D
0.0858
0.0858
0
0


318
V
0.0832
0.0832
0
0


319
N
0.0621
0.0621
0
0


320
Y
0.0567
0.0567
0
0


321
R
0.0542
0.0542
0
0


322
N
0.0744
0.0744
0
0


323
S
0.0744
0.0744
0
0


324
R
0.0991
0.0991
0
0


325
G
0.0909
0.0909
0
0


326
Y
0.1205
0.1205
0
0


327
T
0.1322
0.1322
0
0


328
V
0.1495
0.1495
0
0


329
L
0.208
0.208
0
0


330
H
0.1416
0.1416
0
0


331
F
0.1566
0.1566
0
0


332
A
0.106
0.106
0
0


333
A
0.106
0.106
0
0


334
M
0.066
0.066
0
0


335
R
0.0414
0.0414
0
0


336
R
0.0425
0.0425
0
0


337
E
0.0744
0.0744
0
0


338
P
0.0771
0.0771
0
0


339
S
0.0935
0.0935
0
0


340
I
0.1495
0.1495
0
0


341
I
0.124
0.124
0
0


342
I
0.1998
0.1998
0
0


343
S
0.2385
0.2385
0
0


344
L
0.1878
0.1878
0
0


345
I
0.2209
0.2209
0
0


346
D
0.2209
0.2209
0
0


347
K
0.2167
0.2167
0
0


348
G
0.208
0.208
0
0


349
A
0.1844
0.1844
0
0


350
N
0.1844
0.1844
0
0


351
A
0.2385
0.2385
0
0


352
S
0.2602
0.2602
0
0


353
E
0.3399
0.3399
0
0


354
F
0.2786
0.2786
0
0


355
T
0.2913
0.2963
0
0.005


356
S
0.3806
0.3806
0
0


357
D
0.3847
0.3847
0
0


358
G
0.3146
0.3225
0
0.0079


359
R
0.3096
0.3146
0
0.005


360
S
0.3399
0.3491
0
0.0092


361
A
0.3762
0.3847
0
0.0085


362
V
0.4078
0.4149
0
0.0071


363
N
0.4037
0.4149
0
0.0112


364
I
0.3359
0.3491
0
0.0132


365
L
0.4282
0.4513
0
0.0231


366
R
0.4333
0.4513
0
0.018


367
R
0.4333
0.4556
0
0.0223


368
L
0.4379
0.46
0
0.0221


369
T
0.4149
0.4379
0
0.023


370
N
0.4149
0.442
0
0.0271


371
P
0.4149
0.4458
0
0.0309


372
K
0.442
0.4703
0
0.0283


373
D
0.4879
0.5173
0
0.0294


374
Y
0.4918
0.5229
0
0.0311


375
H
0.5583
0.5846
0
0.0263


376
T
0.6219
0.6442
0
0.0223


377
K
0.59
0.6174
0
0.0274


378
T
0.5846
0.6174
0
0.0328


379
A
0.5802
0.6174
0
0.0372


380
K
0.5229
0.6219
0
0.099


381
G
0.4651
0.5623
0
0.0972


382
R
0.4282
0.5331
0
0.1049


383
E
0.3762
0.4781
0
0.1019


384
S
0.3311
0.4333
0
0.1022


385
S
0.3992
0.5043
0
0.1051


386
K
0.3992
0.5008
0
0.1016


387
A
0.4037
0.5008
0
0.0971


388
R
0.3311
0.4282
0
0.0971


389
L
0.3263
0.4282
0
0.1019


390
S
0.3535
0.4513
0
0.0978


391
I
0.3456
0.4458
0
0.1002


392
D
0.3717
0.4781
0
0.1064


393
I
0.3491
0.4556
0
0.1065


394
L
0.2963
0.3992
0
0.1029


395
E
0.2167
0.3263
0
0.1096


396
R
0.2209
0.3311
0
0.1102


397
E
0.2167
0.3311
0
0.1144


398
I
0.2748
0.3885
0
0.1137


399
R
0.2432
0.3578
0
0.1146


400
K
0.2333
0.4245
0
0.1912


401
N
0.3096
0.4245
0
0.1149


402
P
0.27
0.3847
0
0.1147


403
M
0.2786
0.3885
0
0.1099


404
V
0.2963
0.4078
0
0.1115


405
L
0.3762
0.4879
0
0.1117


406
D
0.3762
0.4879
0
0.1117


407
T
0.3806
0.4918
0
0.1112


408
P
0.2865
0.3992
0
0.1127


409
M
0.363
0.4781
0
0.1151


410
S
0.3311
0.442
0
0.1109


411
S
0.3263
0.4379
0
0.1116


412
I
0.2531
0.363
0
0.1099


413
S
0.1566
0.2531
0
0.0965


414
M
0.1088
0.1878
0
0.079


415
P
0.0965
0.1732
0
0.0767


416
E
0.1566
0.2531
0
0.0965


417
D
0.1495
0.2385
0
0.089


418
L
0.1416
0.2292
0
0.0876


419
Q
0.0789
0.1416
0
0.0627


420
M
0.0935
0.1667
0
0.0732


421
R
0.0935
0.1088
0
0.0153


422
L
0.0723
0.0884
0
0.0161


423
L
0.1349
0.1602
0
0.0253


424
Y
0.0832
0.1041
0
0.0209


425
L
0.0607
0.0771
0
0.0164


426
E
0.0297
0.0376
0
0.0079


427
K
0.0336
0.0414
0
0.0078


428
R
0.0316
0.0395
0
0.0079


429
V
0.0621
0.0771
0
0.015


430
G
0.0478
0.0554
0
0.0076


431
L
0.0554
0.066
0
0.0106


432
A
0.0376
0.0441
0
0.0065


433
Q
0.0502
0.0567
0
0.0065


434
L
0.066
0.0771
0
0.0111


435
F
0.1205
0.1322
0
0.0117


436
F
0.1178
0.1292
0
0.0114


437
P
0.106
0.1178
0
0.0118


438
T
0.1117
0.1205
0
0.0088


439
E
0.0744
0.0832
0
0.0088


440
A
0.1292
0.138
0
0.0088


441
K
0.1292
0.138
0
0.0088


442
V
0.1878
0.1958
0
0.008


443
A
0.2209
0.2292
0
0.0083


444
M
0.2385
0.2385
0
0


445
D
0.2385
0.2385
0
0


446
I
0.3225
0.3225
0
0


447
G
0.4116
0.4116
0
0


448
N
0.3263
0.3263
0
0


449
V
0.3263
0.3263
0
0


450
E
0.3399
0.3399
0
0


451
G
0.4078
0.4078
0
0


452
T
0.4203
0.4203
0
0


453
S
0.4967
0.4967
0
0


454
E
0.5331
0.5331
0
0


455
F
0.5084
0.5084
0
0


456
T
0.4967
0.4967
0
0


457
G
0.5846
0.5846
0
0


458
L
0.5846
0.5846
0
0


459
S
0.5253
0.5253
0
0


460
P
0.5941
0.5941
0
0


461
P
0.5846
0.5846
0
0


462
S
0.5296
0.5296
0
0


463
S
0.5412
0.5412
0
0


464
G
0.4879
0.4879
0
0


465
L
0.4703
0.4703
0
0


466
T
0.5549
0.5549
0
0


467
G
0.5549
0.5549
0
0


468
N
0.5802
0.5802
0
0


469
L
0.6374
0.6374
0
0


470
S
0.6079
0.6079
0
0


471
Q
0.59
0.59
0
0


472
V
0.5583
0.5583
0
0


473
D
0.5667
0.5667
0
0


474
L
0.5711
0.5711
0
0


475
N
0.5084
0.5084
0
0


476
E
0.5084
0.5084
0
0


477
T
0.5043
0.5043
0
0


478
P
0.5043
0.5043
0
0


479
H
0.4651
0.4651
0
0


480
M
0.4651
0.4651
0
0


481
Q
0.4333
0.4333
0
0


482
T
0.3578
0.3578
0
0


483
Q
0.3717
0.3717
0
0


484
R
0.3535
0.3535
0
0


485
L
0.4116
0.4116
0
0


486
L
0.3399
0.3399
0
0


487
T
0.3399
0.3399
0
0


488
R
0.3399
0.3399
0
0


489
M
0.3096
0.3096
0
0


490
V
0.3005
0.3005
0
0


491
A
0.3225
0.3225
0
0


492
L
0.2209
0.2209
0
0


493
M
0.1349
0.1349
0
0


494
K
0.1532
0.1532
0
0


495
T
0.0935
0.0935
0
0


496
V
0.1322
0.1322
0
0


497
E
0.1766
0.1766
0
0


498
T
0.1921
0.1921
0
0


499
G
0.1349
0.1349
0
0


500
R
0.106
0.106
0
0


501
R
0.1532
0.1532
0
0


502
F
0.1667
0.1667
0
0


503
F
0.1602
0.1602
0
0


504
P
0.1635
0.1635
0
0


505
Y
0.1456
0.1456
0
0


506
G
0.1532
0.1532
0
0


507
S
0.1456
0.1456
0
0


508
E
0.0965
0.0965
0
0


509
V
0.0935
0.0935
0
0


510
L
0.0935
0.0935
0
0


511
D
0.0991
0.0991
0
0


512
K
0.0677
0.0677
0
0


513
Y
0.0813
0.0813
0
0


514
M
0.138
0.138
0
0


515
A
0.115
0.115
0
0


516
E
0.1117
0.1117
0
0


517
Y
0.106
0.106
0
0


518
I
0.0621
0.0621
0
0


519
D
0.0587
0.0587
0
0


520
D
0.0858
0.0858
0
0


521
D
0.1349
0.1349
0
0


522
I
0.1349
0.1349
0
0


523
L
0.1349
0.1349
0
0


524
D
0.1921
0.1921
0
0


525
D
0.2292
0.2292
0
0


526
F
0.2531
0.2531
0
0


527
H
0.2333
0.2333
0
0


528
F
0.2432
0.2432
0
0


529
E
0.3005
0.3005
0
0


530
K
0.2913
0.2913
0
0


531
G
0.27
0.2748
0
0.0048


532
S
0.2657
0.2657
0
0


533
T
0.2657
0.27
0
0.0043


534
H
0.3263
0.3311
0
0.0048


535
E
0.3263
0.3311
0
0.0048


536
R
0.27
0.2786
0
0.0086


537
R
0.3578
0.3668
0
0.009


538
L
0.363
0.3717
0
0.0087


539
K
0.4379
0.4458
0
0.0079


540
R
0.3885
0.4037
0
0.0152


541
M
0.4203
0.4333
0
0.013


542
R
0.4203
0.4333
0
0.013


543
Y
0.3992
0.4149
0
0.0157


544
R
0.3578
0.3762
0
0.0184


545
E
0.3578
0.3806
0
0.0228


546
L
0.3578
0.3806
0
0.0228


547
K
0.363
0.3847
0
0.0217


548
D
0.3806
0.3992
0
0.0186


549
D
0.4379
0.46
0
0.0221


550
V
0.442
0.4651
0
0.0231


551
Q
0.46
0.4825
0
0.0225


552
K
0.4333
0.4513
0
0.018


553
A
0.4203
0.442
0
0.0217


554
Y
0.4879
0.5084
0
0.0205


555
S
0.4879
0.5084
0
0.0205


556
K
0.4458
0.5084
0
0.0626


557
D
0.4651
0.5229
0
0.0578


558
K
0.46
0.5126
0
0.0526


559
E
0.4458
0.5043
0
0.0585


560
S
0.4458
0.5043
0
0.0585


561
K
0.4918
0.5412
0
0.0494


562
I
0.4651
0.5173
0
0.0522


563
A
0.4967
0.5473
0
0.0506


564
R
0.5084
0.5549
0
0.0465


565
S
0.5549
0.5992
0
0.0443


566
S
0.5514
0.5941
0
0.0427


567
L
0.5412
0.5846
0
0.0434


568
S
0.5043
0.5412
0
0.0369


569
A
0.5084
0.5514
0
0.043


570
S
0.5126
0.5549
0
0.0423


571
S
0.5126
0.5549
0
0.0423


572
S
0.4703
0.5173
0
0.047


573
P
0.5253
0.5802
0
0.0549


574
S
0.5412
0.5992
0
0.058


575
S
0.5296
0.59
0
0.0604


576
S
0.5253
0.5846
0
0.0593


577
S
0.6079
0.6293
0
0.0214


578
I
0.6827
0.7034
0
0.0207


579
R
0.7232
0.7458
0
0.0226


580
D
0.7772
0.7951
0
0.0179


581
D
0.8158
0.8391
0
0.0233


582
L
0.8521
0.8713
0
0.0192


583
H
0.8886
0.904
0
0.0154


584
N
0.892
0.9068
0
0.0148


585
T
0.918
0.9316
0
0.0136


586
T
0.9447
0.9553
0
0.0106


>AtNPR4







(AT4G19660)







1
M
0.9208
0.9208
0
0


2
A
0.8521
0.8521
0
0


3
A
0.8118
0.8118
0
0


4
T
0.6984
0.6984
0
0


5
A
0.665
0.665
0
0


6
I
0.6219
0.6219
0
0


7
E
0.5711
0.5711
0
0


8
P
0.5374
0.5374
0
0


9
S
0.442
0.442
0
0


10
S
0.3939
0.3939
0
0


11
S
0.3535
0.3535
0
0


12
I
0.4037
0.4037
0
0


13
S
0.4203
0.4203
0
0


14
F
0.4703
0.4703
0
0


15
T
0.4203
0.4203
0
0


16
S
0.3939
0.3939
0
0


17
S
0.4458
0.4458
0
0


18
H
0.4203
0.4245
0
0.0042


19
L
0.3399
0.3456
0
0.0057


20
S
0.3456
0.3535
0
0.0079


21
N
0.3456
0.3578
0
0.0122


22
P
0.3311
0.3456
0
0.0145


23
S
0.3717
0.3847
0
0.013


24
P
0.3762
0.3885
0
0.0123


25
V
0.3847
0.4037
0
0.019


26
V
0.4078
0.4245
0
0.0167


27
T
0.4379
0.4556
0
0.0177


28
T
0.3806
0.3992
0
0.0186


29
Y
0.3717
0.3885
0
0.0168


30
H
0.4282
0.4458
0
0.0176


31
S
0.4333
0.4556
0
0.0223


32
A
0.3668
0.3885
0
0.0217


33
A
0.363
0.3885
0
0.0255


34
N
0.3806
0.4078
0
0.0272


35
L
0.2963
0.3263
0
0.03


36
E
0.2913
0.3225
0
0.0312


37
E
0.3399
0.3762
0
0.0363


38
L
0.3399
0.3806
0
0.0407


39
S
0.3668
0.4078
0
0.041


40
S
0.4458
0.4825
0
0.0367


41
N
0.363
0.4825
0
0.1195


42
L
0.3806
0.5008
0
0.1202


43
E
0.3311
0.4513
0
0.1202


44
Q
0.3535
0.4781
0
0.1246


45
L
0.3668
0.4918
0
0.125


46
L
0.4078
0.5296
0
0.1218


47
T
0.4037
0.5253
0
0.1216


48
N
0.3005
0.4245
0
0.124


49
P
0.282
0.4078
0
0.1258


50
D
0.1998
0.3225
0
0.1227


51
S
0.2167
0.3399
0
0.1232


52
D
0.2255
0.3491
0
0.1236


53
Y
0.3053
0.4282
0
0.1229


54
T
0.2483
0.3762
0
0.1279


55
D
0.2333
0.363
0
0.1297


56
A
0.3263
0.4556
0
0.1293


57
E
0.3184
0.4458
0
0.1274


58
I
0.3225
0.4458
0
0.1233


59
I
0.2602
0.3806
0
0.1204


60
I
0.2255
0.3535
0
0.128


61
E
0.1998
0.3311
0
0.1313


62
E
0.2122
0.3263
0
0.1141


63
E
0.1566
0.2602
0
0.1036


64
A
0.1602
0.27
0
0.1098


65
N
0.138
0.2432
0
0.1052


66
P
0.1117
0.2041
0
0.0924


67
V
0.1292
0.2255
0
0.0963


68
S
0.115
0.208
0
0.093


69
V
0.1698
0.2786
0
0.1088


70
H
0.1667
0.2786
0
0.1119


71
R
0.1698
0.2865
0
0.1167


72
S
0.1088
0.2041
0
0.0953


73
V
0.1041
0.1958
0
0.0917


74
L
0.0621
0.1292
0
0.0671


75
A
0.0464
0.0991
0
0.0527


76
A
0.0455
0.0965
0
0.051


77
R
0.0363
0.0744
0
0.0381


78
S
0.0554
0.115
0
0.0596


79
K
0.0567
0.1205
0
0.0638


80
F
0.0884
0.1667
0
0.0783


81
F
0.0935
0.1635
0
0.07


82
L
0.0965
0.1698
0
0.0733


83
D
0.1495
0.1732
0
0.0237


84
L
0.1958
0.2209
0
0.0251


85
F
0.2558
0.282
0
0.0262


86
K
0.3146
0.3359
0
0.0213


87
K
0.3399
0.363
0
0.0231


88
D
0.2657
0.282
0
0.0163


89
K
0.282
0.3005
0
0.0185


90
D
0.2483
0.2657
0
0.0174


91
S
0.3263
0.3456
0
0.0193


92
S
0.4078
0.4203
0
0.0125


93
E
0.4037
0.4149
0
0.0112


94
K
0.3184
0.3263
0
0.0079


95
K
0.4149
0.4282
0
0.0133


96
P
0.4203
0.4245
0
0.0042


97
K
0.4245
0.4282
0
0.0037


98
Y
0.4282
0.4333
0
0.0051


99
Q
0.3535
0.3578
0
0.0043


100
M
0.3491
0.3535
0
0.0044


101
K
0.3535
0.3578
0
0.0043


102
D
0.3578
0.3668
0
0.009


103
L
0.3311
0.3399
0
0.0088


104
L
0.2432
0.2558
0
0.0126


105
P
0.1766
0.1844
0
0.0078


106
Y
0.1698
0.1844
0
0.0146


107
G
0.0858
0.0991
0
0.0133


108
N
0.0526
0.0621
0
0.0095


109
V
0.0909
0.1041
0
0.0132


110
G
0.049
0.0567
0
0.0077


111
R
0.0414
0.049
0
0.0076


112
E
0.0245
0.0304
0
0.0059


113
A
0.0231
0.0304
0
0.0073


114
F
0.0376
0.0478
0
0.0102


115
L
0.0587
0.0813
0
0.0226


116
H
0.0286
0.0405
0
0.0119


117
F
0.0455
0.0621
0
0.0166


118
L
0.0514
0.0744
0
0.023


119
S
0.0245
0.0376
0
0.0131


120
Y
0.0441
0.066
0
0.0219


121
I
0.0252
0.0395
0
0.0143


122
Y
0.0268
0.0405
0
0.0137


123
T
0.0141
0.0245
0
0.0104


124
G
0.0173
0.0286
0
0.0113


125
R
0.0308
0.0478
0
0.017


126
L
0.0231
0.0677
0
0.0446


127
K
0.0128
0.0414
0
0.0286


128
P
0.0279
0.0771
0
0.0492


129
F
0.0425
0.1117
0
0.0692


130
P
0.0252
0.0677
0
0.0425


131
I
0.0182
0.1041
0
0.0859


132
E
0.0231
0.124
0
0.1009


133
V
0.0336
0.1766
0
0.143


134
S
0.0395
0.1921
0
0.1526


135
T
0.0405
0.1878
0
0.1473


136
S
0.0194
0.1805
0
0.1611


137
V
0.0327
0.2483
0
0.2156


138
D
0.0414
0.282
0
0.2406


139
S
0.0274
0.2255
0
0.1981


140
V
0.0336
0.2531
0
0.2195


141
S
0.0316
0.2432
0
0.2116


142
A
0.0286
0.2292
0
0.2006


143
H
0.0194
0.1844
0
0.165


144
D
0.0194
0.1844
0
0.165


145
S
0.0218
0.1998
0
0.178


146
S
0.0116
0.1322
0
0.1206


147
K
0.02
0.1178
0
0.0978


148
P
0.0218
0.124
0
0.1022


149
A
0.0144
0.0965
0
0.0821


150
I
0.015
0.0991
0
0.0841


151
D
0.0128
0.0858
0
0.073


152
F
0.0179
0.0587
0
0.0408


153
A
0.0118
0.0414
0
0.0296


154
V
0.0141
0.0464
0
0.0323


155
E
0.0069
0.0218
0
0.0149


156
L
0.0081
0.0274
0
0.0193


157
M
0.0182
0.0308
0
0.0126


158
Y
0.0094
0.016
0
0.0066


159
A
0.0044
0.0075
0
0.0031


160
S
0.0066
0.0086
0
0.002


161
F
0.0097
0.015
0
0.0053


162
V
0.0035
0.0061
0
0.0026


163
F
0.0082
0.0118
0
0.0036


164
Q
0.009
0.0131
0
0.0041


165
I
0.0157
0.0226
0
0.0069


166
P
0.0069
0.0086
0
0.0017


167
D
0.0116
0.0157
0
0.0041


168
L
0.015
0.0212
0
0.0062


169
V
0.0131
0.0179
0
0.0048


170
S
0.009
0.0121
0
0.0031


171
S
0.0102
0.0137
0
0.0035


172
F
0.0231
0.0297
0
0.0066


173
Q
0.0363
0.0441
0
0.0078


174
R
0.0363
0.0425
0
0.0062


175
K
0.0194
0.0231
0
0.0037


176
L
0.0395
0.0464
0
0.0069


177
R
0.0336
0.0405
0
0.0069


178
N
0.0173
0.0218
0
0.0045


179
Y
0.0173
0.0226
0
0.0053


180
V
0.0395
0.049
0
0.0095


181
E
0.0212
0.0268
0
0.0056


182
K
0.0102
0.0137
0
0.0035


183
S
0.0131
0.0179
0
0.0048


184
L
0.0079
0.0097
0
0.0018


185
V
0.0069
0.0086
0
0.0017


186
E
0.0029
0.0044
0
0.0015


187
N
0.0069
0.0094
0
0.0025


188
V
0.0031
0.0099
0
0.0068


189
L
0.0031
0.0099
0
0.0068


190
P
0.0029
0.0097
0
0.0068


191
I
0.0061
0.0194
0
0.0133


192
L
0.0055
0.0182
0
0.0127


193
L
0.0026
0.009
0
0.0064


194
V
0.0008
0.0055
0
0.0047


195
A
0.0028
0.0116
0
0.0088


196
F
0.0055
0.0226
0
0.0171


197
H
0.0021
0.0212
0
0.0191


198
S
0.0007
0.0086
0
0.0079


199
D
0.0013
0.0173
0
0.016


200
L
0.0037
0.0316
0
0.0279


201
T
0.001
0.0137
0
0.0127


202
Q
0.0026
0.0231
0
0.0205


203
L
0.0042
0.0387
0
0.0345


204
L
0.0084
0.0677
0
0.0593


205
D
0.0157
0.1117
0
0.096


206
Q
0.009
0.0723
0
0.0633


207
S
0.0226
0.1416
0
0.119


208
I
0.0226
0.1349
0
0.1123


209
E
0.0245
0.0771
0
0.0526


210
R
0.0102
0.0771
0
0.0669


211
V
0.0118
0.0813
0
0.0695


212
A
0.0124
0.0832
0
0.0708


213
R
0.0118
0.0771
0
0.0653


214
S
0.0259
0.1349
0
0.109


215
D
0.0279
0.1456
0
0.1177


216
L
0.0327
0.1635
0
0.1308


217
D
0.0179
0.1041
0
0.0862


218
R
0.0387
0.1041
0
0.0654


219
F
0.0502
0.1322
0
0.082


220
S
0.0304
0.0832
0
0.0528


221
I
0.0327
0.0909
0
0.0582


222
E
0.0526
0.1349
0
0.0823


223
K
0.0395
0.1041
0
0.0646


224
E
0.0425
0.106
0
0.0635


225
L
0.0414
0.1117
0
0.0703


226
P
0.0245
0.0643
0
0.0398


227
L
0.0455
0.115
0
0.0695


228
E
0.0286
0.0744
0
0.0458


229
V
0.0286
0.0723
0
0.0437


230
L
0.0542
0.1292
0
0.075


231
E
0.0701
0.0884
0
0.0183


232
K
0.124
0.1495
0
0.0255


233
I
0.0723
0.0909
0
0.0186


234
K
0.0935
0.115
0
0.0215


235
Q
0.0909
0.1117
0
0.0208


236
L
0.1041
0.1205
0
0.0164


237
R
0.0832
0.0991
0
0.0159


238
V
0.1416
0.1602
0
0.0186


239
K
0.1349
0.1532
0
0.0183


240
S
0.1878
0.208
0
0.0202


241
V
0.1732
0.1844
0
0.0112


242
N
0.1766
0.1921
0
0.0155


243
I
0.1766
0.1878
0
0.0112


244
P
0.2483
0.2602
0
0.0119


245
E
0.2657
0.2748
0
0.0091


246
V
0.2483
0.2558
0
0.0075


247
E
0.2657
0.2748
0
0.0091


248
D
0.1998
0.2041
0
0.0043


249
K
0.2531
0.2558
0
0.0027


250
S
0.2385
0.2432
0
0.0047


251
I
0.1635
0.1667
0
0.0032


252
E
0.2255
0.2292
0
0.0037


253
R
0.2255
0.2255
0
0


254
T
0.3146
0.3184
0
0.0038


255
G
0.2913
0.2913
0
0


256
K
0.2255
0.2255
0
0


257
V
0.3096
0.3096
0
0


258
L
0.2255
0.2255
0
0


259
K
0.1698
0.1698
0
0


260
A
0.1635
0.1635
0
0


261
L
0.1088
0.1088
0
0


262
D
0.124
0.124
0
0


263
S
0.0744
0.0744
0
0


264
D
0.0771
0.0771
0
0


265
D
0.0858
0.0858
0
0


266
V
0.0832
0.0832
0
0


267
E
0.0965
0.0965
0
0


268
L
0.0744
0.0744
0
0


269
V
0.115
0.115
0
0


270
K
0.0701
0.0701
0
0


271
L
0.0858
0.0858
0
0


272
L
0.138
0.138
0
0


273
L
0.1088
0.1088
0
0


274
T
0.1117
0.1117
0
0


275
E
0.1088
0.1088
0
0


276
S
0.0567
0.0567
0
0


277
D
0.0858
0.0858
0
0


278
I
0.0502
0.0502
0
0


279
T
0.0677
0.0677
0
0


280
L
0.0643
0.0643
0
0


281
D
0.0567
0.0567
0
0


282
Q
0.0567
0.0567
0
0


283
A
0.0909
0.0909
0
0


284
N
0.1416
0.1416
0
0


285
G
0.1766
0.1766
0
0


286
L
0.1602
0.1602
0
0


287
H
0.1117
0.1117
0
0


288
Y
0.0723
0.0723
0
0


289
A
0.1266
0.1266
0
0


290
V
0.1416
0.1416
0
0


291
A
0.1667
0.1667
0
0


292
Y
0.1018
0.1018
0
0


293
S
0.1041
0.1041
0
0


294
D
0.0789
0.0789
0
0


295
P
0.0789
0.0789
0
0


296
K
0.0607
0.0607
0
0


297
V
0.0858
0.0858
0
0


298
V
0.0935
0.0935
0
0


299
T
0.0909
0.0909
0
0


300
Q
0.1117
0.1117
0
0


301
V
0.0832
0.0832
0
0


302
L
0.1041
0.1041
0
0


303
D
0.1566
0.1566
0
0


304
L
0.1566
0.1566
0
0


305
D
0.1532
0.1532
0
0


306
M
0.1266
0.1266
0
0


307
A
0.0832
0.0832
0
0


308
D
0.1205
0.1205
0
0


309
V
0.1205
0.1205
0
0


310
N
0.0771
0.0771
0
0


311
F
0.0723
0.0723
0
0


312
R
0.0587
0.0587
0
0


313
N
0.0832
0.0832
0
0


314
S
0.0643
0.0643
0
0


315
R
0.0832
0.0832
0
0


316
G
0.0789
0.0789
0
0


317
Y
0.1041
0.1041
0
0


318
T
0.1349
0.1349
0
0


319
V
0.1566
0.1566
0
0


320
L
0.2167
0.2167
0
0


321
H
0.1456
0.1456
0
0


322
I
0.1766
0.1766
0
0


323
A
0.1178
0.1178
0
0


324
A
0.1349
0.138
0
0.0031


325
M
0.0858
0.0858
0
0


326
R
0.0514
0.0526
0
0.0012


327
R
0.0567
0.0587
0
0.002


328
E
0.0991
0.1018
0
0.0027


329
P
0.0991
0.106
0
0.0069


330
T
0.1178
0.1266
0
0.0088


331
I
0.1805
0.1921
0
0.0116


332
I
0.1495
0.1635
0
0.014


333
I
0.2333
0.2531
0
0.0198


334
P
0.2657
0.282
0
0.0163


335
L
0.2167
0.2333
0
0.0166


336
I
0.2531
0.2748
0
0.0217


337
Q
0.1844
0.1998
0
0.0154


338
K
0.1766
0.1958
0
0.0192


339
G
0.1698
0.1878
0
0.018


340
A
0.1495
0.1667
0
0.0172


341
N
0.1532
0.1698
0
0.0166


342
A
0.1998
0.2255
0
0.0257


343
S
0.2167
0.2432
0
0.0265


344
D
0.2963
0.3263
0
0.03


345
F
0.2041
0.2292
0
0.0251


346
T
0.2041
0.3096
0
0.1055


347
F
0.282
0.3939
0
0.1119


348
D
0.2748
0.3806
0
0.1058


349
G
0.2041
0.3146
0
0.1105


350
R
0.1958
0.3053
0
0.1095


351
S
0.2292
0.3399
0
0.1107


352
A
0.2657
0.3717
0
0.106


353
V
0.2963
0.4078
0
0.1115


354
N
0.2865
0.3992
0
0.1127


355
I
0.2292
0.3456
0
0.1164


356
S
0.3096
0.4282
0
0.1186


357
R
0.3096
0.4333
0
0.1237


358
R
0.3885
0.5126
0
0.1241


359
L
0.3939
0.5173
0
0.1234


360
T
0.3939
0.5126
0
0.1187


361
R
0.3847
0.5084
0
0.1237


362
P
0.3847
0.5084
0
0.1237


363
K
0.3992
0.5229
0
0.1237


364
D
0.4781
0.6035
0
0.1254


365
Y
0.4825
0.5992
0
0.1167


366
H
0.5473
0.665
0
0.1177


367
T
0.5667
0.6219
0
0.0552


368
K
0.5623
0.6174
0
0.0551


369
T
0.5126
0.5623
0
0.0497


370
S
0.4879
0.6293
0
0.1414


371
R
0.4458
0.59
0
0.1442


372
K
0.4379
0.5802
0
0.1423


373
E
0.3668
0.5126
0
0.1458


374
P
0.3225
0.4703
0
0.1478


375
S
0.3311
0.4781
0
0.147


376
K
0.3992
0.5412
0
0.142


377
Y
0.4078
0.5374
0
0.1296


378
R
0.3535
0.4825
0
0.129


379
L
0.3491
0.4781
0
0.129


380
S
0.3491
0.4781
0
0.129


381
I
0.3456
0.4825
0
0.1369


382
D
0.3762
0.5126
0
0.1364


383
I
0.3146
0.4513
0
0.1367


384
L
0.27
0.4078
0
0.1378


385
E
0.2531
0.3847
0
0.1316


386
R
0.2483
0.3885
0
0.1402


387
E
0.2531
0.3939
0
0.1408


388
I
0.3146
0.4513
0
0.1367


389
R
0.3399
0.4781
0
0.1382


390
R
0.3939
0.5253
0
0.1314


391
N
0.4037
0.5253
0
0.1216


392
P
0.4556
0.5762
0
0.1206


393
L
0.442
0.5711
0
0.1291


394
V
0.4879
0.6174
0
0.1295


395
S
0.5008
0.6255
0
0.1247


396
G
0.5296
0.6516
0
0.122


397
D
0.5331
0.6516
0
0.1185


398
T
0.5412
0.6604
0
0.1192


399
P
0.5173
0.6442
0
0.1269


400
T
0.5331
0.6557
0
0.1226


401
S
0.5008
0.6293
0
0.1285


402
S
0.4967
0.6219
0
0.1252


403
H
0.3939
0.5229
0
0.129


404
S
0.3885
0.5126
0
0.1241


405
M
0.363
0.4918
0
0.1288


406
P
0.282
0.4116
0
0.1296


407
E
0.3005
0.4245
0
0.124


408
D
0.2913
0.4116
0
0.1203


409
L
0.282
0.4078
0
0.1258


410
Q
0.1958
0.3146
0
0.1188


411
M
0.1921
0.3146
0
0.1225


412
R
0.208
0.2483
0
0.0403


413
L
0.1766
0.2167
0
0.0401


414
L
0.1958
0.2333
0
0.0375


415
Y
0.1322
0.1667
0
0.0345


416
L
0.0965
0.1266
0
0.0301


417
E
0.0441
0.0587
0
0.0146


418
K
0.0478
0.0643
0
0.0165


419
R
0.0363
0.049
0
0.0127


420
V
0.0643
0.0909
0
0.0266


421
G
0.049
0.066
0
0.017


422
L
0.0607
0.0832
0
0.0225


423
A
0.0414
0.0554
0
0.014


424
Q
0.0542
0.0744
0
0.0202


425
L
0.066
0.0909
0
0.0249


426
F
0.1178
0.1495
0
0.0317


427
F
0.124
0.1566
0
0.0326


428
P
0.0909
0.1205
0
0.0296


429
A
0.0965
0.1266
0
0.0301


430
E
0.066
0.0909
0
0.0249


431
A
0.1088
0.1416
0
0.0328


432
N
0.1117
0.1416
0
0.0299


433
V
0.1566
0.1921
0
0.0355


434
A
0.1844
0.2209
0
0.0365


435
M
0.1998
0.2292
0
0.0294


436
D
0.2041
0.3053
0
0.1012


437
V
0.2963
0.3885
0
0.0922


438
A
0.3885
0.4825
0
0.094


439
N
0.3096
0.4078
0
0.0982


440
V
0.2963
0.3939
0
0.0976


441
E
0.2748
0.3717
0
0.0969


442
G
0.3311
0.4282
0
0.0971


443
T
0.3535
0.4513
0
0.0978


444
S
0.4458
0.5374
0
0.0916


445
E
0.4825
0.5667
0
0.0842


446
S
0.5173
0.6079
0
0.0906


447
T
0.5126
0.6035
0
0.0909


448
G
0.5711
0.6604
0
0.0893


449
L
0.6035
0.687
0
0.0835


450
L
0.6174
0.6944
0
0.077


451
T
0.6715
0.754
0
0.0825


452
P
0.6124
0.6944
0
0.082


453
P
0.6124
0.6944
0
0.082


454
P
0.6079
0.6906
0
0.0827


455
S
0.5583
0.6474
0
0.0891


456
N
0.5374
0.6334
0
0.096


457
D
0.5623
0.59
0
0.0277


458
T
0.5667
0.5992
0
0.0325


459
T
0.5711
0.5992
0
0.0281


460
E
0.6219
0.6442
0
0.0223


461
N
0.687
0.7111
0
0.0241


462
L
0.6374
0.6557
0
0.0183


463
G
0.5623
0.59
0
0.0277


464
K
0.5549
0.5802
0
0.0253


465
V
0.5296
0.5549
0
0.0253


466
D
0.5229
0.5514
0
0.0285


467
L
0.5229
0.5473
0
0.0244


468
N
0.4879
0.5126
0
0.0247


469
E
0.4333
0.46
0
0.0267


470
T
0.4282
0.46
0
0.0318


471
P
0.4203
0.4458
0
0.0255


472
Y
0.3806
0.4078
0
0.0272


473
V
0.4203
0.4458
0
0.0255


474
Q
0.3939
0.4149
0
0.021


475
T
0.3359
0.363
0
0.0271


476
K
0.3456
0.3717
0
0.0261


477
R
0.3359
0.363
0
0.0271


478
M
0.3717
0.3992
0
0.0275


479
L
0.3146
0.3359
0
0.0213


480
T
0.3146
0.3359
0
0.0213


481
R
0.3096
0.3359
0
0.0263


482
M
0.282
0.3096
0
0.0276


483
K
0.3456
0.3717
0
0.0261


484
A
0.3939
0.4203
0
0.0264


485
L
0.3005
0.3263
0
0.0258


486
M
0.2167
0.2432
0
0.0265


487
K
0.2432
0.2748
0
0.0316


488
T
0.2483
0.27
0
0.0217


489
V
0.2209
0.3005
0
0.0796


490
E
0.1998
0.2786
0
0.0788


491
T
0.208
0.2913
0
0.0833


492
G
0.1635
0.2333
0
0.0698


493
R
0.1495
0.2167
0
0.0672


494
R
0.1602
0.2333
0
0.0731


495
Y
0.1766
0.2558
0
0.0792


496
F
0.1766
0.2531
0
0.0765


497
P
0.1844
0.2657
0
0.0813


498
S
0.1958
0.2748
0
0.079


499
S
0.208
0.2913
0
0.0833


500
Y
0.2041
0.2865
0
0.0824


501
E
0.1732
0.2531
0
0.0799


502
V
0.1844
0.2602
0
0.0758


503
L
0.1844
0.2602
0
0.0758


504
D
0.1844
0.2602
0
0.0758


505
K
0.138
0.2041
0
0.0661


506
Y
0.2209
0.3005
0
0.0796


507
M
0.3146
0.3939
0
0.0793


508
D
0.2558
0.3359
0
0.0801


509
Q
0.2558
0.3359
0
0.0801


510
Y
0.2531
0.27
0
0.0169


511
M
0.3491
0.3717
0
0.0226


512
D
0.3456
0.3668
0
0.0212


513
E
0.3939
0.4116
0
0.0177


514
E
0.442
0.4651
0
0.0231


515
I
0.4282
0.4513
0
0.0231


516
P
0.3939
0.4116
0
0.0177


517
D
0.4556
0.4749
0
0.0193


518
M
0.4825
0.5008
0
0.0183


519
S
0.4825
0.5008
0
0.0183


520
Y
0.4749
0.4879
0
0.013


521
P
0.5473
0.5623
0
0.015


522
E
0.5711
0.5846
0
0.0135


523
K
0.5623
0.5802
0
0.0179


524
G
0.5473
0.5623
0
0.015


525
T
0.5514
0.5667
0
0.0153


526
V
0.5514
0.5667
0
0.0153


527
K
0.5374
0.5549
0
0.0175


528
E
0.5229
0.5412
0
0.0183


529
R
0.5173
0.5374
0
0.0201


530
R
0.5173
0.5374
0
0.0201


531
Q
0.5802
0.6035
0
0.0233


532
K
0.5549
0.5762
0
0.0213


533
R
0.5173
0.5374
0
0.0201


534
M
0.5253
0.5473
0
0.022


535
R
0.5296
0.5514
0
0.0218


536
Y
0.5229
0.5412
0
0.0183


537
N
0.5126
0.5331
0
0.0205


538
E
0.5126
0.5374
0
0.0248


539
L
0.5229
0.5412
0
0.0183


540
K
0.5173
0.5374
0
0.0201


541
N
0.5173
0.5412
0
0.0239


542
D
0.4703
0.4918
0
0.0215


543
V
0.4513
0.4781
0
0.0268


544
K
0.46
0.4879
0
0.0279


545
K
0.4781
0.5043
0
0.0262


546
A
0.4282
0.5008
0
0.0726


547
Y
0.4379
0.5084
0
0.0705


548
S
0.4282
0.5008
0
0.0726


549
K
0.4379
0.5043
0
0.0664


550
D
0.4781
0.5374
0
0.0593


551
K
0.4703
0.5296
0
0.0593


552
V
0.4879
0.5412
0
0.0533


553
A
0.4651
0.5253
0
0.0602


554
R
0.5043
0.5583
0
0.054


555
S
0.4967
0.5514
0
0.0547


556
S
0.4513
0.5084
0
0.0571


557
L
0.4781
0.5374
0
0.0593


558
S
0.5296
0.5846
0
0.055


559
S
0.5084
0.5667
0
0.0583


560
S
0.46
0.5253
0
0.0653


561
S
0.4651
0.5296
0
0.0645


562
P
0.46
0.5296
0
0.0696


563
A
0.5253
0.5941
0
0.0688


564
S
0.5374
0.6079
0
0.0705


565
S
0.5711
0.6374
0
0.0663


566
L
0.6174
0.6756
0
0.0582


567
R
0.6944
0.7147
0
0.0203


568
E
0.7688
0.7912
0
0.0224


569
A
0.8118
0.8311
0
0.0193


570
L
0.8488
0.865
0
0.0162


571
E
0.8781
0.8984
0
0.0203


572
N
0.9119
0.9235
0
0.0116


573
P
0.9208
0.9316
0
0.0108


574
T
0.9534
0.9624
0
0.009


>AtNPR5







(AT2G41370)







1
M
0.7724
0.7724
0
0


2
S
0.7342
0.7342
0
0


3
N
0.6079
0.6079
0
0


4
L
0.5711
0.5711
0
0


5
E
0.4245
0.4245
0
0


6
E
0.2963
0.2963
0
0


7
S
0.2531
0.2558
0
0.0027


8
L
0.1349
0.138
0
0.0031


9
R
0.0607
0.0621
0
0.0014


10
S
0.0252
0.0268
0
0.0016


11
L
0.0179
0.0194
0
0.0015


12
S
0.0252
0.0268
0
0.0016


13
L
0.0268
0.0297
0
0.0029


14
D
0.0194
0.0226
0
0.0032


15
F
0.0173
0.02
0
0.0027


16
L
0.0144
0.0167
0
0.0023


17
N
0.0128
0.0144
0
0.0016


18
L
0.0078
0.0083
0
0.0005


19
L
0.0144
0.0173
0
0.0029


20
I
0.007
0.0082
0
0.0012


21
N
0.007
0.0081
0
0.0011


22
G
0.0075
0.0083
0
0.0008


23
Q
0.0079
0.0087
0
0.0008


24
A
0.015
0.0194
0
0.0044


25
F
0.0131
0.0173
0
0.0042


26
S
0.0137
0.0182
0
0.0045


27
D
0.0144
0.02
0
0.0056


28
V
0.0124
0.0179
0
0.0055


29
T
0.0182
0.0274
0
0.0092


30
F
0.0308
0.0455
0
0.0147


31
S
0.0567
0.0832
0
0.0265


32
V
0.0297
0.0789
0
0.0492


33
E
0.016
0.0464
0
0.0304


34
G
0.0083
0.0268
0
0.0185


35
R
0.0084
0.0274
0
0.019


36
L
0.0157
0.0464
0
0.0307


37
V
0.016
0.0478
0
0.0318


38
H
0.0157
0.0464
0
0.0307


39
A
0.0167
0.0502
0
0.0335


40
H
0.0086
0.0297
0
0.0211


41
R
0.0116
0.0376
0
0.026


42
S
0.0118
0.0395
0
0.0277


43
I
0.0245
0.0701
0
0.0456


44
L
0.0118
0.0395
0
0.0277


45
A
0.0074
0.0231
0
0.0157


46
A
0.0035
0.0252
0
0.0217


47
R
0.0082
0.049
0
0.0408


48
S
0.0144
0.0832
0
0.0688


49
L
0.0173
0.0909
0
0.0736


50
F
0.0252
0.1117
0
0.0865


51
F
0.0316
0.1349
0
0.1033


52
R
0.0363
0.1532
0
0.1169


53
K
0.0813
0.1766
0
0.0953


54
F
0.0935
0.1998
0
0.1063


55
F
0.1456
0.2786
0
0.133


56
S
0.1732
0.3146
0
0.1414


57
G
0.1532
0.282
0
0.1288


58
T
0.1635
0.2913
0
0.1278


59
D
0.1844
0.3225
0
0.1381


60
S
0.2558
0.3939
0
0.1381


61
P
0.363
0.5008
0
0.1378


62
Q
0.4458
0.5802
0
0.1344


63
P
0.4458
0.5846
0
0.1388


64
V
0.4458
0.5802
0
0.1344


65
T
0.4703
0.6035
0
0.1332


66
G
0.5711
0.6944
0
0.1233


67
I
0.6334
0.6715
0
0.0381


68
D
0.6293
0.665
0
0.0357


69
P
0.6516
0.6827
0
0.0311


70
T
0.6442
0.6756
0
0.0314


71
Q
0.6474
0.6827
0
0.0353


72
H
0.6293
0.665
0
0.0357


73
G
0.6174
0.6442
0
0.0268


74
S
0.59
0.6219
0
0.0319


75
V
0.6174
0.6412
0
0.0238


76
P
0.6412
0.665
0
0.0238


77
A
0.6079
0.6255
0
0.0176


78
S
0.665
0.6789
0
0.0139


79
P
0.5711
0.5941
0
0.023


80
T
0.4703
0.4879
0
0.0176


81
R
0.4967
0.5126
0
0.0159


82
G
0.3992
0.4116
0
0.0124


83
S
0.4078
0.4149
0
0.0071


84
T
0.4037
0.4078
0
0.0041


85
A
0.3311
0.3399
0
0.0088


86
P
0.3992
0.4078
0
0.0086


87
A
0.2963
0.3005
0
0.0042


88
G
0.3399
0.3456
0
0.0057


89
I
0.2748
0.2786
0
0.0038


90
I
0.1732
0.1766
0
0.0034


91
P
0.1266
0.1292
0
0.0026


92
V
0.0858
0.0884
0
0.0026


93
N
0.0542
0.0567
0
0.0025


94
S
0.0363
0.0387
0
0.0024


95
V
0.0376
0.0414
0
0.0038


96
G
0.0274
0.0308
0
0.0034


97
Y
0.0124
0.015
0
0.0026


98
E
0.0087
0.0109
0
0.0022


99
V
0.0087
0.0102
0
0.0015


100
F
0.016
0.0212
0
0.0052


101
L
0.0308
0.0414
0
0.0106


102
L
0.0157
0.0226
0
0.0069


103
L
0.0279
0.0376
0
0.0097


104
L
0.0144
0.0212
0
0.0068


105
Q
0.009
0.0128
0
0.0038


106
F
0.0179
0.0274
0
0.0095


107
L
0.0173
0.0279
0
0.0106


108
Y
0.0304
0.0455
0
0.0151


109
S
0.0245
0.0405
0
0.016


110
G
0.0405
0.066
0
0.0255


111
Q
0.0789
0.1292
0
0.0503


112
V
0.1117
0.1732
0
0.0615


113
S
0.1805
0.2602
0
0.0797


114
I
0.2432
0.3263
0
0.0831


115
V
0.1921
0.3939
1
0.2018


116
P
0.1844
0.3806
1
0.1962


117
Q
0.2786
0.4781
1
0.1995


118
K
0.3491
0.5473
1
0.1982


119
H
0.4333
0.6293
1
0.196


120
E
0.3053
0.6293
1
0.324


121
P
0.2255
0.5374
1
0.3119


122
R
0.2167
0.5331
1
0.3164


123
P
0.2786
0.5941
1
0.3155


124
N
0.2748
0.6035
1
0.3287


125
S
0.2333
0.6789
1
0.4456


126
G
0.3005
0.7342
1
0.4337


127
E
0.2531
0.6906
1
0.4375


128
R
0.2255
0.665
1
0.4395


129
G
0.1766
0.6174
1
0.4408


130
S
0.1958
0.6293
1
0.4335


131
W
0.1322
0.5514
1
0.4192


132
H
0.0991
0.5043
1
0.4052


133
T
0.066
0.4458
1
0.3798


134
H
0.0567
0.4245
1
0.3678


135
S
0.0567
0.4203
1
0.3636


136
S
0.0789
0.3535
1
0.2746


137
A
0.0643
0.3263
1
0.262


138
A
0.0478
0.282
1
0.2342


139
V
0.0478
0.2786
1
0.2308


140
D
0.0464
0.2748
0
0.2284


141
L
0.0587
0.1921
0
0.1334


142
A
0.0542
0.1878
0
0.1336


143
L
0.0554
0.1805
0
0.1251


144
D
0.0363
0.1292
0
0.0929


145
T
0.0405
0.1349
0
0.0944


146
L
0.0858
0.1349
0
0.0491


147
A
0.0464
0.0789
0
0.0325


148
A
0.0441
0.0701
0
0.026


149
S
0.0286
0.0464
0
0.0178


150
R
0.0231
0.0376
0
0.0145


151
Y
0.0218
0.0336
0
0.0118


152
F
0.0336
0.0502
0
0.0166


153
G
0.0387
0.0542
0
0.0155


154
V
0.0587
0.0813
0
0.0226


155
E
0.0316
0.0441
0
0.0125


156
Q
0.0259
0.0336
0
0.0077


157
L
0.0425
0.0542
0
0.0117


158
A
0.0414
0.0502
0
0.0088


159
L
0.0316
0.0387
0
0.0071


160
L
0.035
0.0414
0
0.0064


161
T
0.0363
0.0425
0
0.0062


162
Q
0.049
0.0567
0
0.0077


163
K
0.0909
0.1041
0
0.0132


164
Q
0.0526
0.0567
0
0.0041


165
L
0.0858
0.0935
0
0.0077


166
A
0.0813
0.0884
0
0.0071


167
S
0.0514
0.0554
0
0.004


168
M
0.0789
0.0858
0
0.0069


169
V
0.1018
0.106
0
0.0042


170
E
0.115
0.124
0
0.009


171
K
0.1266
0.1322
0
0.0056


172
A
0.0813
0.0858
0
0.0045


173
S
0.0677
0.0744
0
0.0067


174
I
0.0744
0.0789
0
0.0045


175
E
0.0744
0.0813
0
0.0069


176
D
0.1266
0.1349
0
0.0083


177
V
0.1532
0.1667
0
0.0135


178
M
0.1532
0.1667
0
0.0135


179
K
0.1602
0.1732
0
0.013


180
V
0.2209
0.2483
0
0.0274


181
L
0.2167
0.2432
0
0.0265


182
I
0.1532
0.1732
0
0.02


183
A
0.1178
0.1322
0
0.0144


184
S
0.1117
0.1292
0
0.0175


185
R
0.1766
0.1958
0
0.0192


186
K
0.1266
0.1958
0
0.0692


187
Q
0.1266
0.1921
0
0.0655


188
D
0.1844
0.27
0
0.0856


189
M
0.138
0.2167
0
0.0787


190
H
0.0991
0.1635
0
0.0644


191
Q
0.124
0.1958
0
0.0718


192
L
0.1844
0.27
0
0.0856


193
W
0.2602
0.3535
0
0.0933


194
T
0.2963
0.3847
0
0.0884


195
T
0.2041
0.2963
0
0.0922


196
S
0.2333
0.3263
0
0.093


197
S
0.2657
0.3578
0
0.0921


198
H
0.27
0.3578
0
0.0878


199
L
0.1958
0.282
0
0.0862


200
V
0.1635
0.2432
0
0.0797


201
A
0.138
0.2122
0
0.0742


202
K
0.138
0.208
0
0.07


203
S
0.1958
0.282
0
0.0862


204
G
0.1998
0.2913
0
0.0915


205
L
0.2255
0.3184
0
0.0929


206
P
0.1566
0.2385
0
0.0819


207
P
0.2041
0.2333
0
0.0292


208
E
0.1532
0.1805
0
0.0273


209
I
0.115
0.1322
0
0.0172


210
L
0.1732
0.1998
0
0.0266


211
A
0.2432
0.27
0
0.0268


212
K
0.1921
0.2122
0
0.0201


213
H
0.1921
0.2167
0
0.0246


214
L
0.1921
0.2167
0
0.0246


215
P
0.1292
0.1456
0
0.0164


216
I
0.1998
0.2209
0
0.0211


217
D
0.1178
0.1292
0
0.0114


218
V
0.1018
0.1117
0
0.0099


219
V
0.1041
0.115
0
0.0109


220
T
0.1602
0.1766
0
0.0164


221
K
0.1566
0.1698
0
0.0132


222
I
0.1635
0.1732
0
0.0097


223
E
0.1566
0.1667
0
0.0101


224
E
0.1602
0.1667
0
0.0065


225
L
0.2432
0.2483
0
0.0051


226
R
0.1566
0.1602
0
0.0036


227
L
0.2122
0.2209
0
0.0087


228
K
0.2531
0.2558
0
0.0027


229
S
0.3184
0.3225
0
0.0041


230
S
0.3806
0.3806
0
0


231
I
0.3847
0.3847
0
0


232
A
0.3806
0.3806
0
0


233
R
0.4781
0.4781
0
0


234
R
0.4749
0.4749
0
0


235
S
0.3992
0.3992
0
0


236
L
0.4825
0.4825
0
0


237
M
0.4282
0.4282
0
0


238
P
0.4879
0.4879
0
0


239
H
0.5008
0.5008
0
0


240
N
0.4879
0.4879
0
0


241
H
0.4037
0.4037
0
0


242
H
0.4781
0.4781
0
0


243
H
0.4967
0.4967
0
0


244
D
0.5173
0.5173
0
0


245
L
0.5253
0.5253
0
0


246
S
0.442
0.442
0
0


247
V
0.5084
0.5084
0
0


248
A
0.5229
0.5229
0
0


249
Q
0.46
0.46
0
0


250
D
0.4458
0.4458
0
0


251
L
0.4333
0.4333
0
0


252
E
0.4037
0.4037
0
0


253
D
0.3225
0.3225
0
0


254
Q
0.3096
0.3096
0
0


255
K
0.3184
0.3184
0
0


256
I
0.3992
0.3992
0
0


257
R
0.3939
0.3939
0
0


258
R
0.3806
0.3806
0
0


259
M
0.4116
0.4116
0
0


260
R
0.3146
0.3146
0
0


261
R
0.2602
0.2602
0
0


262
A
0.3311
0.3359
0
0.0048


263
L
0.2558
0.2602
0
0.0044


264
D
0.2385
0.2432
0
0.0047


265
S
0.1667
0.1732
0
0.0065


266
S
0.1416
0.1495
0
0.0079


267
D
0.208
0.2167
0
0.0087


268
V
0.2122
0.2255
0
0.0133


269
E
0.2167
0.2292
0
0.0125


270
L
0.1635
0.1732
0
0.0097


271
V
0.1698
0.1844
0
0.0146


272
K
0.1117
0.124
0
0.0123


273
L
0.1292
0.1456
0
0.0164


274
M
0.1998
0.2209
0
0.0211


275
V
0.1998
0.2209
0
0.0211


276
M
0.124
0.138
0
0.014


277
G
0.0965
0.1088
0
0.0123


278
E
0.0514
0.0621
0
0.0107


279
G
0.0771
0.0965
0
0.0194


280
L
0.0425
0.0526
0
0.0101


281
N
0.0554
0.0701
0
0.0147


282
L
0.0526
0.066
0
0.0134


283
D
0.0607
0.0771
0
0.0164


284
E
0.1018
0.1205
0
0.0187


285
S
0.0723
0.1349
0
0.0626


286
L
0.106
0.1805
0
0.0745


287
A
0.1205
0.2041
0
0.0836


288
L
0.1349
0.2209
0
0.086


289
H
0.0935
0.1667
0
0.0732


290
Y
0.0621
0.1178
0
0.0557


291
A
0.106
0.1766
0
0.0706


292
V
0.0832
0.1495
0
0.0663


293
E
0.0935
0.1635
0
0.07


294
S
0.0542
0.1041
0
0.0499


295
S
0.0567
0.1088
0
0.0521


296
S
0.0336
0.066
0
0.0324


297
R
0.0587
0.115
0
0.0563


298
E
0.0607
0.1178
0
0.0571


299
V
0.0858
0.1566
0
0.0708


300
V
0.0991
0.1667
0
0.0676


301
K
0.1041
0.1766
0
0.0725


302
A
0.1292
0.2122
0
0.083


303
L
0.115
0.1921
0
0.0771


304
L
0.1178
0.1921
0
0.0743


305
E
0.0909
0.1602
0
0.0693


306
L
0.1349
0.1602
0
0.0253


307
G
0.1495
0.1732
0
0.0237


308
A
0.1266
0.1495
0
0.0229


309
A
0.1088
0.1322
0
0.0234


310
D
0.1532
0.1766
0
0.0234


311
V
0.2041
0.2333
0
0.0292


312
N
0.2292
0.2657
0
0.0365


313
Y
0.1878
0.2167
0
0.0289


314
P
0.27
0.2963
0
0.0263


315
A
0.2558
0.282
0
0.0262


316
G
0.2122
0.2385
0
0.0263


317
P
0.2602
0.282
0
0.0218


318
A
0.282
0.3053
0
0.0233


319
G
0.2748
0.2963
0
0.0215


320
K
0.2558
0.2748
0
0.019


321
T
0.2432
0.2602
0
0.017


322
P
0.3359
0.3491
0
0.0132


323
L
0.3491
0.363
0
0.0139


324
H
0.3992
0.4116
0
0.0124


325
I
0.3184
0.3311
0
0.0127


326
A
0.3311
0.3399
0
0.0088


327
A
0.2786
0.2865
0
0.0079


328
E
0.1921
0.1998
0
0.0077


329
M
0.1667
0.1667
0
0


330
V
0.1766
0.1766
0
0


331
S
0.1766
0.1766
0
0


332
P
0.1732
0.1732
0
0


333
D
0.1292
0.1292
0
0


334
M
0.1921
0.1921
0
0


335
V
0.2122
0.2122
0
0


336
A
0.2963
0.2963
0
0


337
V
0.2531
0.2531
0
0


338
L
0.282
0.282
0
0


339
L
0.2602
0.2602
0
0


340
D
0.2255
0.2255
0
0


341
H
0.282
0.282
0
0


342
H
0.282
0.282
0
0


343
A
0.1766
0.1766
0
0


344
D
0.1635
0.1635
0
0


345
P
0.2255
0.2255
0
0


346
N
0.1998
0.1998
0
0


347
V
0.2292
0.2292
0
0


348
R
0.2041
0.2041
0
0


349
T
0.1878
0.1878
0
0


350
V
0.2531
0.2531
0
0


351
G
0.2385
0.2432
0
0.0047


352
G
0.1566
0.1602
0
0.0036


353
I
0.1566
0.1602
0
0.0036


354
T
0.1878
0.1921
0
0.0043


355
P
0.1878
0.1921
0
0.0043


356
L
0.0991
0.1041
0
0.005


357
D
0.0607
0.0643
0
0.0036


358
I
0.0542
0.0587
0
0.0045


359
L
0.0542
0.0567
0
0.0025


360
R
0.0554
0.0607
0
0.0053


361
T
0.0701
0.0789
0
0.0088


362
L
0.0414
0.0464
0
0.005


363
T
0.0502
0.0554
0
0.0052


364
S
0.0884
0.1018
0
0.0134


365
D
0.049
0.0554
0
0.0064


366
F
0.0414
0.0478
0
0.0064


367
L
0.066
0.0813
0
0.0153


368
F
0.035
0.0425
0
0.0075


369
K
0.0643
0.0789
0
0.0146


370
G
0.1292
0.1532
0
0.024


371
A
0.1292
0.1532
0
0.024


372
V
0.1292
0.1532
0
0.024


373
P
0.1349
0.1635
0
0.0286


374
G
0.138
0.1635
0
0.0255


375
L
0.0909
0.1088
0
0.0179


376
T
0.0587
0.1088
0
0.0501


377
H
0.0677
0.124
0
0.0563


378
I
0.115
0.1878
0
0.0728


379
E
0.1349
0.2167
0
0.0818


380
P
0.1041
0.1732
0
0.0691


381
N
0.1088
0.1844
0
0.0756


382
K
0.1349
0.2167
0
0.0818


383
L
0.1805
0.2748
0
0.0943


384
R
0.1349
0.2167
0
0.0818


385
L
0.1205
0.1958
0
0.0753


386
S
0.1602
0.2432
0
0.083


387
L
0.1088
0.1805
0
0.0717


388
E
0.1178
0.1844
0
0.0666


389
L
0.1921
0.2786
0
0.0865


390
V
0.1921
0.2786
0
0.0865


391
Q
0.1732
0.2558
0
0.0826


392
S
0.1732
0.2558
0
0.0826


393
A
0.1766
0.2602
0
0.0836


394
A
0.2558
0.3456
0
0.0898


395
M
0.2602
0.3491
0
0.0889


396
V
0.3311
0.4245
0
0.0934


397
I
0.4037
0.4245
0
0.0208


398
S
0.4879
0.5126
0
0.0247


399
R
0.4781
0.5084
0
0.0303


400
E
0.5412
0.5667
0
0.0255


401
E
0.6035
0.6334
0
0.0299


402
G
0.5941
0.6219
0
0.0278


403
N
0.5941
0.6219
0
0.0278


404
N
0.6255
0.6442
0
0.0187


405
S
0.6442
0.665
0
0.0208


406
N
0.6219
0.6412
0
0.0193


407
N
0.6174
0.6374
0
0.02


408
Q
0.6984
0.7192
0
0.0208


409
N
0.6984
0.7192
0
0.0208


410
N
0.6827
0.6984
0
0.0157


411
D
0.6756
0.6906
0
0.015


412
N
0.6789
0.6944
0
0.0155


413
N
0.687
0.7034
0
0.0164


414
T
0.6906
0.7079
0
0.0173


415
G
0.6906
0.7034
0
0.0128


416
I
0.6906
0.7034
0
0.0128


417
Y
0.6827
0.6944
0
0.0117


418
P
0.687
0.6944
0
0.0074


419
H
0.6789
0.6827
0
0.0038


420
M
0.6756
0.6756
0
0


421
N
0.6681
0.6715
0
0.0034


422
E
0.6604
0.6604
0
0


423
E
0.6604
0.6604
0
0


424
H
0.6604
0.6604
0
0


425
N
0.6604
0.6604
0
0


426
S
0.6293
0.6293
0
0


427
G
0.6789
0.6789
0
0


428
S
0.7275
0.7275
0
0


429
S
0.7111
0.7111
0
0


430
G
0.6715
0.6715
0
0


431
G
0.6681
0.6681
0
0


432
S
0.6219
0.6219
0
0


433
N
0.5846
0.5846
0
0


434
N
0.5762
0.5762
0
0


435
N
0.5374
0.5374
0
0


436
L
0.5412
0.5412
0
0


437
D
0.5253
0.5253
0
0


438
S
0.5331
0.5331
0
0


439
R
0.5296
0.5296
0
0


440
L
0.5253
0.5253
0
0


441
V
0.5623
0.5623
0
0


442
Y
0.5514
0.5514
0
0


443
L
0.5514
0.5514
0
0


444
N
0.5802
0.5802
0
0


445
L
0.5802
0.5802
0
0


446
G
0.59
0.59
0
0


447
A
0.6334
0.6334
0
0


448
G
0.6474
0.6474
0
0


449
T
0.6474
0.6474
0
0


450
G
0.6412
0.6412
0
0


451
Q
0.6756
0.6756
0
0


452
M
0.7079
0.7079
0
0


453
G
0.7573
0.7573
0
0


454
P
0.7951
0.7951
0
0


455
G
0.8242
0.8242
0
0


456
R
0.8626
0.8626
0
0


457
D
0.8713
0.8713
0
0


458
Q
0.8857
0.8857
0
0


459
G
0.8677
0.8677
0
0


460
D
0.8746
0.8746
0
0


461
D
0.8886
0.8886
0
0


462
H
0.8746
0.8746
0
0


463
N
0.8945
0.8945
0
0


464
S
0.904
0.904
0
0


465
Q
0.8886
0.8886
0
0


466
R
0.8945
0.8945
0
0


467
E
0.9141
0.9141
0
0


468
G
0.9103
0.9103
0
0


469
M
0.9103
0.9103
0
0


470
S
0.9162
0.9162
0
0


471
R
0.9141
0.9141
0
0


472
H
0.904
0.904
0
0


473
H
0.8595
0.8595
0
0


474
H
0.865
0.865
0
0


475
H
0.865
0.865
0
0


476
H
0.8521
0.8521
0
0


477
Q
0.8556
0.8556
0
0


478
D
0.8713
0.8713
0
0


479
P
0.8781
0.8781
0
0


480
S
0.9103
0.9103
0
0


481
T
0.8457
0.8457
0
0


482
M
0.865
0.865
0
0


483
Y
0.8857
0.8857
0
0


484
H
0.904
0.904
0
0


485
H
0.918
0.918
0
0


486
H
0.9316
0.9316
0
0


487
H
0.9466
0.9466
0
0


488
Q
0.9466
0.9466
0
0


489
H
0.9653
0.9653
0
0


490
H
0.9684
0.9684
0
0


491
F
0.976
0.976
0
0


>AtNPR6







(AT3G57130)







1
M
0.8521
0.8521
0
0


2
S
0.7817
0.7817
0
0


3
N
0.7388
0.7388
0
0


4
T
0.6255
0.6255
0
0


5
F
0.59
0.59
0
0


6
E
0.4651
0.4651
0
0


7
E
0.3399
0.3399
0
0


8
S
0.3005
0.3053
0
0.0048


9
L
0.1805
0.1844
0
0.0039


10
K
0.0935
0.0965
0
0.003


11
S
0.0405
0.0425
0
0.002


12
M
0.0526
0.0554
0
0.0028


13
S
0.0542
0.0587
0
0.0045


14
L
0.0567
0.0621
0
0.0054


15
D
0.0464
0.0514
0
0.005


16
Y
0.0441
0.0502
0
0.0061


17
L
0.0387
0.0425
0
0.0038


18
N
0.0336
0.0387
0
0.0051


19
L
0.02
0.0231
0
0.0031


20
L
0.0363
0.0414
0
0.0051


21
I
0.0167
0.02
0
0.0033


22
N
0.0167
0.02
0
0.0033


23
G
0.0118
0.0141
0
0.0023


24
Q
0.0128
0.0157
0
0.0029


25
A
0.0252
0.0304
0
0.0052


26
F
0.0226
0.0279
0
0.0053


27
S
0.02
0.0268
0
0.0068


28
D
0.02
0.0274
0
0.0074


29
V
0.0173
0.0252
0
0.0079


30
T
0.0252
0.0336
0
0.0084


31
F
0.0387
0.0526
0
0.0139


32
S
0.0621
0.0909
0
0.0288


33
V
0.0327
0.0858
0
0.0531


34
E
0.02
0.0526
0
0.0326


35
G
0.0099
0.0308
0
0.0209


36
R
0.0109
0.0327
0
0.0218


37
L
0.0212
0.0554
0
0.0342


38
V
0.0212
0.0567
0
0.0355


39
H
0.02
0.0554
0
0.0354


40
A
0.0226
0.0621
0
0.0395


41
H
0.0124
0.0395
0
0.0271


42
R
0.0173
0.0514
0
0.0341


43
S
0.0173
0.0526
0
0.0353


44
I
0.0327
0.0935
0
0.0608


45
L
0.0173
0.0542
0
0.0369


46
A
0.0097
0.0327
0
0.023


47
A
0.0055
0.0336
0
0.0281


48
R
0.0116
0.066
0
0.0544


49
S
0.0212
0.106
0
0.0848


50
L
0.0259
0.1178
0
0.0919


51
F
0.0395
0.1667
0
0.1272


52
F
0.0441
0.1667
0
0.1226


53
R
0.049
0.1878
0
0.1388


54
K
0.106
0.2167
0
0.1107


55
F
0.1566
0.2913
0
0.1347


56
F
0.1921
0.3359
0
0.1438


57
S
0.2292
0.3717
0
0.1425


58
E
0.282
0.4245
0
0.1425


59
S
0.2531
0.3939
0
0.1408


60
D
0.2531
0.3992
0
0.1461


61
P
0.3359
0.4781
0
0.1422


62
S
0.4116
0.5514
0
0.1398


63
Q
0.4918
0.6255
0
0.1337


64
P
0.4879
0.6219
0
0.134


65
G
0.4879
0.6219
0
0.134


66
A
0.5253
0.6557
0
0.1304


67
E
0.5992
0.7232
0
0.124


68
P
0.6557
0.6906
0
0.0349


69
A
0.6079
0.6474
0
0.0395


70
N
0.5711
0.6174
0
0.0463


71
Q
0.5008
0.5374
0
0.0366


72
T
0.4703
0.5126
0
0.0423


73
G
0.4749
0.5173
0
0.0424


74
S
0.3939
0.4333
0
0.0394


75
G
0.2786
0.3184
0
0.0398


76
A
0.3096
0.3399
0
0.0303


77
R
0.27
0.2963
0
0.0263


78
A
0.2602
0.2865
0
0.0263


79
A
0.2333
0.2602
0
0.0269


80
A
0.1998
0.2255
0
0.0257


81
V
0.2041
0.2209
0
0.0168


82
G
0.1266
0.138
0
0.0114


83
G
0.1349
0.1495
0
0.0146


84
V
0.0935
0.1018
0
0.0083


85
I
0.0542
0.0607
0
0.0065


86
P
0.0336
0.0387
0
0.0051


87
V
0.0279
0.0304
0
0.0025


88
N
0.016
0.0179
0
0.0019


89
S
0.0121
0.0137
0
0.0016


90
V
0.0167
0.02
0
0.0033


91
G
0.0102
0.0124
0
0.0022


92
Y
0.0094
0.0118
0
0.0024


93
E
0.0059
0.0069
0
0.001


94
V
0.0059
0.0069
0
0.001


95
F
0.0083
0.0099
0
0.0016


96
L
0.016
0.0231
0
0.0071


97
L
0.0084
0.0118
0
0.0034


98
L
0.0144
0.0212
0
0.0068


99
L
0.0081
0.0102
0
0.0021


100
Q
0.0055
0.0075
0
0.002


101
F
0.0097
0.0144
0
0.0047


102
L
0.0086
0.0141
0
0.0055


103
Y
0.015
0.0259
0
0.0109


104
S
0.0118
0.0226
0
0.0108


105
G
0.0212
0.0387
0
0.0175


106
Q
0.0464
0.0813
0
0.0349


107
V
0.0701
0.1205
0
0.0504


108
S
0.1088
0.1732
0
0.0644


109
I
0.1635
0.2432
0
0.0797


110
V
0.1292
0.3184
1
0.1892


111
P
0.1205
0.3053
1
0.1848


112
H
0.2041
0.4078
1
0.2037


113
K
0.282
0.4879
1
0.2059


114
H
0.3668
0.5667
1
0.1999


115
E
0.2385
0.5667
1
0.3282


116
P
0.1667
0.4749
1
0.3082


117
R
0.1566
0.4703
1
0.3137


118
S
0.2041
0.5253
1
0.3212


119
N
0.1958
0.5331
1
0.3373


120
S
0.1635
0.6124
1
0.4489


121
G
0.2122
0.665
1
0.4528


122
D
0.1667
0.6174
1
0.4507


123
R
0.1602
0.5992
1
0.439


124
G
0.1205
0.5473
1
0.4268


125
S
0.1349
0.5514
1
0.4165


126
W
0.0789
0.4703
1
0.3914


127
H
0.066
0.4379
1
0.3719


128
T
0.0441
0.3717
1
0.3276


129
H
0.0441
0.3762
1
0.3321


130
S
0.0274
0.3005
1
0.2731


131
T
0.0376
0.2333
1
0.1957


132
A
0.0308
0.2041
0
0.1733


133
A
0.0245
0.1732
0
0.1487


134
V
0.0179
0.1495
0
0.1316


135
D
0.0179
0.1456
0
0.1277


136
L
0.0245
0.0909
0
0.0664


137
S
0.0218
0.0909
0
0.0691


138
L
0.0231
0.0858
0
0.0627


139
D
0.0137
0.0554
0
0.0417


140
I
0.0157
0.0587
0
0.043


141
L
0.0376
0.0607
0
0.0231


142
A
0.0194
0.0327
0
0.0133


143
A
0.0179
0.0304
0
0.0125


144
A
0.0109
0.0179
0
0.007


145
R
0.0084
0.0137
0
0.0053


146
Y
0.0083
0.0131
0
0.0048


147
F
0.0141
0.0231
0
0.009


148
G
0.0131
0.0218
0
0.0087


149
V
0.0259
0.0376
0
0.0117


150
E
0.0124
0.0182
0
0.0058


151
Q
0.0212
0.0304
0
0.0092


152
L
0.0363
0.049
0
0.0127


153
A
0.0336
0.0455
0
0.0119


154
L
0.0268
0.0327
0
0.0059


155
L
0.0363
0.0441
0
0.0078


156
T
0.0387
0.0455
0
0.0068


157
Q
0.0514
0.0607
0
0.0093


158
K
0.1018
0.1117
0
0.0099


159
H
0.0554
0.0621
0
0.0067


160
L
0.0935
0.1018
0
0.0083


161
T
0.0858
0.0935
0
0.0077


162
S
0.0542
0.0567
0
0.0025


163
M
0.0832
0.0909
0
0.0077


164
V
0.106
0.1117
0
0.0057


165
E
0.124
0.1292
0
0.0052


166
K
0.1349
0.1416
0
0.0067


167
A
0.0858
0.0909
0
0.0051


168
S
0.0701
0.0771
0
0.007


169
I
0.0771
0.0813
0
0.0042


170
E
0.0744
0.0789
0
0.0045


171
D
0.1266
0.1349
0
0.0083


172
V
0.1292
0.1416
0
0.0124


173
M
0.1266
0.138
0
0.0114


174
K
0.1322
0.1456
0
0.0134


175
V
0.1921
0.2122
0
0.0201


176
L
0.1805
0.2041
0
0.0236


177
I
0.1205
0.138
0
0.0175


178
A
0.0858
0.1018
0
0.016


179
S
0.0832
0.0991
0
0.0159


180
R
0.1416
0.1602
0
0.0186


181
K
0.0991
0.1602
0
0.0611


182
Q
0.0991
0.1566
0
0.0575


183
D
0.0909
0.1456
0
0.0547


184
M
0.0621
0.106
0
0.0439


185
H
0.0376
0.0621
0
0.0245


186
Q
0.0455
0.0789
0
0.0334


187
L
0.0744
0.124
0
0.0496


188
W
0.1266
0.1921
0
0.0655


189
T
0.1495
0.2209
0
0.0714


190
T
0.0858
0.1416
0
0.0558


191
S
0.1041
0.1635
0
0.0594


192
S
0.106
0.1698
0
0.0638


193
Y
0.1117
0.1732
0
0.0615


194
L
0.066
0.115
0
0.049


195
I
0.0502
0.0884
0
0.0382


196
A
0.0414
0.0701
0
0.0287


197
K
0.0414
0.0701
0
0.0287


198
S
0.066
0.1117
0
0.0457


199
G
0.066
0.115
0
0.049


200
L
0.0813
0.1349
0
0.0536


201
P
0.0464
0.0813
0
0.0349


202
Q
0.0701
0.0832
0
0.0131


203
E
0.0395
0.0478
0
0.0083


204
I
0.0478
0.0554
0
0.0076


205
L
0.0677
0.0813
0
0.0136


206
A
0.1205
0.1416
0
0.0211


207
K
0.0832
0.1018
0
0.0186


208
H
0.0884
0.106
0
0.0176


209
L
0.0935
0.1088
0
0.0153


210
P
0.0526
0.0621
0
0.0095


211
I
0.0991
0.1117
0
0.0126


212
E
0.049
0.0567
0
0.0077


213
L
0.049
0.0554
0
0.0064


214
V
0.0502
0.0554
0
0.0052


215
A
0.0884
0.1018
0
0.0134


216
K
0.124
0.1349
0
0.0109


217
I
0.1732
0.1844
0
0.0112


218
E
0.1117
0.1205
0
0.0088


219
E
0.115
0.1205
0
0.0055


220
L
0.1921
0.1958
0
0.0037


221
R
0.1117
0.1178
0
0.0061


222
L
0.1667
0.1732
0
0.0065


223
K
0.1878
0.1958
0
0.008


224
S
0.2748
0.2786
0
0.0038


225
S
0.3399
0.3399
0
0


226
M
0.3717
0.3717
0
0


227
P
0.3668
0.3668
0
0


228
L
0.3847
0.3847
0
0


229
R
0.3762
0.3762
0
0


230
S
0.3762
0.3762
0
0


231
L
0.46
0.46
0
0


232
M
0.3847
0.3847
0
0


233
P
0.4651
0.4651
0
0


234
H
0.3847
0.3847
0
0


235
H
0.3762
0.3762
0
0


236
H
0.3668
0.3668
0
0


237
D
0.4037
0.4037
0
0


238
L
0.3762
0.3762
0
0


239
T
0.3847
0.3847
0
0


240
S
0.3806
0.3806
0
0


241
T
0.3717
0.3717
0
0


242
L
0.4245
0.4245
0
0


243
D
0.4333
0.4333
0
0


244
L
0.3885
0.3885
0
0


245
E
0.3668
0.3668
0
0


246
D
0.2865
0.2865
0
0


247
Q
0.2865
0.2865
0
0


248
K
0.2913
0.2913
0
0


249
I
0.3762
0.3762
0
0


250
R
0.3717
0.3717
0
0


251
R
0.3005
0.3005
0
0


252
M
0.3096
0.3096
0
0


253
R
0.3005
0.3005
0
0


254
R
0.2385
0.2432
0
0.0047


255
A
0.3096
0.3146
0
0.005


256
L
0.2255
0.2292
0
0.0037


257
D
0.2041
0.2122
0
0.0081


258
S
0.138
0.1456
0
0.0076


259
S
0.1178
0.124
0
0.0062


260
D
0.1732
0.1805
0
0.0073


261
V
0.1766
0.1844
0
0.0078


262
E
0.1766
0.1921
0
0.0155


263
L
0.1266
0.138
0
0.0114


264
V
0.1322
0.1456
0
0.0134


265
K
0.0813
0.0935
0
0.0122


266
L
0.0991
0.1117
0
0.0126


267
M
0.1635
0.1805
0
0.017


268
V
0.1635
0.1766
0
0.0131


269
M
0.0935
0.106
0
0.0125


270
G
0.0677
0.0813
0
0.0136


271
E
0.0395
0.0464
0
0.0069


272
G
0.0327
0.0395
0
0.0068


273
L
0.0167
0.0212
0
0.0045


274
N
0.0245
0.0297
0
0.0052


275
L
0.0226
0.0274
0
0.0048


276
D
0.0268
0.0316
0
0.0048


277
E
0.0455
0.0526
0
0.0071


278
S
0.035
0.0621
0
0.0271


279
L
0.0514
0.0935
0
0.0421


280
A
0.0607
0.1088
0
0.0481


281
L
0.0701
0.1205
0
0.0504


282
I
0.0464
0.0813
0
0.0349


283
Y
0.0304
0.0526
0
0.0222


284
A
0.0514
0.0909
0
0.0395


285
V
0.0405
0.0701
0
0.0296


286
E
0.0441
0.0771
0
0.033


287
N
0.0252
0.0455
0
0.0203


288
S
0.0259
0.0464
0
0.0205


289
S
0.0131
0.0274
0
0.0143


290
R
0.0268
0.0478
0
0.021


291
E
0.0274
0.049
0
0.0216


292
V
0.0387
0.0677
0
0.029


293
V
0.0744
0.1292
0
0.0548


294
K
0.0789
0.1349
0
0.056


295
A
0.0991
0.1667
0
0.0676


296
L
0.0884
0.1495
0
0.0611


297
L
0.0909
0.1532
0
0.0623


298
E
0.0677
0.124
0
0.0563


299
L
0.1018
0.1205
0
0.0187


300
G
0.115
0.1349
0
0.0199


301
A
0.115
0.1349
0
0.0199


302
A
0.0991
0.1205
0
0.0214


303
D
0.138
0.1667
0
0.0287


304
V
0.1921
0.2255
0
0.0334


305
N
0.1732
0.1998
0
0.0266


306
Y
0.1456
0.1667
0
0.0211


307
P
0.2167
0.2483
0
0.0316


308
A
0.2122
0.2385
0
0.0263


309
G
0.1732
0.1921
0
0.0189


310
P
0.2209
0.2432
0
0.0223


311
T
0.2483
0.27
0
0.0217


312
G
0.2432
0.2602
0
0.017


313
K
0.2292
0.2432
0
0.014


314
T
0.2167
0.2333
0
0.0166


315
A
0.3184
0.3311
0
0.0127


316
L
0.3311
0.3456
0
0.0145


317
H
0.3847
0.3939
0
0.0092


318
I
0.3053
0.3146
0
0.0093


319
A
0.3184
0.3263
0
0.0079


320
A
0.2657
0.27
0
0.0043


321
E
0.1805
0.1844
0
0.0039


322
M
0.1266
0.1292
0
0.0026


323
V
0.138
0.138
0
0


324
S
0.138
0.138
0
0


325
P
0.1349
0.1349
0
0


326
D
0.1349
0.1349
0
0


327
M
0.1998
0.1998
0
0


328
V
0.2209
0.2209
0
0


329
A
0.3096
0.3096
0
0


330
V
0.2602
0.2602
0
0


331
L
0.3096
0.3096
0
0


332
L
0.282
0.282
0
0


333
D
0.2483
0.2483
0
0


334
H
0.3096
0.3096
0
0


335
H
0.3096
0.3096
0
0


336
A
0.1958
0.1958
0
0


337
D
0.1805
0.1805
0
0


338
P
0.2483
0.2483
0
0


339
N
0.2209
0.2209
0
0


340
V
0.2558
0.2558
0
0


341
Q
0.2255
0.2255
0
0


342
T
0.208
0.208
0
0


343
V
0.2748
0.2748
0
0


344
D
0.2602
0.2602
0
0


345
G
0.1698
0.1732
0
0.0034


346
I
0.1698
0.1732
0
0.0034


347
T
0.2041
0.208
0
0.0039


348
P
0.2041
0.208
0
0.0039


349
L
0.1117
0.115
0
0.0033


350
D
0.0677
0.0723
0
0.0046


351
I
0.0621
0.066
0
0.0039


352
L
0.0542
0.0567
0
0.0025


353
R
0.0554
0.0607
0
0.0053


354
T
0.0723
0.0813
0
0.009


355
L
0.035
0.0387
0
0.0037


356
T
0.0425
0.0478
0
0.0053


357
S
0.0771
0.0858
0
0.0087


358
D
0.0414
0.0478
0
0.0064


359
F
0.0327
0.0395
0
0.0068


360
L
0.0542
0.0643
0
0.0101


361
F
0.0279
0.0327
0
0.0048


362
K
0.0514
0.0621
0
0.0107


363
G
0.1088
0.1292
0
0.0204


364
A
0.1088
0.1292
0
0.0204


365
I
0.1088
0.1292
0
0.0204


366
P
0.115
0.1349
0
0.0199


367
G
0.115
0.1349
0
0.0199


368
L
0.0701
0.0858
0
0.0157


369
T
0.0455
0.0832
0
0.0377


370
H
0.049
0.0909
0
0.0419


371
I
0.0884
0.1495
0
0.0611


372
E
0.0935
0.1566
0
0.0631


373
P
0.0643
0.115
0
0.0507


374
N
0.0677
0.124
0
0.0563


375
K
0.0909
0.1495
0
0.0586


376
L
0.138
0.2167
0
0.0787


377
R
0.0991
0.1667
0
0.0676


378
L
0.066
0.1178
0
0.0518


379
S
0.0935
0.1602
0
0.0667


380
L
0.0587
0.106
0
0.0473


381
E
0.0643
0.1117
0
0.0474


382
L
0.1205
0.1878
0
0.0673


383
V
0.1178
0.1844
0
0.0666


384
Q
0.1018
0.1635
0
0.0617


385
S
0.1041
0.1667
0
0.0626


386
A
0.106
0.1698
0
0.0638


387
A
0.1698
0.2531
0
0.0833


388
L
0.1732
0.2602
0
0.087


389
V
0.2483
0.3359
0
0.0876


390
I
0.3146
0.3399
0
0.0253


391
S
0.3992
0.4245
0
0.0253


392
R
0.3885
0.4149
0
0.0264


393
E
0.4703
0.4967
0
0.0264


394
E
0.5296
0.5549
0
0.0253


395
G
0.4918
0.5173
0
0.0255


396
N
0.4149
0.442
0
0.0271


397
N
0.3806
0.4078
0
0.0272


398
N
0.4333
0.4556
0
0.0223


399
S
0.5008
0.5173
0
0.0165


400
N
0.5229
0.5374
0
0.0145


401
D
0.59
0.6079
0
0.0179


402
N
0.59
0.6079
0
0.0179


403
N
0.5941
0.6174
0
0.0233


404
T
0.5846
0.6035
0
0.0189


405
M
0.5762
0.5941
0
0.0179


406
I
0.5802
0.5941
0
0.0139


407
Y
0.5802
0.59
0
0.0098


408
P
0.5802
0.5941
0
0.0139


409
R
0.5846
0.5941
0
0.0095


410
M
0.5374
0.5473
0
0.0099


411
K
0.5374
0.5473
0
0.0099


412
D
0.5374
0.5412
0
0.0038


413
E
0.5374
0.5412
0
0.0038


414
H
0.4918
0.4918
0
0


415
T
0.46
0.46
0
0


416
S
0.4333
0.4333
0
0


417
G
0.4513
0.4513
0
0


418
S
0.5229
0.5229
0
0


419
S
0.4379
0.4379
0
0


420
L
0.4379
0.4379
0
0


421
D
0.4458
0.4458
0
0


422
S
0.4458
0.4458
0
0


423
R
0.4458
0.4458
0
0


424
L
0.4458
0.4458
0
0


425
V
0.4458
0.4458
0
0


426
Y
0.3939
0.3939
0
0


427
L
0.3939
0.3939
0
0


428
N
0.3939
0.3939
0
0


429
L
0.3847
0.3847
0
0


430
G
0.3847
0.3847
0
0


431
A
0.4333
0.4333
0
0


432
T
0.4379
0.4379
0
0


433
N
0.4703
0.4703
0
0


434
R
0.4749
0.4749
0
0


435
D
0.5331
0.5331
0
0


436
I
0.5623
0.5623
0
0


437
G
0.5846
0.5846
0
0


438
D
0.6412
0.6412
0
0


439
D
0.5762
0.5762
0
0


440
N
0.6374
0.6374
0
0


441
S
0.6334
0.6334
0
0


442
N
0.6474
0.6474
0
0


443
Q
0.6516
0.6516
0
0


444
R
0.6557
0.6557
0
0


445
E
0.6412
0.6412
0
0


446
G
0.665
0.665
0
0


447
M
0.7232
0.7232
0
0


448
N
0.7192
0.7192
0
0


449
L
0.7034
0.7034
0
0


450
H
0.6557
0.6557
0
0


451
H
0.6604
0.6604
0
0


452
H
0.6557
0.6557
0
0


453
H
0.6557
0.6557
0
0


454
H
0.6334
0.6334
0
0


455
D
0.6334
0.6334
0
0


456
P
0.6374
0.6374
0
0


457
S
0.5514
0.5514
0
0


458
T
0.6255
0.6255
0
0


459
M
0.6557
0.6557
0
0


460
Y
0.7458
0.7458
0
0


461
H
0.7772
0.7772
0
0


462
H
0.82
0.82
0
0


463
H
0.8488
0.8488
0
0


464
H
0.8746
0.8746
0
0


465
H
0.9009
0.9009
0
0


466
H
0.9299
0.9299
0
0


467
F
0.9369
0.9369
0
0
















TABLE 4







Map of NPR1 Mutations. Related to FIGS. 2A-2I. List of gain/loss of function point mutations and


their alleles found in previously published forward and reverse genetic screens of AtNPR1.











AA position
WT AA
Mutated AA
Mutant name
Reference














1
M





2
D


3
T


4
T


5
I


6
D


7
G


8
F


9
A


10
D


11
S
A/D
S11/15A/D
Spoel et al. 2009


12
Y


13
E


14
I


15
S
A/D
S11/15A/D
Spoel et al. 2009


16
S


17
T


18
S


19
F


20
V


21
A


22
T


23
D


24
N


25
T


26
D


27
S


28
S


29
I


30
V


31
Y


32
L


33
A


34
A


35
E


36
Q


37
V


38
L


39
T


40
G


41
P


42
D


43
V


44
S


45
A


46
L


47
Q


48
L


49
L


50
S


51
N


52
S


53
F


54
E


55
S
A/D
S55/59A/D
Saleh et al. 2015


56
V


57
F


58
D


59
S
A/D
S55/59A/D
Saleh et al. 2015


60
P


61
D


62
D


63
F


64
Y
N
npr1-58
Canet et al. 2010


65
S


66
D


67
A


68
K


69
L


70
V


71
L


72
S


73
D


74
G


75
R


76
E


77
V


78
S


79
F


80
H
Y/A
npr1-44, H80A
Canet et al. 2010, Rochon et al. 2006


81
R
A
R81A
Rochon et al. 2006


82
C
A
C82A
Mou et al. 2003, Rochon et al. 2006


83
V
A
V83A
Rochon et al. 2006


84
L
A
L84A
Rochon et al. 2006


85
S


86
A


87
R
A
R87A
Rochon et al. 2006


88
S
A
S88A
Rochon et al. 2006


89
S
A
S89A
Rochon et al. 2006


90
F
A
F90A
Rochon et al. 2006


91
F
A
F91A
Rochon et al. 2006


92
K


93
S


94
A


95
L


96
A


97
A


98
A


99
K


100
K


101
E


102
K


103
D


104
S


105
N


106
N


107
T


108
A


109
A


110
V


111
K


112
L


113
E


114
L


115
K


116
E


117
I


118
A


119
K


120
D


121
Y


122
E


123
V


124
G


125
F


126
D


127
S


128
V


129
V


130
T


131
V


132
L


133
A


134
Y


135
V


136
Y


137
S


138
S


139
R


140
V


141
R


142
P


143
P


144
P


145
K


146
G


147
V


148
S


149
E


150
C
Y/A
rdr1, npr1-2
This paper, Cao et al. 1997


151
A


152
D


153
E


154
N


155
C
Y/A
rdr1, npr1-35
This paper, Canet et al. 2010


156
C
A
rdr1, C156A
This paper, Tada et al. 2008


157
H


158
V


159
A


160
C
A
rdr1
This paper


161
R


162
P
frame shift
nim1-1
Ryals et al. 1997


163
A


164
V


165
D


166
F


167
M


168
L


169
E


170
V


171
L
frame shift
nim1-3
Ryals et al. 1997


172
Y


173
L


174
A


175
F


176
I


177
F


178
K


179
I


180
P


181
E


182
L


183
I


184
T


185
L


186
Y


187
Q


188
R


189
H


190
L


191
L


192
D


193
V


194
V


195
D


196
K


197
V


198
V


199
I


200
E


201
D


202
T


203
L


204
V


205
I


206
L


207
K


208
L


209
A


210
N


211
I


212
C


213
G


214
K


215
A


216
C
A
C216A
Mou et al. 2003


217
M


218
K


219
L


220
L


221
D


222
R


223
C


224
K


225
E


226
I


227
I


228
V


229
K


230
S


231
N


232
V


233
D


234
M


235
V


236
S


237
L


238
E


239
K


240
S


241
L


242
P


243
E


244
E


245
L


246
V


247
K


248
E


249
I


250
I


251
D


252
R


253
R


254
K


255
E


256
L


257
G


258
L


259
E


260
V


261
P


262
K


263
V


264
K


265
K


266
H


267
V


268
S


269
N


270
V


271
H


272
K


273
A


274
L
F
npr1-50
Canet et al. 2010


275
D


276
S


277
D


278
D


279
I


280
E


281
L


282
V


283
K


284
L


285
L


286
L


287
K


288
E
K
npr1-41
Canet et al. 2010


289
D


290
H


291
T


292
N


293
L


294
D


295
D


296
A


297
C


298
A


299
L


300
H
Y
nim1-2
Ryals et al. 1997


301
F


302
A


303
V


304
A


305
Y


306
C
Y
npr1-40
Canet et al. 2010


307
N


308
V


309
K


310
T


311
A


312
T


313
D


314
L


315
L


316
K


317
L


318
D


319
L


320
A


321
D


322
V


323
N


324
H


325
R


326
N


327
P


328
R


329
G


330
Y


331
T


332
V


333
L


334
H
Y
npr1-1
Cao et al. 1997


335
V


336
A


337
A


338
M


339
R


340
K


341
E


342
P
S
npr1-5, npr1-60
Shah et al. 1999, Canet et al. 2010


343
Q
STOP
npr1-53
Canet et al. 2010


344
L


345
I
A
sim3
Saleh et al. 2015


346
L
A
sim3
Saleh et al. 2015


347
S


348
L
A
sim3
Saleh et al. 2015


349
L


350
E


351
K


352
G


353
A


354
S


355
A


356
S


357
E


358
A


359
T


360
L


361
E


362
G


363
R


364
T


365
A


366
L


367
M


368
I


369
A


370
K


371
Q
STOP
npr1-45
Canet et al. 2010


372
A


373
T
A
T373A
Lee et al. 2015


374
M


375
A


376
V


377
E


378
C
A
rdr2
This paper


379
N


380
N


381
I


382
P


383
E


384
Q
STOP
npr1-21
Canet et al. 2010


385
C
A
rdr2
This paper


386
K


387
H


388
S


389
L


390
K


391
G


392
R


393
L


394
C
A
rdr2
This paper


395
V


396
E


397
I


398
L


399
E


400
Q
STOP
npr1-4
Cao et al. 1997


401
E


402
D


403
K


404
R


405
E


406
Q


407
I


408
P


409
R


410
D


411
V


412
P


413
P


414
S


415
F


416
A


417
V


418
A


419
A


420
D


421
E


422
L


423
K


424
M


425
T


426
L


427
L


428
D
N
npr1-27
Canet et al. 2010


429
L


430
E


431
N


432
R
K/Q
nim1-4, nim1-5, npr1-32,
Ryals et al. 1997, Canet et al. 2010,





npr1-33, npr1-51, R432Q
Ding et al 2018


433
V


434
A


435
L


436
A


437
Q


438
R


439
L


440
F


441
P


442
T


443
E
K
npr1-25
Canet et al. 2010


444
A


445
Q


446
A


447
A


448
M


449
E
K
npr1-31, npr1-36
Canet et al. 2010


450
I


451
A
V
npr1-30
Canet et al. 2010


452
E


453
M


454
K


455
G


456
T


457
C


458
E


459
F


460
I


461
V


462
T


463
S


464
L


465
E


466
P


467
D


468
R


469
L


470
T


471
G


472
T


473
K


474
R


475
T


476
S


477
P


478
G


479
V


480
K


481
I


482
A


483
P


484
F


485
R


486
I


487
L


488
E


489
E


490
H


491
Q
STOP
npr1-3, npr1-37, npr1-49,
Cao et al. 1997, Ryals et al. 1997,





npr1-55, nim1-6
Canet et al. 2010


492
S


493
R
K
npr1-38
Canet et al. 2010


494
L


495
K


496
A
P
npr1-56
Canet et al. 2010


497
L
F
npr1-24, npr1-46, npr1-47
Canet et al. 2010


498
S


499
K


500
T


501
V
M
npr1-20
Canet et al. 2010


502
E


503
L


504
G
E
npr1-42
Canet et al. 2010


505
K


506
R


507
F
S
F507S
Maier et al. 2011


508
F
S
F508S
Maier et al. 2011


509
P


510
R


511
C
A
rdr3
This paper


512
S
L
npr1-39
Canet et al. 2010


513
A


514
V


515
L
F
npr1-48
Canet et al. 2010


516
D


517
Q


518
I


519
M


520
N


521
C
A/S
rdr3, C521S
This paper,






Rochon et al. 2006,






Wu et al. 2012


522
E


523
D


524
L


525
T


526
Q
STOP
npr1-34
Canet et al. 2010


527
L


528
A


529
C
A/S
rdr3, C529S
This paper,






Rochon et al. 2006,






Wu et al. 2012


530
G


531
E


532
D


533
D


534
T


535
A


536
E


537
K


538
R
STOP
npr1-28
Canet et al. 2010


539
L


540
Q


541
K
Q
nls
Kinkema et al. 2000


542
K
Q
nls
Kinkema et al. 2000


543
Q


544
R
K/G
npr1-22, nls
Kinkema et al. 2000,






Canet et al. 2010


545
Y


546
M


547
E


548
I


549
Q


550
E


551
T


552
L


553
K
Q
nls
Kinkema et al. 2000


554
K
Q
nls
Kinkema et al. 2000


555
A


556
F


557
S


558
E


559
D


560
N


561
L


562
E


563
L


564
G


565
N


566
S


567
S


568
L


569
T


570
D


571
S


572
T


573
S


574
S


575
T


576
S


577
K


578
S


579
T


580
G


581
G


582
K


583
R


584
S


585
N


586
R


587
K


588
L


589
S
A
S589A
Lee et al. 2015


590
H


591
R


592
R


593
R









REFERENCES



  • 1) Canet J V et al. (2010). Structure-function analysis of npr1 alleles in Arabidopsis reveals a role for its paralogs in the perception of salicylic acid. Plant Cell Environ 33, 1911-1922.

  • 2) Cao H et al. (1997). The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88, 57-63.

  • 3) Ding Y et al. (2018). Opposite Roles of Salicylic Acid Receptors NPR1 and NPR3/NPR4 in Transcriptional Regulation of Plant Immunity. Cell 173, 1454-1467 e1415.

  • 4) Kinkema M et al. (2000). “Nuclear localization of NPR1 is required for activation of PR gene expression.” The Plant cell 12, 2339-2350.

  • 5) Lee H J et al. (2015). Systemic Immunity Requires SnRK2.8-Mediated Nuclear Import of NPR1 in Arabidopsis. The Plant cell 27, 3425-3438.

  • 6) Maier F et al. (2011). NONEXPRESSOR OF PATHOGENESIS-RELATED PROTEINS1 (NPR1) and some NPR1-related proteins are sensitive to salicylic acid. Molecular plant pathology 12, 73-91.

  • 7) Mou Z et al. (2003). Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113, 935-944.

  • 8) Rochon A et al. (2006). The coactivator function of Arabidopsis NPR1 requires the core of its BTB/POZ domain and the oxidation of C-terminal cysteines. The Plant cell 18, 3670-3685.

  • 9) Ryals J et al. (1997). The Arabidopsis NIM1 protein shows homology to the mammalian transcription factor inhibitor I kappa B. The Plant cell 9, 425-439.

  • 10) Saleh A et al. (2015). Posttranslational Modifications of the Master Transcriptional Regulator NPR1 Enable Dynamic but Tight Control of Plant Immune Responses. Cell Host Microbe 18, 169-182.

  • 11) Shah J et al. (1999). The Arabidopsis ssi1 mutation restores pathogenesis-related gene expression in npr1 plants and renders defensin gene expression salicylic acid dependent. The Plant cell 11, 191-206.

  • 12) Spoel S H et al. (2009) “Proteasome-mediated turnover of the transcription coactivator NPR1 plays dual roles in regulating plant immunity.” Cell 137, 860-872.

  • 13) Tada Y et al. (2008). Plant immunity requires conformational changes of NPR1 via S-nitrosylation and thioredoxins. Science (New York, N.Y. 321, 952-956.

  • 14) Wu Y et al. (2012). The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid. Cell reports 1, 639-647.










TABLE 5







Functional Categorization of sim3-GFP Interactome Proteins. Related to FTGS. 3A-3F.


SN Components - Part 1












SINC







Components


Normalized


Functional


Fold Change:


Groups
Gene ID
Symbol/Name
SA vs Mock
p-value
Description















D, E, F, G
AT4G05420
DDB1A, damaged
2.521654986
0.0002806
Structurally similar to damaged DNA binding proteins.




DNA binding protein


DDB1a is part of a 350 KDa nuclear localized DET1




1A


protein complex. This complex may physically interact







with histone tails and while bound to chromatin-







repress transcription of genes involved in







photomorphogenesis. DDB1a is shown to be RUB-







modified.


D, E, F, G
AT5G50340
ATP-dependent
2.951968756
0.01
DNA repair protein RadA-like protein




peptidase


E, F, G
AT5G10450
GRF6, G-box
2.012355655
0.002
member of the 14-3-3 gene family that is a lambda




regulating factor 6


isoform (14-3-3λ). Interacts with APX3 (ascorbate







peroxidase) and AKR2, suggesting a role in mediating







oxidative metabolism in stress response. This protein







was shown to colocalize and interact with SERK1 by







which it is phosphorylated. This protein is also







reported to interact with the phosphorylated form of







the BZR1 transcription factor involved in







brassinosteroid signaling and may affect the







nucleocytoplasmic shuttling of BZR1. Interacts with







JAZ10.4 which lacks the Jas motif. It is also







phosphorylated by CRPK1 as part of the response to







cold and translocates to the nucleus after







phosphorylation.


E, F, G
AT5G44070
PCS1, phytochelatin
3.42876493
0.014
Phytochelatin synthase gene confers tolerance to




synthase 1 (PCS1)


cadmium ions. Catalyzes phytochelatin (PC) synthesis







from glutathione (GSH) in the presence of Cd2+,







Zn2+, Cu2+ and Fe3+, but not by Co2+ or Ni2+. The







mRNA is cell-to-cell mobile.


C, F, G
AT1G05010
EFE, ethylene-forming
2.159064852
0.00002881
1-aminocyclopropane-1-carboxylate oxidase




enzyme


F, G
AT1G02930
GSTF6, glutathione S-
2.00932338
0.0008488
glutathione transferase belonging to the phi class of




transferase 6


GSTs. Naming convention according to Wagner et al.







(2002).


F, G
AT1G04980
PDIL2-2, PDI-like 2-2
2.195873033
0.042
protein disulfide isomerase-like (PDIL) protein, a







member of a multigene family within the thioredoxin







(TRX) superfamily. Transcript levels for this gene are







up-regulated in response to three different chemical







inducers of ER stress (dithiothreitol, beta-







mercaptoethanol, and tunicamycin). AtIRE1-2 does







not appear to be required for this response, but the







atbzip60 mutant has a diminished response.


F, G
AT1G54100
ALDH7B4, aldehyde
2.005991063
0.005
Aldehyde dehydrogenase




dehydrogenase 7B4


F, G
AT1G63460
GPX8, glutathione
19.55048744
0.007
GPX8 (glutathione peroxidase 8). Involved in the




peroxidase 8


suppression of oxidative damages in nucleus and







cytosol. The mRNA is cell-to-cell mobile.


F, G
AT1G76680
OPR1, 12-
4111.7295
0.00005161
member of an alpha/beta barrel fold family of FMN-




oxophytodienoate


containing oxidoreductases. One of the closely related




reductase 1


12-oxophytodienoic acid reductases. This enzyme is







not expected to participate in jasmonic acid







biosynthesis because during in vitro assays, it shows







very little activity with the naturally occurring OPDA







isomer. Shows activity towards 2,4,6-trinitrotoluene.







Expressed predominately in root. Up-regulated by







senescence and jasmonic acid. Induced by salicylic







acid. Independent of NPR1 for their induction by







salicylic acid. Predicted to be a cytosolic protein.


F, G
AT1G78380
GSTU19, glutathione
2.583760756
0.002
glutathione transferase that is a member of Tau GST




S-transferase TAU 19


gene family. Expression is induced by drought stress,







oxidative stress, and high doses of auxin and







cytokinin. naming convention according to Wagner et







al. (2002) The expression of this gene is upregulated







by herbicide safeners such as benoxacor and







fenclorim.


F, G
AT2G29720
CTF2B, FAD/NAD(P)-
3.145972448
0.026
FAD/NAD(P)-binding oxidoreductase family protein




binding oxidoreductase




family protein


F, G
AT3G11340
UDP-
3.032097566
0.04
glucosyltransferase that conjugates isoleucic acid and




Glycosyltransferase


modulates plant defense and senescence.




superfamily protein


F, G
AT3G26830
PAD3, Cytochrome
14.61448668
0.00004092
Mutations in pad3 are defective in biosynthesis of the




P450 superfamily


indole derived phytoalexin camalexin. cytochrome




protein


P450 enzyme that catalyzes the conversion of







dihydrocamalexic acid to camalexin. The mRNA is







cell-to-cell mobile.


F, G
AT4G31500
ATR4, CYP83B1,
2.418188216
0.046
an oxime-metabolizing enzyme in the biosynthetic




RED1, RNT1, SUR2,


pathway of glucosinolates. Is required for




cytochrome P450,


phytochrome signal transduction in red light. Mutation




family 83, subfamily B,


confers auxin overproduction.




polypeptide 1


F, G
AT4G34135
UGT73B2, UDP-
8.082080074
0.003
The At4g34135 gene flavonol 7-O-glucosyltransferase




glucosyltransferase


(EC 2.4.1.237) that glucosylates also with a 20 fold




73B2


lower activity flavonols (kaempferol and quercetin) at







the 3-O-position.


F, G
AT4G37760
SQE3, squalene
50.11829138
0.014
squalene epoxidase 3




epoxidase 3


F, G
AT5G03630
ATMDAR2, Pyridine
2.748603928
0.012
Pyridine nucleotide-disulfide oxidoreductase family




nucleotide-disulphide


protein




oxidoreductase family




protein


F, G
AT5G18170
GDH1, glutamate
86.38984437
0.016
the 43 kDa alpha-subunit of the glutamate




dehydrogenase 1


dehydrogenase with a putative mitochondrial transit







polypeptide and NAD(H)− and alpha-ketoglutarate-







binding domains. Mitochondrial localization







confirmed by subcellular fractionation. Combines in







several ratios with GDH2 protein (GDH-beta) to form







seven isoenzymes. Catalyzes the cleavage of glycine







residues. May be involved in ammonia assimilation







under conditions of inorganic nitrogen excess. The







enzyme is almost exclusively found in the







mitochondria of stem and leaf companion cells.


F, G
AT5G24530
DMR6, 2-oxoglutarate
15.5761431
0.00002479
putative 2OG-Fe(II) oxygenase that is defense-




(2OG) and Fe(II)-


associated but required for susceptibility to downy




dependent oxygenase


mildew. The mRNA is cell-to-cell mobile.




superfamily protein


F, G
AT5G57800
CER3, FLP1, WAX2,
3321.575875
0.002
transmembrane protein with similarity to the sterol




YRE, Fatty acid


desaturase family at the N-terminus and to the short-




hydroxylase


chain dehydrogenase/reductase family at the C-




superfamily


terminus. Mutant analyses indicate this protein is







involved in cuticle membrane and wax biosynthesis.







The mRNA is cell-to-cell mobile.


F, G
AT4G37990
ELI3-2, elicitor-
56.97769729
0.002
an aromatic alcohol: NADP+ oxidoreductase whose




activated gene 3-2


mRNA levels are increased in response to treatment







with a variety of phytopathogenic bacteria. Though







similar to mannitol dehydrogenases, this enzyme does







not have mannitol dehydrogenase activity.


D, E, G
AT1G16890
UBC36, ubiquitin-
3.951137725
0.03
UBC36/UBC13B protein that may play a role in DNA




conjugating enzyme 36


damage responses and error-free post-replicative DNA







repair. It can bind to the MMZ/UEV1 proteins in vitro.


D, E, G
AT2G30110
UBA1, ubiquitin-
3.321653124
0.003
ubiquitin-activating enzyme (E1), involved in the first




activating enzyme 1


step in conjugating multiple ubiquitins to proteins







targeted for degradation. Gene is expressed in most







tissues examined. Mutant is able to revert the







constitutive defense responses phenotype of snc1,







which indicates the gene is involved in defense







response. It also indicates that ubiquitination plays a







role in plant defense signalling.


D, E, G
AT4G21100
DDB1B, damaged
1615.021625
0.0003354
One of two closely related genes similar to a damaged




DNA binding protein


DNA binding protein originally described in




1B


mammals. May form a complex with DET1 to regulate







photomorphogenesis. Loss of function mutations are







lethal. The DDB lb protein binds with a number of







DWD-containing proteins and may form part of a







CUL4-based E3 ubiquitin ligase.


D, E, G
AT5G49570
PNG1, peptide-N-
3.133826988
0.032
protein that has peptide: N-glycanase activity in




glycanase 1


enzymatic assay in heterologous systems (although the







activity was not detected in wild-type plants).


C, E, G
AT1G08420
BSL2, BRI1 suppressor
2.073465041
0.037
BRI1 suppressor 1 (BSU1)-like 2




1 (BSU1)-like 2


E, G
AT1G21210
WAK4, wall associated
8.976150857
0.007
cell wall-associated ser/thr kinase involved in cell




kinase 4


elongation and lateral root development


E, G
AT1G48210
Protein kinase
6.14810165
0.003
Protein kinase superfamily protein




superfamily protein


E, G
AT1G51660
ATMEK4, ATMKK4,
2.617942408
0.003
mitogen-activated map kinase kinase (there are nine in




MKK4, mitogen-


Arabidopsis) involved in innate immunity. This protein




activated protein kinase


activates MPK3/MPK6 and early-defense genes




kinase 4


redundantly with MKK5. In plants with both MKK5







and MKK4 levels reduced by RNAi plants, floral







organs do not abscise suggestion a role for both







proteins in mediating floral organ abscission. The







mRNA is cell-to-cell mobile.


E, G
AT2G02560
CAND1, cullin-
42.10100914
0.04
Arabidopsis thaliana homolog of human CAND1




associated and


(cullin-associated and neddylation-dissociated).




neddylation dissociated


Putative similarity to TBP-interacting protein TIP120.







Ubiquitously expressed in plant tissues throughout







development. T-DNA insertion mutant plants were







completely sterile and resistant to sirtinol and auxin,







but not to gibberellins or brassinolide. Displayed







developmental phenotypes similar to those of axr1,







namely, short petioles, downwardly curling leaves,







shorter inflorescence. Required for SCF function and







appears to modulate SCF complex cycling. Physically







interacts with CUL1. The mRNA is cell-to-cell mobile.


E, G
AT2G16600
ROC3, rotamase CYP
5.751533228
0.028
cytosolic cyclophilin ROC3. The mRNA is cell-to-cell




3


mobile.


E, G
AT2G37710
RLK, receptor lectin
4.873064424
0.016
Induced in response to Salicylic acid. The mRNA is




kinase


cell-to-cell mobile.


E, G
AT3G09350
Fes1A
3.16462928
0.014
one of the Arabidopsis orthologs of the human Hsp70-







binding protein 1 (HspBP-1) and yeast Fes1p: Fes1A







(AT3G09350), Fes1B (AT3G53800), Fes1C







(AT5G02150). Fes1A is cytosolic and associates with







cytosolic Hsp70. Mutants showed increased heat-







sensitive phenotype suggestion the involvement of







Fes1A in acquired thermotolerance. Does not have







nucleotide exchange factor activity in vitro.


E, G
AT3G12580
HSP70, heat shock
4.719822467
0.006
heat shock protein 70




protein 70


E, G
AT3G14840
Leucine-rich repeat
2.097211832
0.014
LRR-RLK protein that is localized to the plasma




transmembrane protein


membrane and is involved in regulation of plant innate




kinase


immunity to microbes. LIK1 is phosphorylated by







CERK1, a kinase involved in chitin perception. The







mRNA is cell-to-cell mobile.


E, G
AT3G19420
PTEN 2
2.241160922
0.016
phosphatase with low in vitro tyrosine phosphatase







activity that is capable of dephosphorylating in vitro







the 3′phosphate group of PI3P, PI(3,4)P2, and







PI(3,5)P2 and may be an effector of lipid signaling.







The mRNA is cell-to-cell mobile.


E, G
AT3G48990
AMP-dependent
2.006176223
0.017
an oxalyl-CoA synthetase and is required for oxalate




synthetase and ligase


degradation, for normal seed development, and for




family protein


defense against an oxalate-producing fungal pathogen.


E, G
AT4G15802
AtHSBP, HSBP, heat
6.218241496
0.0001123
protein with similarity to heat shock factor binding




shock factor binding


proteins. Involved in negative regulation of heat shock




protein


response. Becomes nuclear localized upon heat







treatment.


E, G
AT4G26070
MEK1
4.030833705
0.028
Member of MAP Kinase Kinase. Likely functions in a







stress-activated MAPK pathway. Can phosphorylate







the MAPK AtMPK4, in response to stress. Gets







phosphorylated by MEKK1 in response to wounding.


E, G
AT4G26120
NPR2, NPR1-like
16.69681087
0.003
Ankyrin repeat family protein/BTB/POZ domain-




protein 2


containing protein


E, G
AT4G39090
RD19A, Papain family
3.140839158
0.031
Similar to cysteine proteinases, induced by desiccation




cysteine protease


but not abscisic acid. Required for RRS1-R mediated







resistance against Ralstonia solanacearum. Interacts







with the R. solanacearum type III effector PopP2.







RD19 associates with PopP2 to form a nuclear







complex that is required for activation of the RRS1-







R?mediated resistance response.


E, G
AT5G02490
Heat shock protein 70
2.202605625
0.0003584
Heat shock protein 70 (Hsp 70) family protein




(Hsp 70) family protein


E, G
AT5G14250
FUS11, Proteasome
2.75440381
0.004
subunit 3 of the COP9 signalosome.




component (PCI)




domain protein


E, G
AT5G43060
Granulin repeat
4.976365059
0.01
Peptidase, activity detected in extracts of root, leaf and




cysteine protease


cell culture.




family protein


E, G
AT5G45110
NPR3, NPR1-like
9.396321195
0.0002424
NPR3, a paralog of NPR1. Involved in negative




protein 3


regulation of defense responses against bacterial and







oomycete pathogens. npr3 mutants has elevated level







of PR1 expression. Interacts with TGA2, TGA3,







TGA5 and TGA6 in yeast two hybrid assays. NPR3







and NPR4 are receptors for the immune signal







salicylic acid. The mRNA is cell-to-cell mobile.


B, D, G
AT5G35530
Ribosomal protein S3
3.141460686
0.024
Ribosomal protein S3 family protein




family protein


D, G
AT2G29570
PCNA2, proliferating
2.831339329
0.046
Functionally interacts with POLH to repair DNA




cell nuclear antigen 2


damaged by UVB damage. May be sumoylated.


D, G
AT3G06010
ATCHR12, Homeotic
9.34235423
0.018
AtCHR12, a SNF2/Brahma-type chromatin-




gene regulator


remodeling protein. AtCHR12 mediates temporary







growth arrest in Arabidopsis upon perceiving







environmental stress.


D, G
AT3G07930
DNA glycosylase
521.3600823
0.000147
DNA glycosylase superfamily protein




superfamily protein


D, G
AT3G14890
Phosphoesterase
3.845087005
0.043
base excision repair protein that, together with APE2,







it plays overlapping roles in the maintenance of







epigenome and genome stability in plants.


C, G
AT4G13350
NSP (nuclear shuttle
4.269177143
0.009
GTPase that interacts with nuclear shuttle proteins




protein)-interacting


(NSPs) from a number of different plant viruses. The




GTPase


gene is widely expressed and NIG transcript levels do







not rise in response to viral infection. This cytoplasmic







protein does not directly interact with a viral







movement protein (MP), but, it does promote the







movement of NSP from the nucleus to the cytoplasm.







Overexpression of NIG in Arabidopsis plants renders







them more sensitive to geminivirus infection.


C, G
AT1G01960
EDA10
2.220715332
0.03
one of the functionally redundant ARF guanine-







nucleotide exchange factors (ARF-GEFs). Functions







as regulators of post-Golgi trafficking.


C, G
AT4G02510
TOC86, translocon at
3.610006467
0.024
An integral membrane GTPase that functions as a




the outer envelope


transit-sequence receptor required for the import of




membrane of


proteins necessary for chloroplast biogenesis. Located




chloroplasts 159


in the outer chloroplast membrane. Phosphorylation of







the G-domains regulate translocon assembly. The







mRNA is cell-to-cell mobile.


B, G
AT2G34480
Ribosomal protein
3.349837664
0.006
nuclear localized member of the ribosomal L18ae/LX




L18ae/LX family


protein family. Loss of function mutations show




protein


reduced transmission through the gametophytes and







embryo lethality.


G
AT1G02450
NIMIN1
17.71850982
0.0002129
NIMIN1 modulates PR gene expression according the







following model: NPR1 forms a ternary complex with







NIMIN1 and TGA factors upon SAR induction that







binds to a positive regulatory cis-element of the PR-1







promoter, termed LS7. This leads to PR-1 gene







induction. NIMIN1 decreases transcriptional







activation, possibly through its EAR motif, which







results in fine-tuning of PR-1 gene expression.


G
AT1G55450
S-adenosyl-L-
2.240481943
0.016
S-adenosyl-L-methionine-dependent




methionine-dependent


methyltransferases superfamily protein




methyltransferases




superfamily protein


G
AT1G60140
TPS10, trehalose
2102.433
0.001
an enzyme putatively involved in trehalose




phosphate synthase


biosynthesis. The protein has a trehalose synthase







(TPS)-like domain that may or may not be active as







well as a trehalose phosphatase (TPP)-like domain.


G
AT1G66090
Disease resistance
6.25603175
0.00001173
Disease resistance protein (TIR-NBS class)




protein (TIR-NBS




class)


G
AT1G72910
Toll-Interleukin-
2.606979946
0.00047
Toll-Interleukin-Resistance (TIR) domain-containing




Resistance (TIR)


protein




domain-containing




protein


G
AT2G03440
NRP1, nodulin-related
14.30361122
0.039
Induced at the transcriptional level by Pseudomonas




protein 1



syringae pv. tomato infection.



G
AT2G14560
LURP1, Protein of
4.630490539
0.038
LURP1, a member of the LURP cluster (late




unknown function


upregulated in response to Hyaloperonospora




(DUF567)



parasitica) which exhibits a pronounced upregulation








after recognition of the pathogenic oomycte








H. parasitica. LURP1 is required for full basal defense to









H. parasitica and resistance to this pathogen mediated








by the R-proteins RPP4 and RPP5. The mRNA is cell-







to-cell mobile.


G
AT2G14610
PR1, pathogenesis-
3.64837311
0.0002666
PR1 gene expression is induced in response to a




related gene 1


variety of pathogens. It is a useful molecular marker







for the SAR response. Though the Genbank record for







the cDNA associated to this gene is called ‘PR-1-like’,







the sequence actually corresponds to PR1. Expression







of this gene is salicylic-acid responsive.


G
AT2G17265
DMR1, HSK,
2.162821903
0.0007399
homoserine kinase (HSK) which produces O-phospho-




homoserine kinase


L-homoserine (HserP), a compound at the branching







point of methionine and threonine biosynthesis. HSK







is found in the stromal fraction of chloroplasts.







Mutation of this gene results in higher level of the







amino acid homoserine and resistance to downy







mildew pathogen Hyaloperonospora arabidopsidis.


G
AT2G24850
TAT3, tyrosine
18.45478915
0.027
tyrosine aminotransferase that is responsive to




aminotransferase 3


treatment with jasmonic acid.


G
AT2G26560
PLP2, phospholipase A
3.961195476
0.043
lipid acyl hydrolase with wide substrate specificity that




2A


accumulates upon infection by fungal and bacterial







pathogens. Protein is localized in the cytoplasm in







healthy leaves, and in membranes in infected cells.







Plays a role in cell death and differentially affects the







accumulation of oxylipins. Contributes to resistance to







virus.


G
AT2G37970
SOUL-1, SOUL heme-
2.926002428
0.031
SOUL heme-binding family protein




binding family protein


G
AT3G01290
SPFH/Band 7/PHB
6.530545545
0.002
SPFH/Band 7/PHB domain-containing membrane-




domain-containing


associated protein family




membrane-associated




protein family


G
AT3G04210
Disease resistance
7.601551566
0.017
TN13 is a TIR-NBS protein involved in immune




protein (TIR-NBS


response. It co localizes with the ER and perinuclear




class)


membranes and interacts with MOS6.


G
AT3G18520
HDA15, histone
2572.7625
0.002
protein with similarity to histone deacetylases. Plants




deacetylase 15


expressing RNAi directed against this gene show a







moderate resistance to agrobacterium-mediated root







transformation.


G
AT3G43810
CAM7, calmodulin 7
3.958075882
0.002
EF hand domain protein calmodulin. Can functionally







complement a yeast CaM mutant.


G
AT3G44480
RPP1, Disease
13.72108266
0.025
TIR-NB-LRR R-protein RPP1 that confers resistance




resistance protein


to Peronospora parasitica (downy mildew).




(TIR-NBS-LRR class)




family


G
AT3G48090
EDS1, enhanced
3.176849719
0.008
Component of R gene-mediated disease resistance in




disease susceptability


Arabidopsis thaliana with homology to eukaryotic







lipases.


G
AT3G50930
BCS1, cytochrome
15.97249988
0.006
protein that is present in a homo-multimeric protein




BC1 synthesis


complex on the outer mitochondrial membrane and







plays a role in cell death and amplifying salicylic acid







signalling. The mRNA is cell-to-cell mobile.


G
AT3G51250
Senescence/dehydration-
26.13060967
0.034
Senescence/dehydration-associated protein-like protein




associated protein-




related


G
AT3G52430
ATPAD4, PAD4,
3.227623612
0.022
lipase-like gene that is important for salicylic acid




alpha/beta-Hydrolases


signaling and function in resistance (R) gene-mediated




superfamily protein


and basal plant disease resistance. PAD4 can interact







directly with EDS1, another disease resistance







signaling protein. Expressed at elevated level in







response to green peach aphid (GPA) feeding, and







modulates the GPA feeding-induced leaf senescence







through a mechanism that doesn't require camalexin







synthesis and salicylic acid (SA) signaling. Required







for the ssi2-dependent heightened resistance to GPA.







The mRNA is cell-to-cell mobile.


G
AT4G16950
RPP5, Disease
3.79227619
0.044
Contains a putative nucleotide binding site and




resistance protein


leucine-rich repeats. Similar to the plant resistance




(TIR-NBS-LRR class)


genes N and L6, and to the toll and interleukin-1







receptors. Confers resistance to Peronospora







parasitica. Redundant function together with SIKIC1







and 3 in SNC1-mediated autoimmunity. Protein levels







controlled by MUSE1 and MUSE2.


G
AT4G19510
Disease resistance
5.174685292
0.003
Disease resistance protein (TIR-NBS-LRR class)




protein (TIR-NBS-




LRR class)


G
AT4G33050
EDA39, calmodulin-
3.102716934
0.033
calmodulin-binding protein involved in stomatai




binding family protein


movement


G
AT5G41750
Disease resistance
10.2128062
0.0008359
Disease resistance protein (TIR-NBS-LRR class)




protein (TIR-NBS-


family




LRR class)


G
AT5G45510
Leucine-rich repeat
5.051626678
0.0001342
Leucine-rich repeat (LRR) family protein




(LRR) family protein


G
AT5G45520
Leucine-rich repeat
2274.360875
0.006
Leucine-rich repeat (LRR) family protein




(LRR) family protein


G
AT5G48620
Disease resistance
2.826581182
0.016
Disease resistance protein (CC-NBS-LRR class)




protein (CC-NBS-LRR


family




class)


G
AT5G54310
AGD5, NEV, ARF-
8.653446694
0.019
A member of ARF GAP domain (AGD), A thaliana




GAP domain 5


has 15 members, grouped into four classes. Regulates







membrane trafficking and organ separation.


G
AT5G57560
TCH4, XTH22,
102.3521183
0.033
cell wall-modifying enzyme, rapidly upregulated in




Xyloglucan


response to environmental stimuli.




endotransglucosylase/




hydrolase family protein


G
AT5G45500
RNI-like superfamily
2.930585074
0.002
RNI-like superfamily protein. Leucine-Rich repeat




protein


(LRR) family protein


C, E, F
AT1G68730
Zim17-type zinc finger
11.82585661
0.04
Zim17-type zinc finger protein




protein


B, E, F
AT1G68200
Zinc finger C-x8-C-x5-
3.854512325
0.006
Zinc finger C-x8-C-x5-C-x3-H type family protein




C-x3-H type family




protein


D, F
AT2G21790
RNR1, ribonucleotide
2182.409958
0.0007951
large subunit of ribonucleotide reductase involved in




reductase 1


the production of deoxyribonucleoside triphosphates







(dNTPs) for DNA replication and repair


F
AT1G05720
Selenoprotein family
2.426087484
0.04
selenoprotein family protein




protein


F
AT1G11680
CYP51,
2.795984794
0.006
putative obtusifoliol 14-alpha demethylase involved in




CYTOCHROME P450


sterol biosynthesis. The mRNA is cell-to-cell mobile.




51G1


F
AT1G16350
Aldolase-type TIM
65.91134451
0.042
Aldolase-type TIM barrel family protein




barrel family protein


F
AT1G22400
UGT85A1, UDP-
4.863075405
0.03
UDP-Glycosyltransferase superfamily protein




Glycosyltransferase




superfamily protein


F
AT1G48320
Thioesterase
6.589263193
0.031
one of the two functional DHNA-CoA (1,4-dihydroxy-




superfamily protein


2-naphthoyl-CoA) thioesterases found in Arabidopsis.


F
AT1G70580
AOAT2, GGT2,
10.47365578
0.03
protein with glyoxylate aminotransferase activity. It




alanine-2-oxoglutarate


can act on a number of different small substrates and




aminotransferase 2


amino acids in vitro.


F
AT2G01490
Phytanoyl-CoA
2.659254608
0.032
phytanoyl-CoA 2-hydroxylase (PAHX). The mRNA is




dioxygenase (PhyH)


cell-to-cell mobile.




family protein


F
AT2G26400
ARD3, acireductone
8.569790647
0.005
protein predicted to belong to the acireductone




dioxygenase 3


dioxygenase (ARD/ARD?)family.


F
AT2G29320
NAD(P)-binding
40.03724019
0.045
NAD(P)-binding Rossmann-fold superfamily protein




Rossmann-fold




superfamily protein


F
AT2G43820
UGT74F2, UDP-
8.985932916
0.011
nicotinate-O-glycosyltransferase. Induced by Salicylic




glucosyltransferase


acid, virus, fungus and bacteria. Also involved in the




74F2


tryptophan synthesis pathway. Independent of NPR1







for their induction by salicylic acid. UGT74F1







transfers UDP: glucose to salicylic acid (forming a







glucoside (SAG) and a glucose ester (SGE)), benzoic







acid, and anthranilate in vitro. UGT74F2 shows a







weak ability to catalyze the formation of the p-







aminobenzoate-glucose ester in vitro. But, UGT75B1







appears to be the dominant pABA







acylglucosyltransferase in vivo based on assays in







leaves, flowers, and siliques.


F
AT4G13180
NAD(P)-binding
5.4597349
0.005
NAD(P)-binding Rossmann-fold superfamily protein




Rossmann-fold




superfamily protein


F
AT4G22220
ISU1, SufE/NifU
3.436677001
0.042
mitochondrial protein similar to E. coli IscU. In




family protein


bacteria, IscU is a scaffold protein accepting sulfur and







iron to build a transient Fe—S cluster, which is







subsequently transferred to a target apoprotein.


F
AT5G14240
Thioredoxin
32.0699871
0.044
Thioredoxin superfamily protein




superfamily protein


F
AT5G22140
FAD/NAD(P)-binding
9.815053313
0.0002677
FAD/NAD(P)-binding oxidoreductase family protein




oxidoreductase family




protein


F
AT5G40760
G6PD6, glucose-6-
4.098820827
0.035
cytosolic glucose-6-phosphate dehydrogenase that is




phosphate


insensitive to reduction by DTT and whose mRNA is




dehydrogenase 6


expressed ubiquitously. The mRNA is cell-to-cell







mobile.


F
AT5G48180
NSP5, nitrile specifier
5235.696
0.0009395
nitrile-specifier protein NSP5. NSP5 is one out of five




protein 5


(At3g16400/NSP1, At2g33070/NSP2,







At3g16390/NSP3, At3g16410/NSP4 and







At5g48180/NSP5) A. thaliana epithiospecifier protein







(ESP) homologues that promote simple nitrile, but not







epithionitrile or thiocyanate formation.


C, E
AT5G47040
LON2, lon protease 2
2.472454332
0.002
member of the Lon protease-like proteins







(Lon1/At5g26860, Lon2/At5g47040,







Lon3/At3g05780, Lon4/At3g05790). Lon is a







multifunctional ATP-dependent protease which exists







in bacteria, archaea and within organelles in eukaryotic







cells. Lon proteases are responsible for the degradation







of abnormal, damaged and unstable proteins.


C, E
AT3G18060
Transducin family
7.1893436
0.017
transducin family protein/WD-40 repeat family




protein/WD-40 repeat


protein. Cul4-RING E3 ubiquitin ligase complex




family protein


C, E
AT2G31200
ADF6
2.256109133
0.011
actin depolymerizing factor 6 (ADF6). The mRNA is







cell-to-cell mobile.


E
AT1G04860
UBP2, ubiquitin-
2.306075545
0.0007404
ubiquitin-specific protease.




specific protease 2


E
AT1G08050
Zinc finger (C3HC4-
7.543438856
0.004
Zinc finger (C3HC4-type RING finger) family protein




type RING finger)




family protein


E
AT2G04430
atnudt5, NUDT5,
44.14867451
0.029
nudix hydrolase homolog 5




nudix hydrolase




homolog 5


E
AT2G20190
CLIP-associated
2554.278083
0.00008309
microtubule-associated protein that is involved in both




protein


cell division and cell expansion. It likely promotes







microtubule stability.


E
AT2G21470
SAE2, SUMO-
5.816764678
0.041
one of the two subunits of the SUMO activation




activating enzyme 2


enzyme required during sumolation. Sumolation is a







post-translational protein modification process similar







to ubiquitination during which a polypeptide (SUMO)







is covalently attached to a target protein.


E
AT2G28450
zinc finger (CCCH-
2.94745402
0.012
zinc finger (CCCH-type) family protein




type) family protein


E
AT2G32160
S-adenosyl-L-
3.438645919
0.012
S-adenosyl-L-methionine-dependent




methionine-dependent


methyltransferases superfamily protein




methyltransferases




superfamily protein


E
AT2G47110
UBQ6, ubiquitin 6
2.043646216
0.006
polyubiquitin gene The mRNA is cell-to-cell mobile.


E
AT3G07990
SCPL27, serine
5807.184
0.007
serine carboxypeptidase-like 27




carboxypeptidase-like




27


E
AT3G20630
UBP14, ubiquitin-
5.017922504
0.003
ubiquitin-specific protease. Identical to TTN6. Loss of




specific protease 14


function mutations are embryo lethals, having







development arrested at the preglobular/globular stage.







Also involved in root responses to phosphate







deficiency.


E
AT3G23570
alpha/beta-Hydrolases
2.728988268
0.002
alpha/beta-Hydrolases superfamily protein




superfamily protein


E
AT3G50590
Transducin/WD40
3404.154333
0.001
WD40/YVTN repeat protein. Autophagy pathway




repeat-like superfamily


regulation




protein


E
AT3G58040
SINAT2, seven in
2.989448967
0.04
RING finger domain containing protein that interacts




absentia of Arabidopsis


with AtRAP2.2. The mRNA is cell-to-cell mobile.




2


E
AT4G01870
tolB protein-related
6.111279906
0.032
tolB protein-like protein


E
AT4G17830
Peptidase
3.667358167
0.031
NAOD functional acetylornithine deacetylase.




M20/M25/M40 family


Silenced lines plants flower early but have reduced




protein


fertility (siliques do not develop) as well as reduced







ornithine levels. NAOD mediates a linear pathway for







ornithine biosynthesis.


E
AT4G30890
UBP24, ubiquitin-
2578.715125
0.003
ubiquitin-specific protease.




specific protease 24


E
AT5G60360
SAG2, aleurain-like
4.083440208
0.004
senescence-associated thiol protease. The mRNA is




protease


cell-to-cell mobile.


E
AT5G60510
Undecaprenyl
7.40731429
0.006
Undecaprenyl pyrophosphate synthetase family protein




pyrophosphate




synthetase family




protein


E
AT5G61790
ATCNX1, CNX1,
5.259807906
0.008
calnexin 1




calnexin 1


E
AT5G67340
ARM repeat
203.1453606
0.014
ARM repeat superfamily protein




superfamily protein


E
AT3G15610
Transducin/WD40
2.263771457
0.008
Transducin/WD40 repeat-like superfamily protein




repeat-like superfamily




protein


E
AT3G45620
Transducin/WD40
3.673690257
0.009
This gene is predicted to encode a protein with a DWD




repeat-like superfamily


motif. It can bind to DDB la in Y2H assays, and




protein


DDB lb in co-IP assays, and may be involved in the







formation of a CUL4-based E3 ubiquitin ligase


E
AT5G24710
Transducin/WD40
2.012342931
0.036
WD40/YVTN repeat protein.




repeat-like superfamily




protein. Peptidase A1




domain-containing




protein


D
AT3G18580
Nucleic acid-binding,
6.349991253
0.01
Member of the family of canonical mitochondrial




OB-fold-like protein


DNA binding proteins. Single-stranded binding protein







which does not interfere with MMEJ.


D
AT4G31210
DNA topoisomerase,
2.583542458
0.041
DNA topoisomerase, type IA, core




type IA, core


C
AT2G41740
VLN2, villin 2
3.542665946
0.041
protein with high homology to animal villin. actin







filament bundle assembly, actin filament capping


C
AT3G19960
ATM1, myosin 1
2.331183156
0.023
member of Myosin-like proteins


C
AT1G27970
NTF2B, nuclear
11.1592163
0.042
an ortholog of yeast NTF2, a nuclear envelop transport




transport factor 2B


protein that functions as the nuclear import receptor







for RanGDP, an essential player in nucleocytoplasmic







transport. The mRNA is cell-to-cell mobile.


C
AT3G06720
IMPA1, importin alpha
2.092256022
0.018
importin alpha involved in nuclear import. Protein




isoform 1


interacts with Agrobacterium proteins VirD2 and







VirE2. Is not individually essential for Agrobacterium-







mediated root transformation, but when overexpressed







can rescue the impa-4 decreased transformation







susceptibility phenotype.


C
AT1G59610
ADL3, CF1, DL3,
2.502994433
0.003
A high molecular weight GTPase whose GTP-binding




DRP2B, dynamin-like


domain shows a low homology to those of other plant




3


dynamin-like proteins. Contains a pleckstrin







homologous domain. DRP2B and DRP1A participate







together in clathrin-coated vesicle formation during







endocytosis. The mRNA is cell-to-cell mobile.


C
AT3G13870
RHD3, Root hair
2.858612305
0.036
required for regulated cell expansion and normal root




defective 3 GTP-


hair development, an evolutionarily conserved protein




binding protein


with putative GTP-binding motifs that is implicated in




(RHD3)


the control of vesicle trafficking between the







endoplasmic reticulum and the Golgi compartments.


C
AT5G24520
TTG1,
3.341780748
0.017
Required for the accumulation of purple anthocyanins




Transducin/WD40


in leaves and stems. Involved in trichome and root hair




repeat-like superfamily


development. Controls epidermal cell fate




protein


specification Affects dihydroflavonol 4-reductase







gene expression It is thought that a ternary complex







composed of TT2, TT8 and TTG1 is necessary for







correct expression of BAN in seed endothelium. Based







on clonal analysis and other methonds TTG1 has been







shown to act non-cell autonomously and to move via







plasmodesmata between cells. Localization and levels







of TTG1 affect patterning of leaf trichomes. Auxin and







ethylene responsiveness of TTG1 transcription is lost







in myb12 mutants.


C
AT1G07140
SIRANBP, Pleckstrin
709.313854
0.006
putative Ran-binding protein (siRanBP). INVOLVED




homology (PH) domain


IN: intracellular transport, protein import into nucleus,




superfamily protein


translocation


C
AT3G19870
AP-5 complex subunit
4.590769246
0.016
AP-5 complex subunit beta-like protein




beta-like protein


C
AT3G28710
ATPase, V0/A0
2.237991657
0.00007561
ATPase, V0/A0 complex, subunit C/D




complex, subunit C/D


C
AT5G05000
TOC34, translocon at
9.76131971
0.023
Outer membrane GTPase protein that may function in




the outer envelope


import of nuclear encoded proteins into the




membrane of


chloroplast. Phosphorylation of the G-domains




chloroplasts 34


regulate translocon assembly.


C
AT5G54750
Transport protein
2.898695804
0.0008123
Part of multi-protein complex, acting as guanine




particle (TRAPP)


nucleotide exchange factors (GEFs) and possibly as




component


tethers, regulating intracellular trafficking.


B
AT1G01100
60S acidic ribosomal
4.679633439
0.03
Co-orthologous gene of large ribosomal subunit




protein family


protein RPP1.


B
AT3G61240
DEA(D/H)-box RNA
2.53199271
0.028
DEA(D/H)-box RNA helicase family protein




helicase family protein


B
AT5G64150
RNA methyltransferase
2.147414015
0.034
RNA methyltransferase family protein




family protein


B
AT1G12920
ERF1-2, eukaryotic
2.49554072
0.026
eukaryotic release factor one homolog.




release factor 1-2


B
AT3G62870
Ribosomal protein
19.7434018
0.000333
Ribosomal protein L7Ae/L30e/S12e/Gadd45 family




L7Ae/L30e/S12e/Gadd


protein




45 family protein


B
AT2G16360
Ribosomal protein S25
2.055365138
0.003
40S ribosomal protein S25




family protein


B
AT2G31060
Elongation factor
3.320469781
0.001
elongation factor family protein




family protein


B
AT1G27900
RNA helicase family
1962.136292
0.002
RNA helicase family protein




protein


B
AT2G43410
FPA, RNA binding
4.866064994
0.018
FPA is a gene that regulates flowering time in







Arabidopsis via a pathway that is independent of







daylength (the autonomous pathway). Mutations in







FPA result in extremely delayed flowering. Double







mutants with FCA have reduced fertility and







single/double mutants have defects in siRNA mediated







chromatin silencing.


B
AT3G62310
RNA helicase family
7.184690142
0.035
RNA helicase family protein




protein


B
AT4G09730
RH39
46.88487933
0.029
RH39, a DEAD-box protein involved in the







introduction of the hidden break into the 23S rRNA in







the chloroplasts. Recombinant RH39 binds to the 23S







rRNA in a segment adjacent to the stem-loop creating







the hidden break target loop in a sequence-dependent







manner. Has ATP-hydrolyzing activity at a Kcat of 5.3/







min in the presence of rRNA sequence. Mutants have







drastically reduced level of level of ribulose 1,5-







bisphosphate carboxylase/oxygenase. The mRNA is







cell-to-cell mobile.


B
AT5G62190
PRH75, DEAD box
5.900567132
0.027
DEAD/DEAH box RNA helicase PRH75




RNA helicase (PRH75)


A
AT1G60095
Mannose-binding lectin
2.220346084
0.005
Mannose-binding lectin superfamily protein




superfamily protein


A
AT1G74940
Protein of unknown
1001.701844
0.019
cyclin-dependent kinase, putative (DUF581)




function (DUF581)


A
AT2G20010
Protein of unknown
2.965429985
0.028
Gls protein (DUF810)




function (DUF810)


A
AT2G28620
P-loop containing
7.174619085
0.0004092
Mutants have radially swollen roots but do not exhibit




nucleoside triphosphate


defects in abundance or orientation of cortical




hydrolases superfamily


microtubules, nor are microfibrils reduced. Cellulose




protein


synthesis is also unchanged with respect to wild type.







There is a disruption in the normal pattern of cell wall







placement.


A
AT2G30500
Kinase interacting
66.93293597
0.027
Kinase interacting (KIP1-like) family protein




(KIP1-like) family




protein


A
AT3G14075
Mono-/di-acylglycerol
2.342061405
0.027
Mono-/di-acylglycerol lipase, N-terminal




lipase, N-




terminal; Lipase, class 3


A
AT3G28510
P-loop containing
6.345095983
0.002
P-loop containing nucleoside triphosphate hydrolases




nucleoside triphosphate


superfamily protein




hydrolases superfamily




protein


A
AT3G28540
P-loop containing
9.619894493
0.043
P-loop containing nucleoside triphosphate hydrolases




nucleoside triphosphate


superfamily protein




hydrolases superfamily




protein


A
AT3G47630
AT3G47630
703.3438853
0.002
translocator assembly/maintenance protein


A
AT3G53470
AT3G53470
4.352338413
0.034
2,3-bisphosphoglycerate-independent







phosphoglycerate mutase


A
AT4G10120
ATSPS4F, Sucrose-
2.198730157
0.033
protein with putative sucrose-phosphate synthase




phosphate synthase


activity.




family protein


A
AT5G17760
P-loop containing
4791.223417
0.0009688
P-loop containing nucleoside triphosphate hydrolases




nucleoside triphosphate


superfamily protein




hydrolases superfamily




protein


A
AT5G36225
Zinc knuckle protein
4753.56675
0.0005696
zinc knuckle protein


A
AT5G51830
pfkB-like carbohydrate
4.220251395
0.018
one of the several Arabidopsis fructokinases.




kinase family protein


Nomenclature according to Riggs 2017 has been







adopted for the family by the community (personal







communication, Boernke, Callis, Granot, Boernke, and







Smeekens). Important for seed oil accumulation and







vascular development.





Functional Group Key


H = Defense Response/SA signaling. Cell Death


G = Redox metabolism


E = Protein modification and catabolism


D = DNA Damage Response


C = Protein transpoprt


B = RNA binding/translation


A = Unclassified (*)
















SN Components - Part 2

















Cellular


Gene ID
Protein Class
Protein Family
Molecular Function
Biological Process
Component





AT4G05420
DNA DAMAGE-BINDING
damaged DNA-
damaged DNA binding(GO: 0003684)
proteasome-mediated
nucleus



PROTEIN 1
binding protein

ubiquitin-dependent protein
(GO: 0005634)



(PTHR10644: SF3)
(PC00086);

catabolic process




mRNA

(GO: 0043161); protein




polyadenylation

ubiquitination (GO: 0016567)




factor (PC00146)


AT5G50340
DNA REPAIR
serine protease

recombinational repair



PROTEIN
(PC00203)

(GO: 0000725)



RADA-LIKE



PROTEIN



(PTHR32472: SF10)


AT5G10450
14-3-3-LIKE


signal transduction



PROTEIN GF14


(GO: 0007165)



LAMBDA



(PTHR18860: SF98)


AT5G44070
PHYTOCHELATIN
cysteine protease
catalytic activity, acting on a protein
cellular response to chemical



SYNTHASE
(PC00081)
(GO: 0140096); transferase activity,
stimulus (GO: 0070887);



(PTHR33447: SF2)

transferring acyl groups (GO: 0016746)
peptide biosynthetic process






(GO: 0043043); response to






cadmium ion (GO: 0046686);






response to copper ion






(GO: 0046688); response to






stress (GO: 0006950);






response to toxic substance






(GO: 0009636); secondary






metabolite biosynthetic






process (GO: 0044550)


AT1G05010
1-AMINOCYCLOPROPANE-1-

dioxygenase activity (GO: 0051213)



CARBOXYLATE



OXIDASE 4



(PTHR10209: SF383)


AT1G02930
GLUTATHIONE

anion binding(GO: 0043168); cofactor
glutathione metabolic process
cytoplasm



S-TRANSFERASE

binding(GO: 0048037); glutathione
(GO: 0006749)
(GO: 0005737)



F6-RELATED

transferase activity (GO: 0004364);



(PTHR43900: SF47)

peptide binding(GO: 0042277)


AT1G04980
PROTEIN



DISULFIDE-



ISOMERASE A6



(PTHR45815: SF3)


AT1G54100
ALPHA-AMINOADIPIC
dehydrogenase
oxidoreductase activity (GO: 0016491)



SEMIALDEHYDE
(PC00092)



DEHYDROGENASE



(PTHR43521: SF1)


AT1G63460
GLUTATHIONE
peroxidase
oxidoreductase activity (GO: 0016491)
cellular response to chemical
cytosol



PEROXIDASE 8-
(PC00180)

stimulus (GO: 0070887);
(GO: 0005829)



RELATED


response to toxic substance



(PTHR11592: SF27)


(GO: 0009636)


AT1G76680
NADPH
oxidoreductase
oxidoreductase activity (GO: 0016491)



DEHYDROGENASE 2-
(PC00176)



RELATED



(PTHR22893: SF110)


AT1G78380
GLUTATHIONE

glutathione transferase activity
glutathione metabolic process
cytoplasm



S-TRANSFERASE

(GO: 0004364)
(GO: 0006749)
(GO: 0005737)



U19



(PTHR11260: SF585)


AT2G29720
FAD/NAD(P)-BINDING
oxygenase



OXIDOREDUCTASE
(PC00177)



FAMILY



PROTEIN



(PTHR45934: SF9)


AT3G11340
GLUCOSYLTRANSFERASE-

UDP-glucosyltransferase activity

intracellular membrane-



LIKE PROTEIN-

(GO: 0035251)

bounded organelle



RELATED



(GO: 0043231)



(PTHR11926: SF1220)


AT3G26830
BIFUNCTIONAL
oxygenase
oxidoreductase activity, acting on paired



DIHYDROCAMALEXATE
(PC00177)
donors, with incorporation or reduction of



SYNTHASE/

molecular oxygen, NAD(P)H as one



CAMALEXIN

donor, and incorporation of one atom of



SYNTHASE-

oxygen (GO: 0016709)



RELATED



(PTHR24298: SF566)


AT4G31500
CYTOCHROME
oxygenase
oxidoreductase activity, acting on paired



P450 83B1
(PC00177)
donors, with incorporation or reduction of



(PTHR24298: SF400)

molecular oxygen, NAD(P)H as one





donor, and incorporation of one atom of





oxygen(GO: 0016709)


AT4G34135
UDP-

UDP-glycosyltransferase activity

intracellular membrane-



GLUCOSYL

(GO: 0008194)

bounded organelle



TRANSFERASE



(GO: 0043231)



73B2-RELATED



(PTHR11926: SF903)


AT4G37760
SQUALENE
oxygenase
oxidoreductase activity, acting on paired
sterol biosynthetic process
endoplasmic



EPOXIDASE 3
(PC00177)
donors, with incorporation or reduction of
(GO: 0016126)
reticulum



(PTHR10835: SF9)

molecular oxygen, NAD(P)H as one

(GO: 0005783);





donor, and incorporation of one atom of

plasma membrane





oxygen (GO: 0016709)

(GO: 0005886);







vacuole







(GO: 0005773)


AT5G03630
MONODEHYDROASCORBATE
dehydrogenase
oxidoreductase activity (GO: 0016491)
nitrogen compound metabolic



REDUCTASE 2-
(PC00092);

process (GO: 0006807);



RELATED
oxidase(PC00175);

respiratory electron transport



(PTHR43557: SF13)
reductase

chain (GO: 0022904)




(PC00198)


AT5G18170
GLUTAMATE
dehydrogenase
oxidoreductase activity (GO: 0016491)
cellular amino acid catabolic



DEHYDROGENASE 1
(PC00092)

process (GO: 0009063)



(PTHR11606: SF30)


AT5G24530
PROTEIN

dioxygenase activity (GO: 0051213)



DOWNY



MILDEW



RESISTANCE 6



(PTHR10209: SF177)


AT5G57800
PROTEIN
oxidase
oxidoreductase activity (GO: 0016491)



ECERIFERUM 3
(PC00175)



(PTHR11863: SF66)


AT4G37990
CINNAMYL
dehydrogenase
oxidoreductase activity, acting on the
aromatic compound



ALCOHOL
(PC00092);
CH—OH group of donors, NAD or NADP as
biosynthetic process



DEHYDROGENASE 8
reductase
acceptor (GO: 0016616)
(GO: 0019438); organic cyclic



(PTHR42683: SF54)
(PC00198)

compound biosynthetic






process (GO: 1901362);






secondary metabolite






biosynthetic process






(GO: 0044550)


AT1G16890
UBIQUITIN-

ubiquitin-like protein conjugating enzyme
postreplication
nucleus



CONJUGATING

activity(GO: 0061650);ubiquitin-protein
repair(GO: 0006301); protein
(GO: 0005634)



ENZYME E2 36

transferase activity(GO: 0004842)
K63-linked



(PTHR24068: SF273)


ubiquitination(GO: 0070534)


AT2G30110
UBIQUITIN-
ligase (PC00142);
ubiquitin-like modifier activating enzyme
cellular response to DNA
cytoplasm



ACTIVATING
transfer/carrier
activity (GO: 0008641)
damage stimulus
(GO: 0005737);



ENZYME E1 1
protein

(GO: 0006974); protein
nucleus



(PTHR10953: SF208)
(PC00219)

ubiquitination (GO: 0016567)
(GO: 0005634)


AT4G21100
DNA DAMAGE-
damaged DNA-
damaged DNA binding (GO: 0003684)
proteasome-mediated
nucleus



BINDING
binding protein

ubiquitin-dependent protein
(GO: 0005634)



PROTEIN 1
(PC00086);

catabolic process



(PTHR10644: SF3)
mRNA

(GO: 0043161); protein




polyadenylation

ubiquitination (GO: 0016567)




factor (PC00146)


AT5G49570
PEPTIDE-N(4)-
hydrolase
hydrolase activity, acting on carbon-
cellular protein modification
cytosol



(N-ACETYL-
(PC00121)
nitrogen (but not peptide) bonds, in linear
process (GO: 0006464);
(GO: 0005829);



BETA-

amides (GO: 0016811)
glycoprotein metabolic
nucleus



GLUCOSAMINYL)ASPARAGINE


process (GO: 0009100);
(GO: 0005634)



AMIDASE


protein quality control for



(PTHR12143: SF19)


misfolded or incompletely






synthesized proteins






(GO: 0006515)


AT1G08420
SERINE/THREONINE-



PROTEIN



PHOSPHATASE



BSL2



(PTHR46422: SF7)


AT1G21210
WALL-

protein serine/threonine kinase activity

plasma



ASSOCIATED

(GO: 0004674)

membrane(GO: 0005886)



RECEPTOR



KINASE 2-



RELATED



(PTHR27005: SF282)


AT1G48210
F11A17.22

transmembrane receptor protein

plasma membrane



PROTEIN-

serine/threonine kinase activity

(GO: 0005886)



RELATED

(GO: 0004675)



(PTHR27001: SF841)


AT1G51660
MITOGEN-

protein serine/threonine kinase activity
activation of protein kinase
cytoplasm



ACTIVATED

(GO: 0004674)
activity (GO: 0032147); signal
(GO: 0005737)



PROTEIN


transduction by protein



KINASE


phosphorylation



KINASE 4


(GO: 0023014); stress-



(PTHR24361: SF758)


activated protein kinase






signaling cascade






(GO: 0031098)


AT2G02560
CULLIN-
transcription

protein ubiquitination
nucleus



ASSOCIATED
factor (PC00218)

(GO: 0016567); protein-
(GO: 0005634)



NEDD8-


containing complex assembly



DISSOCIATED


(GO: 0065003)



PROTEIN 1



(PTHR12696: SF0)


AT2G16600
PEPTIDYL-PROLYL CIS-TRANS

catalytic activity, acting on a protein
peptidyl-amino acid
Golgi apparatus



ISOMERASE CYP19-1

(GO: 0140096); drug binding
modification (GO: 0018193);
(GO: 0005794);



(PTHR11071: SF459)

(GO: 0008144); peptide binding
protein folding (GO: 006457)
chloroplast





(GO: 0042277); unfolded protein binding

(GO: 0009507);





(GO: 0051082)

cytosol







(GO: 0005829);







plasma membrane







(GO: 0005886);







vacuole







(GO: 0005773)


AT2G37710
L-TYPE LECTIN-

transmembrane receptor protein
defense response to bacterium
plasma membrane



DOMAIN

serine/threonine kinase activity
(GO: 0042742)
(GO: 0005886)



CONTAINING

(GO: 0004675)



RECEPTOR



KINASE IV.1



(PTHR27007: SF207)


AT3G09350
HSP70-BINDING

ATPase activity (GO: 0016887);

endoplasmic



PROTEIN 1

nucleoside-triphosphatase regulator

reticulum



(PTHR19316: SF18)

activity (GO: 0060589); purine nucleotide

(GO: 0005783);





binding (GO: 0017076)

plasma membrane







(GO: 0005886);







vacuole







(GO: 0005773)


AT3G12580
HEAT SHOCK

ATP binding (GO: 0005524); ATPase
cellular response to heat
cytoplasm



70 KDA

activity, coupled (GO: 0042623); heat
(GO: 0034605); cellular
(GO: 0005737)



PROTEIN

shock protein binding (GO: 0031072);
response to unfolded protein



COGNATE 1-

unfolded protein binding (GO: 0051082)
(GO: 0034620); chaperone-



RELATED


mediated protein folding



(PTHR19375: SF395)


(GO: 0061077)


AT3G14840
SUBFAMILY

protein serine/threonine kinase activity
protein autophosphorylation
plasma membrane



NOT NAMED

(GO: 0004674)
(GO: 0046777)
(GO: 0005886)



(PTHR27006: SF136)


AT3G19420
PHOSPHATIDYLINOSITOL 3,4,5-
protein
phosphoprotein phosphatase activity
cell cycle (GO: 0007049);



TRISPHOSPHATE 3-
phosphatase
(GO: 0004721)
phospholipid metabolic



PHOSPHATASE
(PC00195)

process (GO: 0006644);



TPTE2-


protein phosphorylation



RELATED


(GO: 0006468)



(PTHR12305: SF32)


AT3G48990
OXALATE--
dehydrogenase
ligase activity (GO: 0016874);
cellular amino acid



COA LIGASE
(PC00092); ligase
oxidoreductase activity (GO: 0016491)
biosynthetic process



(PTHR43201: SF14)
(PC00142)

(GO: 0008652); coenzyme






metabolic process






(GO: 0006732); fatty acid






metabolic process






(GO: 0006631)


AT4G15802
HEAT SHOCK


cellular response to heat
cytosol



FACTOR


(GO: 0034605)
(GO: 0005829);



BINDING



nucleus



PROTEIN



(GO: 0005634)



(PTHR19424: SF0)


AT4G26070
MITOGEN-

protein serine/threonine kinase activity
activation of protein kinase
cytoplasm



ACTIVATED

(GO: 0004674)
activity (GO: 0032147); signal
(GO: 0005737)



PROTEIN


transduction by protein



KINASE


phosphorylation



KINASE 1


(GO: 0023014); stress-



(PTHR24361: SF735)


activated protein kinase






signaling cascade






(GO: 0031098)


AT4G26120
REGULATORY


defense response to bacterium
cytoplasm



PROTEIN NPR2


(GO: 0042742); jasmonic acid
(GO: 0005737);



(PTHR46475: SF5)


mediated signaling pathway
nucleus






(GO: 0009867) regulation of
(GO: 0005634)






signal transduction






(GO: 0009966) response to






fungus (GO: 0009620)


AT4G39090
CYSTEINE
cysteine protease
cysteine-type endopeptidase activity
proteolysis involved in
extracellular space



PROTEASE
(PC00081);
(GO: 0004197)
cellular protein catabolic
(GO: 0005615);



RD19A
protease inhibitor

process (GO: 0051603)
lysosome



(PTHR12411: SF611)
(PC00191)


(GO: 0005764)


AT5G02490
HEAT SHOCK

ATP binding (GO: 0005524); ATPase
cellular response to heat
cytoplasm



70 KDA

activity, coupled (GO: 0042623); heat
(GO: 0034605); cellular
(GO: 0005737)



PROTEIN

shock protein binding (GO: 0031072);
response to unfolded protein



COGNATE 1-

unfolded protein binding (GO: 0051082)
(GO: 0034620); chaperone-



RELATED


mediated protein folding



(PTHR19375: SF395)


(GO: 0061077)


AT5G14250
COP9
enzyme

protein ubiquitination
COP9 signalosome



SIGNALOSOME
modulator

(GO: 0016567); ubiquitin-
(GO: 0008180)



COMPLEX
(PC00095)

dependent protein catabolic



SUBUNIT 3


process (GO: 0006511)



(PTHR10758: SF1)


AT5G43060
CYSTEINE
cysteine protease
cysteine-type endopeptidase activity
proteolysis involved in
extracellular space



PROTEASE
(PC00081);
(GO: 0004197)
cellular protein catabolic
(GO: 0005615);



RD21B-
protease inhibitor

process (GO: 0051603)
lysosome



RELATED
(PC00191)


(GO: 0005764)



(PTHR12411: SF682)


AT5G45110
REGULATORY


defense response to bacterium
nucleus



PROTEIN NPR3


(GO: 0042742); jasmonic acid
(GO: 0005634)



(PTHR46475: SF8)


mediated signaling pathway






(GO: 0009867); regulation of






signal transduction






(GO: 0009966); response to






fungus (GO: 0009620)


AT5G35530
40S
ribosomal protein
catalytic activity, acting on DNA
DNA repair (GO: 0006281);
cytosolic small ribosomal



RIBOSOMAL
(PC00202)
(GO: 0140097); damaged DNA binding
positive regulation of
subunit (GO: 0022627);



PROTEIN S3

(GO: 0003684); hydrolase activity
macromolecule metabolic
nucleus (GO: 0005634)



(PTHR11760: SF32)

(GO: 0016787); structural constituent of
process (GO: 0010604);





ribosome (GO: 0003735)
positive regulation of






nucleobase-containing






compound metabolic process






(GO: 0045935); positive






regulation of response to






DNA damage stimulus






(GO: 2001022); regulation of






DNA repair (GO: 0006282)


AT2G29570
PROLIFERATING
DNA polymerase
catalytic activity (GO: 0003824); enzyme
DNA biosynthetic process
intracellular part



CELL
processivity factor
regulator activity (GO: 0030234)
(GO: 0071897); DNA strand
(GO: 0044424);



NUCLEAR
(PC00015)

elongation involved in DNA
protein-containing



ANTIGEN


replication (GO: 0006271);
complex



(PTHR11352: SF0)


RNA biosynthetic process
(GO: 0032991)






(GO: 0032774); RNA






catabolic process






(GO: 0006401)


AT3G06010
ATP-
DNA helicase



DEPENDENT
(PC00011)



HELICASE BRM



(PTHR10799: SF854)


AT3G07930
METHYL-CPG-
methyl-
DNA binding (GO: 0003677)
response to radiation



BINDING
transferase

(GO: 0009314)



DOMAIN
(PC00155);



PROTEIN 4-
nuclease



LIKE PROTEIN
(PC00170)



(PTHR15074: SF0)


AT3G14890
BIFUNCTIONAL

double-stranded DNA binding
DNA repair (GO: 0006281);



POLYNUCLEOTIDE

(GO: 0003690); kinase activity
nucleoside monophosphate



PHOSPHATASE/

(GO: 0016301); phosphatase activity
metabolic process



KINASE

(GO: 0016791); phosphotransferase
(GO: 0009123); nucleotide



(PTHR12083: SF9)

activity, alcohol group as acceptor
biosynthetic process





(GO: 0016773); phosphotransferase
(GO: 0009165); nucleotide





activity, phosphate group as acceptor
phosphorylation





(GO: 0016776)
(GO: 0046939)


AT4G13350
SUBFAMILY



NOT NAMED



(PTHR46085: SF3)


AT1G01960
EXCHANGE



FACTOR FOR



ARF 6,



ISOFORM H



(PTHR10663: SF328)


AT4G02510
TRANSLOCASE



OF CHLOROPLAST



159,



CHLOROPLASTIC



(PTHR10903: SF120)


AT2G34480
60S



cytosolic large



RIBOSOMAL



ribosomal subunit



PROTEIN L18A-1-



(GO: 0022625)



RELATED



(PTHR10052: SF39)


AT1G02450
PROTEIN NIM1-



INTERACTING 1



(PTHR33669: SF11)


AT1G55450
S-ADENOSYL-



L-METHIONINE-



DEPENDENT



METHYLTRANSFERASES



SUPERFAMILY



PROTEIN



(PTHR44575: SF6)


AT1G60140
ALPHA,ALPHA-



TREHALOSE-



PHOSPHATE



SYNTHASE



[UDP-



FORMING] 10-



RELATED



(PTHR10788: SF81)


AT1G66090


AT1G72910
DISEASE



RESISTANCE



PROTEIN (TTR-



NBS CLASS)-



RELATED



(PTHR11017: SF207)


AT2G03440
NODULIN-



RELATED



PROTEIN 1



(PTHR35098: SF4)


AT2G14560
PROTEIN LURP-



ONE-RELATED



1-RELATED



(PTHR31087: SF58)


AT2G14610
PATHOGENESIS-
defense/


extracellular space



RELATED
immunity protein


(GO: 0005615)



PROTEIN 1
(PC00090)



(PTHR10334: SF406)


AT2G17265
HOMOSERINE



KINASE



(PTHR20861: SF1)


AT2G24850
AMINOTRANSFERASE



TAT3-



RELATED



(PTHR45744: SF21)


AT2G26560
PATATIN-LKE



PROTEIN 2



(PTHR32176: SF0)


AT2G37970
SOUL HEME-



BINDING



FAMILY



PROTEIN



(PTHR11220: SF58)


AT3G01290
HYPERSENSITIVE-
cytoskeletal
structural molecule activity (GO: 0005198)

cytoskeleton



INDUCED
protein


(GO: 0005856)



RESPONSE
(PC00085);



PROTEIN 3
protease inhibitor



(PTHR43327: SF19)
(PC00191)


AT3G04210
ATP BINDING



PROTEIN-



RELATED



(PTHR11017: SF297)


AT3G18520
HISTONE


chromatin organization



DEACETYLASE


(GO: 0006325)



(PTHR45634: SF11)


AT3G43810
CALMODULIN-
calmodulin
calcium ion binding (GO: 0005509)
calcium-mediated signaling
intracellular



7-RELATED
(PC00061)

(GO: 0019722)
(GO: 0005622)



(PTHR23050: SF385)


AT3G44480
ATP BINDING



PROTEIN-



RELATED



(PTHR11017: SF297)


AT3G48090
PROTEIN EDS1-



RELATED



(PTHR47090: SF2)


AT3G50930
PROTEIN



HYPER-



SENSITIVITY-



RELATED 4



(PTHR23070: SF81)


AT3G51250
SUBFAMILY



plasma membrane



NOT NAMED



(GO: 0005886)



(PTHR21068: SF35)


AT3G52430
LIPASE-LIKE



PAD4



(PTHR47413: SF2)


AT4G16950
DISEASE



RESISTANCE



PROTEIN (TIR-



NBS-LRR



CLASS)-



RELATED



(PTHR11017: SF274)


AT4G19510
DISEASE



RESISTANCE



PROTEIN (TIR-



NBS-LRR



CLASS)



(PTHR11017: SF293)


AT4G33050
IQ DOMAIN-



CONTAINING



PROTEIN IQM1



(PTHR31250: SF33)


AT5G41750
DISEASE



RESISTANCE



PROTEIN (TIR-



NBS-LRR



CLASS)



FAMILY



(PTHR11017: SF291)


AT5G45510
DISEASE



RESISTANCE



PROTEIN (TIR-



NBS-LRR



CLASS)-



RELATED



(PTHR11017: SF212)


AT5G45520
LEUCINE-RICH



REPEAT (LRR)



FAMILY



PROTEIN-



RELATED



(PTHR23155: SF1076)


AT5G48620
DISEASE



RESISTANCE



RPP8-LIKE



PROTEIN 3-



RELATED



(PTHR23155: SF933)


AT5G54310
ADP-



RIBOSYLATION



FACTOR



GTPASE-



ACTIVATING



PROTEIN



AGD5-



RELATED



(PTHR46419: SF2)


AT5G57560
XYLOGLUCAN



ENDOTRANSGLUCOSYLASE/



HYDROLASE



PROTEIN 22



(PTHR31062: SF188)


AT5G45500
LEUCINE-RICH



REPEAT (LRR)



FAMILY



PROTEIN-



RELATED



(PTHR23155: SF1076)


AT1G68730
F24J5.3

chaperone binding (GO: 0051087)
protein folding (GO: 0006457);
mitochondrion



(PTHR20922: SF19)


protein import into
(GO: 0005739)






mitochondrial matrix






(GO: 0030150); protein






stabilization (GO: 0050821)


AT1G68200
ZINC FINGER
RNA binding



CCCH DOMAIN-
protein



CONTAINING
(PC00031)



PROTEIN 15



(PTHR12547: SF126)


AT2G21790
RIBONUCLEOSIDE-
reductase
oxidoreductase activity (GO: 0016491)
carbohydrate derivative
cytosolic part



DIPHOSPHATE
(PC00198)

biosynthetic process
(GO: 0044445);



REDUCTASE


(GO: 1901137); nucleotide
oxidoreductase



LARGE


biosynthetic process
complex



SUBUNIT


(GO: 0009165)
(GO: 1990204)



(PTHR11573: SF6)


AT1G05720
SELENOPROTEIN F



(PTHR13077: SF6)


AT1G11680
LANOSTEROL
oxygenase

oxidation-reduction process



14-ALPHA
(PC00177)

(GO: 0055114); sterol



DEMETHYLASE


metabolic process



(PTHR24286: SF24)


(GO: 0016125)


AT1G16350
INOSINE-5′-

oxidoreductase activity, acting on the
nucleobase-containing small



MONOPHOSPHATE

CH—OH group of donors, NAD or NADP as
molecule biosynthetic process



DEHYDROGENASE

acceptor (GO: 0016616)
(GO: 0034404); purine



(PTHR11911: SF111)


ribonucleoside triphosphate






biosynthetic process






(GO: 0009206); purine






ribonucleotide biosynthetic






process (GO: 0009152)


AT1G22400
UDP-

UDP-glucosyltransferase activity

intracellular



GLYCOSYLTRANSFERASE

(GO: 0035251)

membrane-



85A1-RELATED



bounded



(PTHR11926: SF928)



organelle







(GO: 0043231)


AT1G48320
1,4-DIHYDROXY-2-

hydrolase activity, acting on ester bonds

cytosol



NAPHTHOYL-

(GO: 0016788)

(GO: 0005829)



COA



THIOESTERASE 1



(PTHR43240: SF5)


AT1G70580
GLUTAMATE-
transaminase
transferase activity (GO: 0016740)
cellular amino acid metabolic



GLYOXYLATE
(PC00216)

process (GO: 0006520);



AMINOTRANSFERASE 2


porphyrin-containing



(PTHR11751: SF373)


compound metabolic process






(GO: 0006778)


AT2G01490
PHYTANOYL-



COA



DIOXYGENASE



DOMAIN-



CONTAINING



PROTEIN 1



(PTHR20883: SF15)


AT2G26400
1,2-
oxidoreductase
dioxygenase activity (GO: 0051213)
cellular amino acid metabolic



DIHYDROXY-3-
(PC00176)

process (GO: 0006520); sulfur



KETO-5-


compound metabolic process



METHYLTHIOPENTENE


(GO: 0006790)



DIOXYGENASE



(PTHR23418: SF0)


AT2G29320
SUBFAMILY
dehydrogenase
oxidoreductase activity (GO: 0016491)
steroid metabolic process



NOT NAMED
(PC00092);

(GO: 0008202); transport



(PTHR42898: SF33)
reductase

(GO: 0006810)




(PC00198)


AT2G43820
UDP-

UDP-glucosyltransferase activity

intracellular



GLYCOSYLTRANSFERASE

(GO: 0035251)

membrane-



74F2



bounded



(PTHR11926: SF1147)



organelle







(GO: 0043231)


AT4G13180
SUBFAMILY
dehydrogenase
oxidoreductase activity (GO: 0016491)
steroid metabolic process



NOT NAMED
(PC00092);

(GO: 0008202)



(PTHR43361: SF1)
reductase




(PC00198)


AT4G22220
IRON-SULFUR

cofactor binding (GO: 0048037); iron ion
cellular iron ion homeostasis
cytoplasm



CLUSTER

binding (GO: 0005506)
(GO: 0006879)
(GO: 0005737)



ASSEMBLY



ENZYME ISCU,



MITOCHONDRIAL



(PTHR10093: SF8)


AT5G14240
VIRAL IAP-



ASSOCIATED



FACTOR



HOMOLOG



(PTHR45809: SF3)


AT5G22140
FAD/NAD(P)−
dehydrogenase
electron transfer activity (GO: 0009055);
respiratory electron transport
cytoplasm



BINDING
(PC00092);
flavin adenine dinucleotide binding
chain (GO: 0022904)
(GO: 0005737)



OXIDOREDUCTASE
oxidase
(GO: 0050660)



FAMILY
(PC00175);



PROTEIN
reductase



(PTHR43735: SF14)
(PC00198)


AT5G40760
GLUCOSE-6-
dehydrogenase
oxidoreductase activity (GO: 0016491)
monosaccharide metabolic



PHOSPHATE 1-
(PC00092)

process (GO: 0005996)



DEHYDROGENASE



(PTHR23429: SF0)


AT5G48180
NITRILE-

catalytic activity (GO: 0003824); enzyme
cellular nitrogen compound
Cytosol



SPECIFIER

regulator activity (GO: 0030234)
biosynthetic process
(GO: 0005829);



PROTEIN 5


(GO: 0044271);
nucleus



(PTHR47435: SF3)


organonitrogen compound
(GO: 0005634)






biosynthetic process






(GO: 1901566)


AT5G47040
LON PROTEASE



HOMOLOG 2,



PEROXISOMAL



(PTHR10046: SF24)


AT3G18060
WD REPEAT-
non-motor actin
actin filament binding (GO: 0051015)
actin filament
actin filament



CONTAINING
binding protein

depolymerization
(GO: 0005884);



PROTEIN 1
(PC00165)

(GO: 0030042); positive
cortical actin



(PTHR19856: SF0)


regulation of cytoskeleton
cytoskeleton






organization (GO: 0051495);
(GO: 0030864)






positive regulation of






supramolecular fiber






organization (GO: 1902905);






regulation of actin






polymerization or






depolymerization






(GO: 0008064)


AT2G31200
ACTIN-
non-motor actin
actin binding (GO: 0003779); structural
cellular component
actin cytoskeleton



DEPOLYMERIZING
binding protein
molecule activity (GO: 0005198)
morphogenesis
(GO: 0015629)



FACTOR 6
(PC00165)

(GO: 0032989); protein



(PTHR11913: SF84)


metabolic process






(GO: 0019538)


AT1G04860
UBIQUITIN

cysteine-type endopeptidase activity
protein deubiquitination



SPECIFIC

(GO: 0004197); thiol-dependent ubiquitin-
(GO: 0016579)



PEPTIDASE 45

specific protease activity (GO: 0004843)



(PTHR24006: SF661)


AT1G08050
T6D22.13
ion channel



(PTHR10579: SF131)
(PC00133);




metalloprotease




(PC00153)


AT2G04430
MUTT/NUDIX
nucleotide
cofactor binding (GO: 0048037);



FAMILY
phosphatase
nucleotide binding (GO: 0000166);



PROTEIN-
(PC00173)
nucleotide diphosphatase activity



RELATED

(GO: 0004551)



(PTHR13994: SF26)


AT2G20190
CLIP-
structural protein
structural molecule activity (GO: 0005198)
cell cycle (GO: 0007049)



ASSOCIATED
(PC00211)



PROTEIN



(PTHR21567: SF67)


AT2G21470
SUMO-
ligase (PC00142);
ubiquitin-like modifier activating enzyme
protein sumoylation
catalytic complex



ACTIVATING
transfer/carrier
activity (GO: 0008641)
(GO: 0016925)
(GO: 1902494);



ENZYME
protein


cytoplasm



SUBUNIT 2
(PC00219)


(GO: 0005737);



(PTHR10953: SF5)



nuclear part







(GO: 0044428)


AT2G28450
TRNA (URACIL-5-)-



METHYLTRANSFERASE



HOMOLOG A



(PTHR45904: SF2)


AT2G32160
CARNOSINE N-

S-adenosylmethionine-dependent



METHYLTRANSFERASE

methyltransferase activity (GO: 0008757)



(PTHR12303: SF6)


AT2G47110
UBIQUITIN-40S
ribosomal protein
ubiquitin protein ligase binding
modification-dependent
Cytoplasm



RIBOSOMAL
(PC00202)
(GO: 0031625)
protein catabolic process
(GO: 0005737);



PROTEIN S27A-2


(GO: 0019941); protein
nucleus



(PTHR10666: SF339)


ubiquitination (GO: 0016567)
(GO: 0005634)


AT3G07990
SERINE
serine protease
peptidase activity, acting on L-amino acid
proteolysis involved in



CARBOXYPEPTIDASE-
(PC00203)
peptides (GO: 0070011); serine hydrolase
cellular protein catabolic



LIKE 27

activity (GO: 0017171)
process (GO: 0051603)



(PTHR11802: SF198)


AT3G20630
UBIQUITINYL

cysteine-type endopeptidase activity
protein deubiquitination



HYDROLASE 1

(GO: 0004197); thiol-dependent ubiquitin-
(GO: 0016579)



(PTHR24006: SF700)

specific protease activity (GO: 0004843)


AT3G23570
PROTEIN AIM2



(PTHR17630: SF44)


AT3G50590
TRANSDUCIN/

Atg12 activating enzyme activity
Atg1/ULK1 kinase complex
Autophagosome



WD40 REPEAT-

(GO: 0019778); Atg12 conjugating
assembly (GO: 1904745);
(GO: 0005776);



LIKE

enzyme activity (GO: 0061651); Atg12
autophagosome assembly
vacuolar



SUPERFAMILY

ligase activity (GO: 0061660); Atg8-
(GO: 0000045);
membrane



PROTEIN

specific protease activity (GO: 0019786)
transmembrane transport
(GO: 0005774)



(PTHR19878: SF17)


(GO: 0055085)


AT3G58040
E3 UBIQUITIN-
ubiquitin-protein
ubiquitin protein ligase activity

cytoplasm



PROTEIN
ligase (PC00234)
(GO: 0061630)

(GO: 0005737)



LIGASE SINAT2



(PTHR10315: SF79)


AT4G01870
TOLB PROTEIN-



LIKE PROTEIN



(PTHR32161: SF9)


AT4G17830
ACETYLORNITHINE
deacetylase



DEACETYLASE
(PC00087);



(PTHR43808: SF3)
metalloprotease




(PC00153)


AT4G30890
UBIQUITIN
cysteine protease
cysteine-type endopeptidase activity
protein deubiquitination



CARBOXYL-
(PC00081)
(GO: 0004197); thiol-dependent ubiquitin-
(GO: 0016579)



TERMINAL

specific protease activity (GO: 0004843)



HYDROLASE 10



(PTHR24006: SF687)


AT5G60360
PRO-
cysteine protease)
cysteine-type endopeptidase activity
proteolysis involved in
extracellular space



CATHEPSIN H
PC00081);
(GO: 0004197)
cellular protein catabolic
(GO: 0005615);



(PTHR12411: SF642)
protease inhibitor

process (GO: 0051603)
lysosome




(PC00191)


(GO: 0005764)


AT5G60510
DEHYDRODOLICHYL
acyltransferase
transferase activity, transferring alkyl or
alcohol metabolic process
endoplasmic



DIPHOSPHATE
(PC00042)
aryl (other than methyl) groups
(GO: 0006066); isoprenoid
reticulum



SYNTHASE

(GO: 0016765)
biosynthetic process
(GO: 0005783);



COMPLEX


(GO: 0008299); organic
plasma membrane



SUBUNIT


hydroxy compound
(GO: 0005886);



DHDDS


biosynthetic process
vacuole



(PTHR10291: SF29)


(GO: 1901617); small
(GO: 0005773)






molecule biosynthetic process






(GO: 0044283)


AT5G61790
CALNEXIN 14D-
calcium-binding
calcium ion binding (GO: 0005509)
Exocytosis (GO: 0006887);



RELATED
protein

intracellular protein transport



(PTHR11073: SF1)
(PC00060);

(GO: 0006886); protein




chaperone

folding (GO: 0006457);




(PC00072)

protein metabolic process






(GO: 0019538)


AT5G67340
U-BOX
cell adhesion


cytoplasm



DOMAIN-
molecule


(GO: 0005737);



CONTAINING
(PC00069);


nucleus



PROTEIN 2
cytoskeletal


(GO: 0005634)



(PTHR23315: SF263)
protein




(PC00085);




signaling




molecule




(PC00207);




storage protein




(PC00210)


AT3G15610
SERINE-



THREONINE



KINASE



RECEPTOR-



ASSOCIATED



PROTEIN



(PTHR44156: SF3)


AT3G45620
DDB1 AND
G-protein
GTPase activity (GO: 0003924); protein
nucleobase-containing



CUL4-
(PC00020)
binding (GO: 0005515)
compound metabolic process



ASSOCIATED


(GO: 0006139); regulation of



FACTOR 8


nucleobase-containing



(PTHR15574: SF21)


compound metabolic process






(GO: 0019219)


AT5G24710
TRANSDUCIN/



WD40 REPEAT-



LIKE



SUPERFAMILY



PROTEIN



(PTHR45521: SF2)


AT3G18580
NUCLEIC ACID-
DNA binding
helicase activity (GO: 0004386); single-
DNA biosynthetic process
intracellular non-membrane-



BINDING, OB-
protein
stranded DNA binding (GO: 0003697)
(GO: 0071897); DNA-
bounded organelle



FOLD-LIKE
(PC00009)

dependent DNA replication
(GO: 0043232);



PROTEIN


(GO: 0006261); mitochondrial
mitochondrial



(PTHR10302: SF16)


DNA metabolic process
matrix






(GO: 0032042); positive
(GO: 0005759)






regulation of hydrolase






activity (GO: 0051345)


AT4G31210
DNA
enzyme
catalytic activity (GO: 0003824); nucleic
DNA replication



TOPOISOMERASE,
modulator
acid binding (GO: 0003676); protein
(GO: 0006260); cell cycle



TYPE IA,
(PC00095);
binding (GO: 0005515)
(GO: 0007049)



CORE
isomerase



(PTHR42785: SF1)
(PC00135);




nucleic acid




binding




(PC00171)


AT2G41740
VILLIN-2



(PTHR11977: SF85)


AT3G19960
MYOSIN-1-
G-protein
enzyme regulator activity (GO: 0030234);
cellular component
actin cytoskeleton



RELATED
modulator
motor activity (GO: 0003774); protein
morphogenesis
(GO: 0015629);



(PTHR13140: SF780)
(PC00022); actin
binding (GO: 0005515); structural
(GO: 0032989); cytokinesis
cell junction




binding motor
molecule activity(GO: 0005198)
(GO: 0000910); intracellular
(GO: 0030054);




protein

protein transport
plasma membrane




(PC00040); cell

(GO: 0006886); intracellular
(GO: 0005886)




junction protein

signal transduction




(PC00070)

(GO: 0035556); movement of






cell or subcellular component






(GO: 0006928); vesicle-






mediated transport






(GO: 0016192)


AT1G27970
NUCLEAR


nucleocytoplasmic transport
nuclear pore



TRANSPORT


(GO: 0006913)
central transport



FACTOR 2B



channel



(PTHR12612: SF31)



(GO: 0044613);







plasma membrane







(GO: 0005886);







vacuole







(GO: 0005773)


AT3G06720
IMPORTIN

nuclear localization sequence binding
NLS-bearing protein import
cytosol



SUBUNIT

(GO: 0008139); protein transporter activity
into nucleus (GO: 006607)
(GO: 0005829);



ALPHA-

(GO: 0008565)

nuclear pore



RELATED



(GO: 0005643);



(PTHR23316: SF70)



nucleoplasm







(GO: 0005654);







plasma membrane







(GO: 0005886);







vacuole







(GO: 0005773)


AT1G59610
DYNAMIN-2B
hydrolase
GTPase activity (GO: 0003924);
mitochondrial fission
cytoplasm



(PTHR11566: SF158)
(PC00121);
microtubule binding (GO: 0008017)
(GO: 0000266)
(GO: 0005737)




microtubule




family




cytoskeletal




protein




(PC00157); small




GTPase




(PC00208)


AT3G13870
PROTEIN SEY1

GTPase activity (GO: 0003924)
endoplasmic reticulum
endoplasmic



(PTHR45923: SF2)


organization (GO: 0007029);
reticulum






organelle membrane fusion
(GO: 0005783);






(GO: 0090174)
plasma membrane







(GO: 0005886);







vacuole







(GO: 0005773)


AT5G24520
PROTEIN



Nucleus



TRANSPARENT



(GO: 0005634)



TESTA



GLABRA 1



(PTHR19919: SF10)


AT1G07140
RAN-BINDING
G-protein
GTPase activator activity (GO: 0005096);

nuclear pore



PROTEIN 1
modulator
GTPase activity (GO: 0003924); Ras

(GO: 0005643);



HOMOLOG A
(PC00022)
GTPase binding (GO: 0017016)

plasma membrane



(PTHR23138: SF133)



(GO: 0005886);







vacuole







(GO: 0005773)


AT3G19870
AP-5 COMPLEX


endosomal transport
cytoplasmic part



SUBUNIT


(GO: 0016197)
(GO: 0044444);



BETA-1



membrane protein



(PTHR34033: SF1)



complex







(GO: 0098796)


AT3G28710
V-TYPE
ATP synthase
ATPase activity, coupled to
vacuolar acidification
lysosomal



PROTON
(PC00002);
transmembrane movement of substances
(GO: 0007035); vacuolar
membrane



ATPASE
hydrolase
(GO: 0042626); proton transmembrane
transport (GO: 0007034)
(GO: 0005765);



SUBUNIT D 1
(PC00121)
transporter activity (GO: 0015078)

proton-



(PTHR11028: SF0)



transporting two-







sector ATPase







complex







(GO: 0016469)


AT5G05000
GTP-BINDING



PROTEIN A



(PTHR10903: SF65)


AT5G54750
TRAFFICKING

GDP binding (GO: 0019003); GTP binding
ER to Golgi vesicle-mediated
TRAPP complex



PROTEIN

(GO: 0005525); Rab guanyl-nucleotide
transport (GO: 0006888);
(GO: 0030008);



PARTICLE

exchange factor activity (GO: 0017112)
intra-Golgi vesicle-mediated
bounding



COMPLEX


transport (GO: 0006891)
membrane of



SUBUNIT



organelle



(PTHR13048: SF0)



(GO: 0098588);







cis-Golgi network







(GO: 0005801);







cytosol







(GO: 0005829);







plasma membrane







(GO: 0005886);







vacuole







(GO: 0005773)


AT1G01100
60S ACIDIC



RIBOSOMAL



PROTEIN P1-1-



RELATED



(PTHR45696: SF16)


AT3G61240
DEAD-BOX



ATP-



DEPENDENT



RNA HELICASE 12



(PTHR24031: SF615)


AT5G64150
SUBFAMILY



NOT NAMED



(PTHR47441: SF3)


AT1G12920
EUKARYOTIC
translation release
mRNA binding (GO: 0003729)
cytoplasmic translation
cytosol



PEPTIDE CHAIN
factor (PC00225)

(GO: 00002181); formation of
(GO: 0005829);



RELEASE


translation initiation ternary
protein-containing



FACTOR


complex (GO: 00001677);
complex



SUBUNIT 1-2


translational elongation
(GO: 0032991)



(PTHR10113: SF31)


(GO: 00006414); translational






termination (GO: 0006415)


AT3G62870
60S
ribosomal protein
RNA binding (GO: 0003723)
maturation of LSU-rRNA
cytosolic large



RIBOSOMAL
(PC00202)

(GO: 0000470)
ribosomal subunit



PROTEIN L7A-



(GO: 0022625)



1-RELATED



(PTHR23105: SF122)


AT2G16360
RIBOSOMAL



PROTEIN S25



(PTHR12850: SF5)


AT2G31060
ELONGATION
G-protein
GTPase activity (GO: 0003924)

cytosol



FACTOR
(PC00020);


(GO: 0005829);



FAMILY
hydrolase


ribonucleoprotein



PROTEIN
(PC00121);


complex



(PTHR42908: SF8)
translation


(GO: 1990904)




elongation factor




(PC00222);




translation




initiation factor




(PC00224)


AT1G27900
PRE-MRNA-
RNA helicase
ATP-dependent helicase activity
mRNA splicing, via



SPLICING
(PC00032)
(GO: 0008026); RNA binding
spliceosome (GO: 0000398)



FACTOR ATP-

(GO: 0003723); catalytic activity, acting



DEPENDENT

on RNA (GO: 0140098)



RNA HELICASE



DEAH4-



RELATED



(PTHR18934: SF131)


AT2G43410
FLOWERING



TIME CONTROL



PROTEIN FPA



(PTHR23189: SF45)


AT3G62310
DHX15
RNA helicase
ATP-dependent helicase activity



ORTHOLOG,
(PC00032)
(GO: 0008026); RNA binding



ISOFORM A

(GO: 0003723); catalytic activity, acting



(PTHR18934: SF109)

on RNA (GO: 0140098)


AT4G09730
ATP-



DEPENDENT



RNA HELICASE



DDX28-



RELATED



(PTHR24031: SF421)


AT5G62190
DEAD (ASP-



GLU-ALA-ASP)



BOX HELICASE 21



(PTHR24031: SF346)


AT1G60095
JACALIN-



RELATED



LECTIN 16-



RELATED



(PTHR47293: SF11)


AT1G74940
KINASE,



PUTATIVE



(DUF581)-



RELATED



(PTHR47208: SF7)


AT2G20010
GLS PROTEIN



(DUF810)



(PTHR31280: SF16)


AT2G28620
KINESIN-LKE
microtubule
ATP-dependent microtubule motor
microtubule-based movement
microtubule



PROTEIN KIN-5A
binding motor
activity, plus-end-directed (GO: 0008574);
(GO: 0007018)
associated



(PTHR24115: SF885)
protein
microtubule binding (GO: 0008017)

complex




(PC00156)


(GO: 0005875);







microtubule







(GO: 0005874)


AT2G30500
PROTEIN



NETWORKED 4B



(PTHR32258: SF3)


AT3G14075
SUBFAMILY



NOT NAMED



(PTHR46023: SF5)


AT3G28510
SUBFAMILY



NOT NAMED



(PTHR23070: SF88)


AT3G28540
BCS1 AAA-



TYPE ATPASE



(PTHR23070: SF92)


AT3G47630
PHOSPHATIDATE



CYTIDYLYLTRANSFERASE,



MITOCHONDRIAL



(PTHR13619: SF0)


AT3G53470
2,3-BISPHOSPHOGLYCERATE-



INDEPENDENT



PHOSPHOGLYCERATE



MUTASE



(PTHR36043: SF1)


AT4G10120
SUCROSE-



PHOSPHATE



SYNTHASE 4-



RELATED



(PTHR46039: SF1)


AT5G17760
SUBFAMILY



NOT NAMED



(PTHR23070: SF121)


AT5G36225


AT5G51830
FRUCTOKINASE-
carbohydrate
carbohydrate kinase activity
hexose metabolic process
cytosol



7-RELATED
kinase
(GO: 0019200); phosphotransferase
(GO: 0019318)
(GO: 0005829)



(PTHR43085: SF7)
(PC00065);
activity, alcohol group as acceptor




nucleotide kinase
(GO: 0016773)




(PC00172)









GO-Biological Process
















Enrichment
Genes in
Total
Functional



FDR
list
genes
Category
Genes



















2.34E−11
35
1284
Response to biotic
AT2G37710 AT4G26120 AT5G45110 AT3G44480 AT3G52430





stimulus
AT4G26070 AT1G02450 AT2G14610 AT1G02930 AT1G05010






AT2G03440 AT3G01290 AT3G11340 AT3G12580 AT3G26830






AT3G48090 AT3G50930 AT4G31500 AT4G34135 AT4G37990






AT5G02490 AT5G10450 AT5G24530 AT2G17265 AT1G51660






AT2G14560 AT2G26560 AT2G30110 AT3G14840 AT3G48990






AT4G13350 AT4G16950 AT4G39090 AT5G44070 AT5G54310


2.34E−11
35
1271
Response to external
AT2G37710 AT4G26120 AT5G45110 AT3G44480 AT3G52430





biotic stimulus
AT4G26070 AT1G02450 AT1G02930 AT1G05010 AT2G03440






AT2G14610 AT3G01290 AT3G11340 AT3G12580 AT3G26830






AT3G48090 AT3G50930 AT4G31500 AT4G34135 AT4G37990






AT5G02490 AT5G10450 AT5G24530 AT2G17265 AT1G51660






AT2G14560 AT2G26560 AT2G30110 AT3G14840 AT3G48990






AT4G13350 AT4G16950 AT4G39090 AT5G44070 AT5G54310


2.34E−11
35
1271
Response to other
AT2G37710 AT4G26120 AT5G45110 AT3G44480 AT3G52430





organism
AT4G26070 AT1G02450 AT1G02930 AT1G05010 AT2G03440






AT2G14610 AT3G01290 AT3G11340 AT3G12580 AT3G26830






AT3G48090 AT3G50930 AT4G31500 AT4G34135 AT4G37990






AT5G02490 AT5G10450 AT5G24530 AT2G17265 AT1G51660






AT2G14560 AT2G26560 AT2G30110 AT3G14840 AT3G48990






AT4G13350 AT4G16950 AT4G39090 AT5G44070 AT5G54310


2.70E−11
40
1702
Response to external
AT2G37710 AT4G26120 AT5G45110 AT3G44480 AT3G52430





stimulus
AT4G26070 AT1G02450 AT4G05420 AT4G21100 AT5G14250






AT1G02930 AT1G05010 AT1G78380 AT2G03440 AT2G14610






AT3G01290 AT3G11340 AT3G12580 AT3G26830 AT3G48090






AT3G50930 AT4G31500 AT4G34135 AT4G37990 AT5G02490






AT5G10450 AT5G24530 AT5G57560 AT2G17265 AT1G51660






AT2G14560 AT2G26560 AT2G30110 AT3G14840 AT3G48990






AT4G13350 AT4G16950 AT4G39090 AT5G44070 AT5G54310


3.28E−11
60
3648
Response to stress
AT1G05010 AT1G16890 AT1G51660 AT1G60140 AT2G29570






AT2G30110 AT2G37710 AT3G12580 AT3G14890 AT4G15802






AT4G26070 AT4G26120 AT5G02490 AT5G35530 AT5G44070






AT5G45110 AT5G50340 AT1G02930 AT1G02450 AT1G63460






AT2G03440 AT2G14610 AT2G17265 AT2G26560 AT3G07930






AT3G11340 AT3G26830 AT3G44480 AT3G48090 AT3G48990






AT3G50930 AT3G52430 AT4G05420 AT4G16950 AT4G19510






AT4G21100 AT5G24530 AT5G45510 AT5G48620 AT1G04980






AT1G54100 AT1G55450 AT1G76680 AT1G78380 AT2G24850






AT3G19420 AT4G31500 AT4G37760 AT4G39090 AT5G03630






AT5G10450 AT5G18170 AT5G43060 AT5G49570 AT5G57560






AT2G14560 AT3G06010 AT3G09350 AT3G14840 AT5G54310


7.11E−10
21
502
Response to
AT2G37710 AT4G26120 AT5G45110 AT3G52430 AT4G26070





bacterium
AT1G02930 AT2G03440 AT3G12580 AT3G26830 AT3G50930






AT4G31500 AT4G37990 AT5G02490 AT5G10450 AT5G24530






AT2G17265 AT1G02450 AT3G48090 AT4G39090 AT5G44070






AT5G54310


3.71E−09
38
1846
Multi-organism
AT2G37710 AT4G26120 AT5G45110 AT3G44480 AT3G52430





process
AT4G26070 AT1G02450 AT1G02930 AT1G05010 AT2G03440






AT2G14610 AT3G01290 AT3G11340 AT3G12580 AT3G26830






AT3G48090 AT3G50930 AT4G31500 AT4G34135 AT4G37990






AT5G02490 AT5G10450 AT5G24530 AT2G17265 AT1G51660






AT2G14560 AT2G26560 AT2G30110 AT2G34480 AT3G14840






AT3G18520 AT3G48990 AT4G13350 AT4G16950 AT4G39090






AT5G44070 AT5G54310 AT5G57800


3.20E−07
31
1514
Defense response
AT2G37710 AT4G26120 AT5G45110 AT4G26070 AT1G02450






AT1G02930 AT1G05010 AT1G51660 AT2G03440 AT2G14610






AT2G17265 AT2G26560 AT3G11340 AT3G26830 AT3G44480






AT3G48090 AT3G48990 AT3G50930 AT3G52430 AT4G16950






AT4G19510 AT5G24530 AT5G45510 AT5G48620 AT4G31500






AT5G10450 AT2G14560 AT3G14840 AT4G39090 AT5G44070






AT5G54310


6.24E−07
17
485
Response to metal
AT1G05010 AT5G44070 AT1G02930 AT1G76680 AT1G78380





ion
AT2G21790 AT2G26560 AT2G30110 AT3G12580 AT3G48990






AT5G02490 AT5G03630 AT5G10450 AT5G18170 AT5G51830






AT1G16890 AT3G43810


6.24E−07
25
1058
Cellular response to
AT1G05010 AT1G16890 AT1G51660 AT1G60140 AT2G29570





stress
AT2G30110 AT3G12580 AT3G14890 AT4G15802 AT4G26070






AT5G02490 AT5G35530 AT5G50340 AT3G07930 AT3G50930






AT3G52430 AT4G05420 AT4G21100 AT5G48620 AT1G04980






AT1G78380 AT2G26560 AT3G48090 AT4G31500 AT5G44070


6.24E−07
47
3184
Cellular response to
AT1G05010 AT1G16890 AT1G21210 AT1G51660 AT1G60140





stimulus
AT2G16600 AT2G29570 AT2G30110 AT3G12580 AT3G14890






AT3G43810 AT4G15802 AT4G26070 AT4G26120 AT5G02490






AT5G35530 AT5G44070 AT5G45110 AT5G50340 AT3G52430






AT1G01960 AT1G08420 AT1G48210 AT1G63460 AT1G66090






AT1G72910 AT1G78380 AT2G03440 AT2G37710 AT3G04210






AT3G07930 AT3G44480 AT3G50930 AT4G02510 AT4G05420






AT4G16950 AT4G19510 AT4G21100 AT5G14250 AT5G41750






AT5G48620 AT1G04980 AT2G26560 AT2G37970 AT3G48090






AT4G31500 AT5G10450


7.29E−07
24
995
Response to
AT1G05010 AT5G44070 AT4G26070 AT1G02930 AT1G54100





inorganic substance
AT1G76680 AT1G78380 AT2G14610 AT2G21790 AT2G26560






AT2G30110 AT3G12580 AT3G26830 AT3G48990 AT5G02490






AT5G03630 AT5G10450 AT5G18170 AT5G49570 AT5G51830






AT3G48090 AT1G16890 AT3G06010 AT3G43810


1.01E−06
15
385
Innate immune
AT1G02450 AT1G51660 AT3G50930 AT3G52430 AT4G26070





response
AT5G48620 AT2G14610 AT2G26560 AT3G26830 AT3G48090






AT4G31500 AT5G45110 AT3G14840 AT3G44480 AT4G16950


1.12E−06
24
1026
Defense response to
AT2G37710 AT4G26120 AT5G45110 AT4G26070 AT1G02450





other organism
AT1G02930 AT2G14610 AT3G26830 AT3G48090 AT3G52430






AT4G31500 AT5G10450 AT1G51660 AT2G03440 AT2G14560






AT2G26560 AT3G14840 AT3G44480 AT3G48990 AT4G16950






AT4G39090 AT5G24530 AT5G44070 AT5G54310


1.15E−06
15
393
Immune response
AT1G02450 AT1G51660 AT3G50930 AT3G52430 AT4G26070






AT5G48620 AT2G14610 AT2G26560 AT3G26830 AT3G48090






AT4G31500 AT5G45110 AT3G14840 AT3G44480 AT4G16950


1.30E−06
11
190
Defense response,
AT1G02450 AT2G14610 AT3G26830 AT3G48090 AT3G52430





incompatible
AT4G26070 AT5G45110 AT1G51660 AT3G14840 AT3G44480





interaction
AT4G16950


1.58E−06
14
348
Response to
AT5G44070 AT1G02930 AT1G76680 AT1G78380 AT2G21790





cadmium ion
AT2G26560 AT2G30110 AT3G12580 AT3G48990 AT5G02490






AT5G03630 AT5G10450 AT5G18170 AT5G51830


2.89E−06
15
430
Immune system
AT1G02450 AT1G51660 AT3G50930 AT3G52430 AT4G26070





process
AT5G48620 AT2G14610 AT2G26560 AT3G26830 AT3G48090






AT4G31500 AT5G45110 AT3G14840 AT3G44480 AT4G16950


2.89E−06
45
3194
Response to
AT1G05010 AT2G16600 AT3G12580 AT4G26120 AT5G02490





chemical
AT5G44070 AT5G45110 AT1G16350 AT1G59610 AT3G48990






AT3G52430 AT4G26070 AT1G02930 AT1G08420 AT1G63460






AT1G78380 AT2G03440 AT1G54100 AT1G74940 AT1G76680






AT2G14560 AT2G14610 AT2G21790 AT2G24850 AT2G26560






AT2G30110 AT2G37710 AT3G26830 AT3G50930 AT4G13180






AT4G33050 AT4G37760 AT5G03630 AT5G10450 AT5G18170






AT5G24520 AT5G24530 AT5G49570 AT5G51830 AT5G57560






AT3G48090 AT1G16890 AT2G02560 AT3G06010 AT3G43810


2.89E−06
15
431
Defense response to
AT2G37710 AT4G26120 AT5G45110 AT4G26070 AT1G02930





bacterium
AT4G31500 AT5G10450 AT1G02450 AT2G03440 AT3G48090






AT3G52430 AT4G39090 AT5G24530 AT5G44070 AT5G54310


1.07E−05
34
2150
Response to abiotic
AT1G05010 AT2G16600 AT3G07930 AT3G12580 AT4G15802





stimulus
AT5G02490 AT2G03440 AT4G05420 AT4G21100 AT5G14250






AT1G02930 AT1G54100 AT1G55450 AT1G78380 AT2G14610






AT2G26560 AT3G19420 AT3G26830 AT3G50930 AT4G39090






AT5G03630 AT5G18170 AT5G35530 AT5G43060 AT5G57560






AT5G10450 AT2G37970 AT3G06010 AT3G09350 AT3G43810






AT3G48090 AT3G52430 AT4G26070 AT4G31500


5.44E−05
15
548
Proteolysis involved
AT2G47110 AT3G07990 AT4G05420 AT4G21100 AT4G39090





in cellular protein
AT5G14250 AT5G43060 AT5G49570 AT5G60360 AT1G16890





catabolic process
AT1G04860 AT3G20630 AT3G58040 AT4G30890 AT5G47040


6.36E−05
15
557
Cellular protein
AT2G47110 AT3G07990 AT4G05420 AT4G21100 AT4G39090





catabolic process
AT5G14250 AT5G43060 AT5G49570 AT5G60360 AT1G16890






AT1G04860 AT3G20630 AT3G58040 AT4G30890 AT5G47040


7.62E−05
19
886
Organonitrogen
AT2G47110 AT3G07990 AT4G05420 AT4G21100 AT4G39090





compound catabolic
AT5G14250 AT5G43060 AT5G49570 AT5G60360 AT1G16890





process
AT5G48180 AT1G04860 AT1G70580 AT3G20630 AT3G58040






AT4G30890 AT5G47040 AT5G10450 AT5G44070


7.92E−05
16
647
Protein catabolic
AT2G47110 AT3G07990 AT4G05420 AT4G21100 AT4G39090





process
AT5G14250 AT5G43060 AT5G49570 AT5G60360 AT1G16890






AT1G04860 AT3G20630 AT3G58040 AT4G30890 AT5G47040






AT5G10450


0.00011708
12
378
Response to organic
AT2G16600 AT3G52430 AT1G08420 AT1G76680 AT2G14560





cyclic compound
AT2G14610 AT2G37710 AT5G24530 AT5G49570 AT5G57560






AT3G50930 AT5G10450


0.00011827
28
1779
Response to oxygen-
AT1G05010 AT2G16600 AT4G26120 AT5G45110 AT1G59610





containing
AT3G52430 AT4G26070 AT1G08420 AT2G03440 AT1G02930





compound
AT1G54100 AT1G76680 AT1G78380 AT2G14560 AT2G14610






AT2G24850 AT2G37710 AT3G12580 AT3G26830 AT4G33050






AT4G37760 AT5G24530 AT5G49570 AT5G57560 AT3G48090






AT3G06010 AT3G50930 AT5G10450


0.00022335
16
709
Cellular
AT1G68200 AT2G47110 AT3G07990 AT4G05420 AT4G21100





macromolecule
AT4G39090 AT5G14250 AT5G43060 AT5G49570 AT5G60360





catabolic process
AT1G16890 AT1G04860 AT3G20630 AT3G58040 AT4G30890






AT5G47040


0.00022852
6
79
Systemic acquired
AT1G02450 AT2G14610 AT3G26830 AT3G48090 AT3G52430





resistance
AT5G45110


0.00028608
3
8
Leaf abscission
AT3G48090 AT3G52430 AT5G54310









GO-Molecular Function
















Enrichment
Genes in
Total
Functional



FDR
list
genes
Category
Genes



















5.98E−12
59
3379
Small molecule
AT2G04430 AT3G09350 AT3G12580 AT4G02510 AT5G02490





binding
AT5G05000 AT5G22140 AT1G76680 AT4G13350 AT5G18170






AT5G45110 AT1G05010 AT1G16350 AT1G16890 AT1G21210






AT1G27900 AT1G48210 AT1G51660 AT1G59610 AT1G66090






AT1G70580 AT1G72910 AT2G01490 AT2G17265 AT2G21470






AT2G21790 AT2G24850 AT2G28620 AT2G29720 AT2G30110






AT2G31060 AT2G37710 AT3G04210 AT3G06010 AT3G13870






AT3G14840 AT3G19960 AT3G28510 AT3G28540 AT3G44480






AT3G48990 AT3G50930 AT3G61240 AT3G62310 AT4G09730






AT4G16950 AT4G19510 AT4G26070 AT4G37760 AT5G03630






AT5G17760 AT5G40760 AT5G41750 AT5G45510 AT5G47040






AT5G48620 AT5G50340 AT5G51830 AT5G62190


1.02E−11
58
3370
Anion binding
AT1G02930 AT3G12580 AT4G02510 AT5G02490 AT5G05000






AT5G22140 AT1G76680 AT1G78380 AT3G19420 AT4G13350






AT5G18170 AT5G45110 AT1G05010 AT1G16890 AT1G21210






AT1G27900 AT1G48210 AT1G51660 AT1G59610 AT1G66090






AT1G70580 AT1G72910 AT2G01490 AT2G17265 AT2G21470






AT2G21790 AT2G24850 AT2G28620 AT2G29720 AT2G30110






AT2G31060 AT2G37710 AT3G04210 AT3G06010 AT3G13870






AT3G14840 AT3G19960 AT3G28510 AT3G28540 AT3G44480






AT3G48990 AT3G50930 AT3G61240 AT3G62310 AT4G09730






AT4G16950 AT4G19510 AT4G26070 AT4G37760 AT5G03630






AT5G17760 AT5G41750 AT5G45510 AT5G47040 AT5G48620






AT5G50340 AT5G51830 AT5G62190


7.71E−11
54
3169
Nucleotide binding
AT2G04430 AT3G09350 AT3G12580 AT4G02510 AT5G02490






AT5G05000 AT5G22140 AT1G76680 AT4G13350 AT5G18170






AT1G16350 AT1G16890 AT1G21210 AT1G27900 AT1G48210






AT1G51660 AT1G59610 AT1G66090 AT1G72910 AT2G17265






AT2G21470 AT2G21790 AT2G28620 AT2G29720 AT2G30110






AT2G31060 AT2G37710 AT3G04210 AT3G06010 AT3G13870






AT3G14840 AT3G19960 AT3G28510 AT3G28540 AT3G44480






AT3G48990 AT3G50930 AT3G61240 AT3G62310 AT4G09730






AT4G16950 AT4G19510 AT4G26070 AT4G37760 AT5G03630






AT5G17760 AT5G40760 AT5G41750 AT5G45510 AT5G47040






AT5G48620 AT5G50340 AT5G51830 AT5G62190


7.71E−11
54
3169
Nucleoside
AT2G04430 AT3G09350 AT3G12580 AT4G02510 AT5G02490





phosphate binding
AT5G05000 AT5G22140 AT1G76680 AT4G13350 AT5G18170






AT1G16350 AT1G16890 AT1G21210 AT1G27900 AT1G48210






AT1G51660 AT1G59610 AT1G66090 AT1G72910 AT2G17265






AT2G21470 AT2G21790 AT2G28620 AT2G29720 AT2G30110






AT2G31060 AT2G37710 AT3G04210 AT3G06010 AT3G13870






AT3G14840 AT3G19960 AT3G28510 AT3G28540 AT3G44480






AT3G48990 AT3G50930 AT3G61240 AT3G62310 AT4G09730






AT4G16950 AT4G19510 AT4G26070 AT4G37760 AT5G03630






AT5G17760 AT5G40760 AT5G41750 AT5G45510 AT5G47040






AT5G48620 AT5G50340 AT5G51830 AT5G62190


1.44E−08
47
2894
Carbohydrate
AT3G12580 AT4G02510 AT5G02490 AT5G05000 AT1G02930





derivative binding
AT1G76680 AT4G13350 AT5G18170 AT1G16890 AT1G21210






AT1G27900 AT1G48210 AT1G51660 AT1G59610 AT1G66090






AT1G72910 AT2G17265 AT2G21470 AT2G21790 AT2G28620






AT2G30110 AT2G31060 AT2G37710 AT3G04210 AT3G06010






AT3G13870 AT3G14840 AT3G19960 AT3G28510 AT3G28540






AT3G44480 AT3G48990 AT3G50930 AT3G61240 AT3G62310






AT4G09730 AT4G16950 AT4G19510 AT4G26070 AT5G17760






AT5G41750 AT5G45510 AT5G47040 AT5G48620 AT5G50340






AT5G51830 AT5G62190


1.92E−08
46
2830
Purine nucleotide
AT3G09350 AT3G12580 AT4G02510 AT5G02490 AT5G05000





binding
AT4G13350 AT5G18170 AT1G16890 AT1G21210 AT1G27900






AT1G48210 AT1G51660 AT1G59610 AT1G66090 AT1G72910






AT2G17265 AT2G21470 AT2G21790 AT2G28620 AT2G30110






AT2G31060 AT2G37710 AT3G04210 AT3G06010 AT3G13870






AT3G14840 AT3G19960 AT3G28510 AT3G28540 AT3G44480






AT3G48990 AT3G50930 AT3G61240 AT3G62310 AT4G09730






AT4G16950 AT4G19510 AT4G26070 AT5G17760 AT5G41750






AT5G45510 AT5G47040 AT5G48620 AT5G50340 AT5G51830






AT5G62190


2.12E−08
46
2852
Ribonucleotide
AT3G12580 AT4G02510 AT5G02490 AT5G05000 AT1G76680





binding
AT4G13350 AT5G18170 AT1G16890 AT1G21210 AT1G27900






AT1G48210 AT1G51660 AT1G59610 AT1G66090 AT1G72910






AT2G17265 AT2G21470 AT2G21790 AT2G28620 AT2G30110






AT2G31060 AT2G37710 AT3G04210 AT3G06010 AT3G13870






AT3G14840 AT3G19960 AT3G28510 AT3G28540 AT3G44480






AT3G48990 AT3G50930 AT3G61240 AT3G62310 AT4G09730






AT4G16950 AT4G19510 AT4G26070 AT5G17760 AT5G41750






AT5G45510 AT5G47040 AT5G48620 AT5G50340 AT5G51830






AT5G62190


4.36E−08
45
2823
Purine
AT3G12580 AT4G02510 AT5G02490 AT5G05000 AT4G13350





ribonucleotide
AT5G18170 AT1G16890 AT1G21210 AT1G27900 AT1G48210





binding
AT1G51660 AT1G59610 AT1G66090 AT1G72910 AT2G17265






AT2G21470 AT2G21790 AT2G28620 AT2G30110 AT2G31060






AT2G37710 AT3G04210 AT3G06010 AT3G13870 AT3G14840






AT3G19960 AT3G28510 AT3G28540 AT3G44480 AT3G48990






AT3G50930 AT3G61240 AT3G62310 AT4G09730 AT4G16950






AT4G19510 AT4G26070 AT5G17760 AT5G41750 AT5G45510






AT5G47040 AT5G48620 AT5G50340 AT5G51830 AT5G62190


5.02E−08
25
987
Pyrophosphatase
AT1G27900 AT1G59610 AT2G04430 AT2G28620 AT2G31060





activity
AT3G12580 AT3G13870 AT3G28710 AT3G62310 AT5G02490






AT4G09730 AT4G13350 AT5G44070 AT3G06010 AT3G19960






AT3G28510 AT3G28540 AT3G50930 AT3G61240 AT5G17760






AT5G47040 AT5G50340 AT5G62190 AT4G02510 AT5G05000


5.42E−08
25
996
Hydrolase activity,
AT1G27900 AT1G59610 AT2G04430 AT2G28620 AT2G31060





acting on acid
AT3G12580 AT3G13870 AT3G28710 AT3G62310 AT5G02490





anhydrides, in
AT4G09730 AT4G13350 AT5G44070 AT3G06010 AT3G19960





phosphorus-
AT3G28510 AT3G28540 AT3G50930 AT3G61240 AT5G17760





containing
AT5G47040 AT5G50340 AT5G62190 AT4G02510 AT5G05000





anhydrides


5.67E−08
25
1003
Hydrolase activity,
AT1G27900 AT1G59610 AT2G04430 AT2G28620 AT2G31060





acting on acid
AT3G12580 AT3G13870 AT3G28710 AT3G62310 AT5G02490





anhydrides
AT4G09730 AT4G13350 AT5G44070 AT3G06010 AT3G19960






AT3G28510 AT3G28540 AT3G50930 AT3G61240 AT4G02510






AT5G17760 AT5G47040 AT5G50340 AT5G62190 AT5G05000


5.91E−08
24
932
Nucleoside-
AT1G27900 AT1G59610 AT2G28620 AT2G31060 AT3G12580





triphosphatase
AT3G13870 AT3G28710 AT3G62310 AT5G02490 AT4G09730





activity
AT4G13350 AT5G44070 AT3G06010 AT3G19960 AT3G28510






AT3G28540 AT3G50930 AT3G61240 AT5G17760 AT5G47040






AT5G50340 AT5G62190 AT4G02510 AT5G05000


4.60E−07
40
2556
Adenyl nucleotide
AT3G09350 AT3G12580 AT5G02490 AT5G18170 AT1G16890





binding
AT1G21210 AT1G27900 AT1G48210 AT1G51660 AT1G66090






AT1G72910 AT2G17265 AT2G21470 AT2G21790 AT2G28620






AT2G30110 AT2G37710 AT3G04210 AT3G06010 AT3G14840






AT3G19960 AT3G28510 AT3G28540 AT3G44480 AT3G48990






AT3G50930 AT3G61240 AT3G62310 AT4G09730 AT4G16950






AT4G19510 AT4G26070 AT5G17760 AT5G41750 AT5G45510






AT5G47040 AT5G48620 AT5G50340 AT5G51830 AT5G62190


6.17E−07
40
2592
Drug binding
AT2G16600 AT3G12580 AT5G02490 AT1G02930 AT5G18170






AT5G45110 AT1G16890 AT1G21210 AT1G27900 AT1G48210






AT1G51660 AT1G70580 AT2G17265 AT2G21470 AT2G21790






AT2G24850 AT2G28620 AT2G30110 AT2G37710 AT3G06010






AT3G14840 AT3G19960 AT3G28510 AT3G28540 AT3G44480






AT3G48990 AT3G50930 AT3G61240 AT3G62310 AT4G09730






AT4G16950 AT4G19510 AT4G26070 AT5G17760 AT5G45510






AT5G47040 AT5G48620 AT5G50340 AT5G51830 AT5G62190


6.17E−07
41
2704
Purine
AT3G12580 AT4G02510 AT5G02490 AT5G05000 AT4G13350





ribonucleoside
AT5G18170 AT1G16890 AT1G21210 AT1G27900 AT1G48210





triphosphate
AT1G51660 AT1G59610 AT2G17265 AT2G21470 AT2G21790





binding
AT2G28620 AT2G30110 AT2G31060 AT2G37710 AT3G06010






AT3G13870 AT3G14840 AT3G19960 AT3G28510 AT3G28540






AT3G44480 AT3G48990 AT3G50930 AT3G61240 AT3G62310






AT4G09730 AT4G16950 AT4G19510 AT4G26070 AT5G17760






AT5G45510 AT5G47040 AT5G48620 AT5G50340 AT5G51830






AT5G62190


1.07E−06
39
2550
Adenyl
AT3G12580 AT5G02490 AT5G18170 AT1G16890 AT1G21210





ribonucleotide
AT1G27900 AT1G48210 AT1G51660 AT1G66090 AT1G72910





binding
AT2G17265 AT2G21470 AT2G21790 AT2G28620 AT2G30110






AT2G37710 AT3G04210 AT3G06010 AT3G14840 AT3G19960






AT3G28510 AT3G28540 AT3G44480 AT3G48990 AT3G50930






AT3G61240 AT3G62310 AT4G09730 AT4G16950 AT4G19510






AT4G26070 AT5G17760 AT5G41750 AT5G45510 AT5G47040






AT5G48620 AT5G50340 AT5G51830 AT5G62190


3.02E−06
48
3682
Hydrolase activity
AT1G04860 AT1G27900 AT1G48320 AT1G59610 AT1G60140






AT2G04430 AT2G26560 AT2G28620 AT2G31060 AT3G07990






AT3G12580 AT3G13870 AT3G14890 AT3G20630 AT3G28710






AT3G62310 AT4G30890 AT4G39090 AT5G02490 AT5G35530






AT5G43060 AT5G49570 AT5G60360 AT3G19420 AT4G09730






AT4G13350 AT4G17830 AT5G44070 AT1G08420 AT3G06010






AT3G07930 AT3G14075 AT3G18520 AT3G19960 AT3G23570






AT3G28510 AT3G28540 AT3G48090 AT3G50930 AT3G52430






AT3G61240 AT4G02510 AT5G05000 AT5G17760 AT5G47040






AT5G50340 AT5G57560 AT5G62190


2.10E−05
35
2433
ATP binding
AT3G12580 AT5G02490 AT5G18170 AT1G16890 AT1G21210






AT1G27900 AT1G48210 AT1G51660 AT2G17265 AT2G21470






AT2G21790 AT2G28620 AT2G30110 AT2G37710 AT3G06010






AT3G14840 AT3G19960 AT3G28510 AT3G28540 AT3G44480






AT3G48990 AT3G50930 AT3G61240 AT3G62310 AT4G09730






AT4G16950 AT4G19510 AT4G26070 AT5G17760 AT5G45510






AT5G47040 AT5G48620 AT5G50340 AT5G51830 AT5G62190


2.69E−05
9
187
ADP binding
AT1G66090 AT1G72910 AT3G04210 AT3G44480 AT4G16950






AT4G19510 AT5G41750 AT5G45510 AT5G48620


4.67E−05
6
70
Cysteine-type
AT1G04860 AT3G20630 AT4G30890 AT4G39090 AT5G43060





endopeptidase
AT5G60360





activity


0.000128775
14
572
ATPase activity
AT1G27900 AT2G28620 AT3G12580 AT3G28710 AT3G62310






AT5G02490 AT4G09730 AT5G44070 AT3G28510 AT3G28540






AT3G50930 AT5G17760 AT5G47040 AT5G50340


0.000993086
2
3
Salicylic acid
AT2G43820 AT3G11340





glucosyltransferase





(glucoside-





forming) activity


0.002003836
11
487
Coenzyme binding
AT2G04430 AT5G22140 AT1G76680 AT1G05010 AT1G70580






AT2G01490 AT2G24850 AT2G29720 AT4G37760 AT5G03630






AT5G40760


0.00204287
18
1137
Cofactor binding
AT1G02930 AT2G04430 AT2G37970 AT4G22220 AT5G22140






AT1G76680 AT1G78380 AT1G05010 AT1G11680 AT1G70580






AT2G01490 AT2G24850 AT2G29720 AT3G26830 AT4G31500






AT4G37760 AT5G03630 AT5G40760


0.003109677
4
56
Damaged DNA
AT4G05420 AT4G21100 AT5G35530 AT5G50340





binding


0.003322351
6
157
Cysteine-type
AT1G04860 AT3G20630 AT4G30890 AT4G39090 AT5G43060





peptidase activity
AT5G60360


0.004086777
8
299
Cytoskeletal
AT1G59610 AT2G28620 AT2G30500 AT3G18060 AT2G20190





protein binding
AT2G31200 AT2G41740 AT3G19960


0.004097246
4
62
Actin filament
AT2G30500 AT3G18060 AT2G41740 AT3G19960





binding


0.00421146
22
1664
Oxidoreductase
AT1G05010 AT1G11680 AT1G16350 AT1G54100 AT1G63460





activity
AT1G76680 AT2G21790 AT2G26400 AT3G26830 AT4G31500






AT4G37760 AT4G37990 AT5G22140 AT5G24530 AT5G57800






AT5G18170 AT5G40760 AT1G78380 AT2G01490 AT2G29320






AT2G29720 AT5G03630


0.005459598
5
118
Actin binding
AT2G30500 AT3G18060 AT2G31200 AT2G41740 AT3G19960









GO-Cellular Component
















Enrichment
Genes in
Total
Functional



FDR
list
genes
Category
Genes



















6.25E−16
54
2350
Cytosol
AT1G01100 AT1G01960 AT1G12920 AT1G60140 AT1G63460






AT1G68200 AT2G16600 AT2G21790 AT2G31060 AT2G34480






AT3G06720 AT3G62870 AT4G13350 AT4G15802 AT5G35530






AT5G48180 AT5G49570 AT5G51830 AT5G54750 AT1G02930






AT1G16350 AT1G16890 AT1G27970 AT1G54100 AT1G59610






AT1G74940 AT1G76680 AT1G78380 AT2G02560 AT2G21470






AT2G30110 AT2G43820 AT2G47110 AT3G12580 AT3G15610






AT3G18060 AT3G19420 AT3G20630 AT3G23570 AT3G62310






AT4G02510 AT4G05420 AT4G17830 AT5G02490 AT5G03630






AT5G10450 AT5G14250 AT5G40760 AT5G43060 AT5G44070






AT5G45510 AT5G54310 AT4G22220 AT2G04430


0.00025932
40
3155
Plasma membrane
AT1G11680 AT1G21210 AT1G48210 AT2G16600 AT2G37710






AT3G14840 AT3G51250 AT1G01100 AT1G08050 AT1G08420






AT1G12920 AT1G16890 AT1G27970 AT1G59610 AT1G78380






AT2G01490 AT2G02560 AT2G20190 AT2G30110 AT2G34480






AT2G37970 AT3G01290 AT3G12580 AT3G13870 AT3G19960






AT3G28710 AT3G44480 AT3G50590 AT4G10120 AT4G31500






AT5G02490 AT5G10450 AT5G17760 AT5G22140 AT5G24710






AT5G45500 AT5G45510 AT5G48620 AT5G57800 AT5G61790


0.00025932
46
3832
Cell periphery
AT1G11680 AT1G21210 AT1G48210 AT2G16600 AT2G37710






AT3G14840 AT3G18060 AT3G51250 AT1G01100 AT1G02930






AT1G04980 AT1G08050 AT1G08420 AT1G12920 AT1G16890






AT1G27970 AT1G59610 AT1G78380 AT2G01490 AT2G02560






AT2G14610 AT2G20190 AT2G30110 AT2G34480 AT2G37970






AT3G01290 AT3G06720 AT3G12580 AT3G13870 AT3G19960






AT3G28710 AT3G44480 AT3G50590 AT4G10120 AT4G31500






AT5G02490 AT5G10450 AT5G17760 AT5G22140 AT5G24710






AT5G45500 AT5G45510 AT5G48620 AT5G57560 AT5G57800






AT5G61790


0.001804845
30
2283
Endomembrane
AT1G01960 AT1G07140 AT1G11680 AT1G27970 AT2G16600





system
AT3G06720 AT3G09350 AT3G13870 AT4G37760 AT5G54750






AT5G57800 AT5G60510 AT1G04980 AT2G37970 AT2G47110






AT3G12580 AT3G19960 AT3G26830 AT3G28510 AT3G28710






AT3G44480 AT4G15802 AT4G31500 AT5G02490 AT5G22140






AT5G43060 AT5G54310 AT5G57560 AT5G61790 AT3G48090


0.00713953
4
53
Lysosome
AT3G28710 AT4G39090 AT5G43060 AT5G60360


0.007355789
4
56
Lytic vacuole
AT3G28710 AT4G39090 AT5G43060 AT5G60360


0.013389304
17
1155
Vacuole
AT2G16600 AT2G30500 AT3G28710 AT3G50590 AT4G39090






AT5G43060 AT5G60360 AT1G02930 AT1G59610 AT1G78380






AT2G34480 AT2G37970 AT3G01290 AT3G12580 AT3G13870






AT3G62870 AT5G61790


0.017117105
16
1090
Endoplasmic
AT1G11680 AT3G09350 AT3G13870 AT4G37760 AT5G57800





reticulum
AT5G60510 AT1G04980 AT3G19960 AT3G26830 AT3G28510






AT3G44480 AT4G31500 AT5G43060 AT5G61790 AT3G48090






AT5G54750


0.0184581
15
1036
Cell-cell junction
AT1G02930 AT1G59610 AT2G16600 AT2G20190 AT2G21470






AT2G30110 AT3G01290 AT3G14840 AT3G28710 AT3G48990






AT3G51250 AT5G22140 AT5G35530 AT5G61790 AT3G19960


0.0184581
15
1036
Plasmodesma
AT1G02930 AT1G59610 AT2G16600 AT2G20190 AT2G21470






AT2G30110 AT3G01290 AT3G14840 AT3G28710 AT3G48990






AT3G51250 AT5G22140 AT5G35530 AT5G61790 AT3G19960


0.0184581
15
1036
Cell junction
AT1G02930 AT1G59610 AT2G16600 AT2G20190 AT2G21470






AT2G30110 AT3G01290 AT3G14840 AT3G28710 AT3G48990






AT3G51250 AT5G22140 AT5G35530 AT5G61790 AT3G19960


0.0184581
15
1036
Symplast
AT1G02930 AT1G59610 AT2G16600 AT2G20190 AT2G21470






AT2G30110 AT3G01290 AT3G14840 AT3G28710 AT3G48990






AT3G51250 AT5G22140 AT5G35530 AT5G61790 AT3G19960


0.026223194
11
674
Vacuolar
AT2G16600 AT2G30500 AT3G28710 AT3G50590 AT1G78380





membrane
AT2G34480 AT3G01290 AT3G12580 AT3G13870 AT3G62870






AT5G61790


0.026223194
11
676
Vacuolar part
AT2G16600 AT2G30500 AT3G28710 AT3G50590 AT1G78380






AT2G34480 AT3G01290 AT3G12580 AT3G13870 AT3G62870






AT5G61790


0.030339255
15
1155
Golgi apparatus
AT1G01960 AT2G16600 AT5G54750 AT1G11680 AT2G37970






AT2G47110 AT3G12580 AT3G28710 AT3G44480 AT4G15802






AT5G02490 AT5G22140 AT5G54310 AT5G57560 AT3G13870


0.030339255
8
424
Cytoskeleton
AT1G07140 AT2G28620 AT3G18060 AT2G20190 AT1G59610






AT2G31200 AT2G41740 AT3G19960


0.030339255
3
56
Actin cytoskeleton
AT3G18060 AT2G31200 AT3G19960


0.030339255
21
1852
Non-membrane-
AT1G01100 AT1G07140 AT2G28620 AT2G34480 AT3G18060





bounded organelle
AT3G18580 AT3G62870 AT5G35530 AT2G20190 AT2G43410






AT2G47110 AT3G06720 AT3G62310 AT5G62190 AT1G59610






AT2G16360 AT2G31200 AT2G41740 AT3G19960 AT3G61240






AT4G31210


0.030339255
21
1852
Intracellular non-
AT1G01100 AT1G07140 AT2G28620 AT2G34480 AT3G18060





membrane-
AT3G18580 AT3G62870 AT5G35530 AT2G20190 AT2G43410





bounded organelle
AT2G47110 AT3G06720 AT3G62310 AT5G62190 AT1G59610






AT2G16360 AT2G31200 AT2G41740 AT3G19960 AT3G61240






AT4G31210


0.030339255
14
1029
Whole membrane
AT2G16600 AT2G30500 AT3G28710 AT3G50590 AT4G02510






AT1G78380 AT2G34480 AT3G01290 AT3G12580 AT3G13870






AT3G50930 AT3G62870 AT5G05000 AT5G61790


0.032406858
17
1400
Bounding
AT2G16600 AT2G30500 AT3G28710 AT3G50590 AT4G02510





membrane of
AT5G54750 AT1G01960 AT1G78380 AT2G34480 AT3G01290





organelle
AT3G12580 AT3G13870 AT3G44480 AT3G50930 AT3G62870






AT5G05000 AT5G61790


0.038070656
3
65
Nuclear pore
AT1G07140 AT1G27970 AT3G06720
















TABLE 6







List of Primers Used in this Study.












SEQ



Name
Sequence (5′-3′)
ID NO
Use










AtNPR1 primers










NPR1-C-FB1
GGGGACAAGTTTGTACAAAAAAGCAGGCTTA
35
Truncation variants



ATGGACACCACCATTGATGGATTC




ANK-F630-B1
GGGGACAAGTTTGTACAAAAAAGCAGGCTTA
36
Truncation variants



ATGATATGTGGTAAAGCTTGTATGAAG




NPR1-R630-B2
GGGGACCACTTTGTACAAGAAAGCTGGGTCAT
37
Truncation variants



TAGCAAGCTTGAGTATAACCAATG




N1-ANK-F688-B1
GGGGACAAGTTTGTACAAAAAAGCAGGCTTA
38
Truncation variants



ATGTCTAATGTAGATATGGTTAGTCT




N1-ANK-R1080B2
GGGGACCACTTTGTACAAGAAAGCTGGGTCCA
39
Truncation variants



AAGTTGCTTCTGATGCACTTG




N1-F1021-B1
GGGGACAAGTTTGTACAAAAAAGCAGGCTTA
40
Truncation variants



GAGCCACAATTGATACTATCTCTATTGG




NPR1-R-B2
GGGGACCACTTTGTACAAGAAAGCTGGGTCCC
41
Truncation variants



GACGACGATGAGAGAG




Nde-GST-F4
CATACATATGTCCCCTATACTAGGTTATTGGA
42
GST/GST-NPR1/sim3



AAATTAAG

for DUET vector


Avr-GST-R657
CATACCTAGGTCATTTTGGAGGATGGTCGCCA
43
GSTfor DUET vector



CCAC




Avr-N1-R630
CATACCTAGGTCAATTAGCAAGCTTGAGTATA
44
GST-NPR1/sim3 for



ACCAATG

DUET vecotr


N1-R432K-F
GACGCTGCTCGATCTTGAAAATAAAGTTGCAC
45
nim1-4 mutagenesis



TTGC




N1-R432K-R
GCAAGTGCAACTTTATTTTCAAGATCGAGCAG
46
nim1-4 mutagenesis



CGTC












rdr1 (C150/155/156/160A)










C150A-F
GCCGCCTAAAGGAGTTTCTGAAGCTGCAGACG
47
RDR1 site-directed



AGAAT

mutagenesis


C150A-R
ATTCTCGTCTGCAGCTTCAGAAACTCCTTTAG
48
RDR1 site-directed



GCGGC

mutagenesis


C155/156/160A-F
GTTTCTGAAGCTGCAGACGAGAATGCGGCTCA
49
RDR1 site-directed



CGTGGCTGCTCGGCCGGCGGTGGATTT

mutagenesis


C155/156/160A-R
AAATCCACCGCCGGCCGAGCAGCCACGTGAG
50
RDR1 site-directed



CCGCATTCTCGTCTGCAGCTTCAGAAAC

mutagenesis










rdr2 (C378/385/394A)










C378A-F
GCCACTATGGCGGTTGAAGCGAATAATATCCC
51
RDR2 site-directed



GGAGCAA

mutagenesis


C378A-R
TTGCTCCGGGATATTATTCGCTTCAACCGCCAT
52
RDR2 site-directed



AGTGGC

mutagenesis


C385A-F
AATAATATCCCGGAGCAAGCTAAGCATTCTCT
53
RDR2 site-directed



CAAAGGCCG

mutagenesis


C385A-R
CGGCCTTTGAGAGAATGCTTAGCTTGCTCCGG
54
RDR2 site-directed



GATATTATT

mutagenesis


C394A-F
AAGCATTCTCTCAAAGGCCGACTAGCAGTAGA
55
RDR2 site-directed



AATACTAGAGCAAGAAG

mutagenesis


C394A-R
CTTCTTGCTCTAGTATTTCTACTGCTAGTCGGC
56
RDR2 site-directed



CTTTGAGAGAATGCTT

mutagenesis










rdr3 (C511/521/529A)










C511A-F
CGGGAAACGATTCTTCCCGCGCGCATCGGCAG
57
RDR3 site-directed



TGCTCGACCAGATTAT

mutagenesis


C511A-R
ATAATCTGGTCGAGCACTGCCGATGCGCGCGG
58
RDR3 site-directed



GAAGAATCGTTTCCCG

mutagenesis


C521A-F
TGCTCGACCAGATTATGAACGCAGAGGACTTG
59
RDR3 site-directed



ACTCAACTGGCT

mutagenesis


C521A-R
AGCCAGTTGAGTCAAGTCCTCTGCGTTCATAA
60
RDR3 site-directed



TCTGGTCGAGCA

mutagenesis


C529A-F
GAGGACTTGACTCAACTGGCTGCAGGAGAAG
61
RDR3 site-directed



ACGACACTGCTG

mutagenesis


C529A-R
CAGCAGTGTCGTCTTCTCCTGCAGCCAGTTGA
62
RDR3 site-directed



GTCAAGTCCTC

mutagenesis










AtCUL3A cloning










CUL3A-F-B1
GGGGACAAGTTTGTACAAAAAAGCAGGCTTA
63
CUL3A cloning



ATGAGTAATCAGAAGAAGAGGAATTTTC




C3A-SR-B2
GGGGACCACTTTGTACAAGAAAGCTGGGTATT
64
CUL3A cloning



AGGCTAGATAGCGGTAAAGTTTCC




opCA-F4-B1
GGGGACAAGTTTGTACAAAAAAGCAGGCTTA
65
opCUL3A cloning for



AGCAATCAGAAGAAGCGTAACTTTC

Duet vector


opCA-SR-B2
GGGGACCACTTTGTACAAGAAAGCTGGGTATT
66
opCUL3A cloning for



ACGCCAGATAACGATACAGTTTGC

Duet vector


CUL3A-F1744
GAAACATGAACTGAACGTGTCGACTATCGAAC
67
dRBX1 mutant



AGGCTACAGAAATCCC




CUL3A-R1743
GGGATTTCTGTAGCCTGTTCGATAGTCGACAC
68
dRBX1 mutant



GTTCAGTTCATGTTTC




Nde-Myc-F4
CATACATATGGAACAGAAACTGATCTCTGAAG
69
CUL3A for DUET



AAG

vector


Xho-opC3-R2199
CATACTCGAGTTACGCCAGATAACGATACAGT
70
CUL3AforDUET



TTGC

vector










AtRBX1 cloning










Nco-opRBX-F4
CATACCATGGTGGCGACCCTGGACAGCGATG
71
opRBX1 for DUET





vector


Hin-opR1-R429
CATAAAGCTTTTAGTGACCATACTTCTGAAAC
72
opRBX1 for DUET



TCCCATTC

vector










AtUbiquitin, AtUBC8 and AtUBA1 cloning










UBQ-F-B1
GGGGACAAGTTTGTACAAAAAAGCAGGCTTA
73
Ubiquitin cloning



ATGCAAATCTTCGTGAAAACACTCAC




UBQ-R-B2
GGGGACCACTTTGTACAAGAAAGCTGGGTATT
74
Ubiquitin cloning



AACCACCTCTTAAACGGAGAAC




Nco-HA-F4
CATACCATGGTGTACCCATACGATGTTCCAGA
75
Ubiquitin cloning for



TTACG

Duet vector


Eco-UBQ-R231
CATAGAATTCTTAACCACCTCTTAAACGGAGA
76
Ubiquitin cloning for



AC

Duet vector


Nco-UBC-F4
CATACCATGGTGGCTTCGAAACGGATCTTGAA
77
UBC8 cloning for



GGAG

Duet vector


Hind-mUBC-R447
CATAAAGCTT
78
UBC8 cloning for



TTAGCCCATTGCATACTTCTGAGTCCAGTTTCT

Duet vector



TGCAGTAG




Eco-Duet-T7F
CATAGAATTCGAAATTAATACGACTCACTATA
79
UBC8 cloning for



GGGGAATTG

Duet vector


Duet-R1
GATTATGCGGCCGTGTACAA
80
UBC8 cloning for





Duet vector


Fse-UBA-F4
CATAGGCCGGCCACCTTCACAAGCGAGCTAGT
81
UBA1 cloning for



GAAGC

Duet vector


Avr-UBA-R3243
CATACCTAGGTCACCTGAAGTAGATAGAGACG
82
UBA1 cloning for



AGAGG

Duet vector










AtWRKY54/70 cloning










W70-F-B1
GGGGACAAGTTTGTACAAAAAAGCAGGCTTA
83
WRKY70-GFP/



ATGGATACTAATAAAGCAAAAAAGC

mCherry cloning


W70-R-B2
GGGGACCACTTTGTACAAGAAAGCTGGGTAA
84
WRKY70-GFP/



GATAGATTCGAACATGAACTGAAG

mCherry cloning


Nco-FLAG-F4
CATACCATGGTGGACTACAAAGACGATGACG
85
for DUET vector



ACAAA




Not-W70-R
CATAGCGGCCGCTTAAGATAGATTCGAACATG
86
for DUET vector



AACTGAAG




W54-F-B1
GGGGACAAGTTTGTACAAAAAAGCAGGCTTA
87
WRKY54-mCherry



ATGGATTCGAATAGTAACAACACGAAATC

cloning


W54-R-B2
GGGGACCACTTTGTACAAGAAAGCTGGGTAC
88
WRKY54-mCherry



ATAGCACTTGTTCTTTCATAATCAGC

cloning










AtBCS1, AtGSTU19, AtEDS1 and AtNIMIN1 cloning










BC-F4-B1
GGGGACAAGTTTGTACAAAAAAGCAGGCTTA
89
mCherry fusion



GAAGGATCCAAGCTACTTCCTTGC

cloning


BC-R1728-B2
GGGGACCACTTTGTACAAGAAAGCTGGGTAAT
90
mCherry fusion



GTTGTTCAACCTCCTCATGTTTGGCT

cloning


G19-F4-B1
GGGGACAAGTTTGTACAAAAAAGCAGGCTTA
91
mCherry fusion



GCGAACGAGGTGATTCTTCTTGATTTC

cloning


G19-R657-B2
GGGGACCACTTTGTACAAGAAAGCTGGGTACT
92
mCherry fusion



CAGGTACAAATTTCTTCCTGAGCTC

cloning


EDS-F1-B1
GGGGACAAGTTTGTACAAAAAAGCAGGCTTA
93
mCherry fusion



ATGGCGTTTGAAGCTCTTACCGGA

cloning


EDS-R1869-B2
GGGGACCACTTTGTACAAGAAAGCTGGGTAG
94
mCherry fusion



GTATCTGTTATTTCATCCATCATATAG

cloning


Nc-FL-ED-F4
CATACCATGGTGGACTACAAAGACGATGACG
95
for DUET vector



ACAAAGCGTTTGAAGCTCTTACCGGAATC




Nt-ED-R1869
CATAGCGGCCGCTTAGGTATCTGTTATTTCATC
96
for DUET vector



CATCATATAG




NM1-F1-B1
GGGGACAAGTTTGTACAAAAAAGCAGGCTTA
97
mCherry fusion



ATGTATCCTAAACAATTTAGTTTATAC

cloning


NM1-R426-B2
GGGGACCACTTTGTACAAGAAAGCTGGGTAC
98
mCherry fusion



AATGCAAGATTAAGATCTAAAGCC

cloning










AtPR1 promoter cloning










BIF-pPR1F
GGGGACAAGTTTGTACAAAAAAGCAGGCTTA
99
dual luciferase pPR1



GTAAATTGTGTCCTATACAAAG

reporter


B2R-pPR1-R2367
GGGGACCACTTTGTACAAGAAAGCTGGGTTTT
100
dual luciferase pPR1



TTCTAAGTTGATAATGGTTATTG

reporter










mCherry-NLScloning










mCh-F-B1
GGGGACAAGTTTGTACAAAAAAGCAGGCTTA
101
mCherry-NLS cloning



ATGGTGAGCAAGGGCGAGGAG




NLS-mCh-R
TTAATCTTCGACCTTGCGCTTCTTCTTAGGTGG
102
mCherry-NLS cloning



TTCTGGTCTAGAGGATCCCTTGTACAGCTCGT





CCATGC




B2R-NLSR
GGGGACCACTTTGTACAAGAAAGCTGGGTTTT
103
mCherry-NLS cloning



AATCTTCGACCTTGCGCTTC












VIGS cloning










NbNPR1-TR-09
CGACGACAAGACCCTGCAAACATTTGTGGTAA
104
VIGS-NbNPR1



AGCATGC




NbNPR1-TR-10
GAGGAGAAGAGCCCTGCTACAGCATAATGGA
105
VIGS-NbNPR1



GAGC




Forward fusion primer for
GTGTCCCACTAACCTCAATCCCCGTTCTCCC
106
VIGS-NbCUL3


Niben101Scf01326g05017





&





Niben101Scf06545g03015





Reverse fusion primer for
GGATTGAGGTTAGTGGGACACTCTTTCAATCT
107
VIGS-NbCUL3


Niben001Scf01326g05017
C




&





Niben101Scf06545g03015





LIC1 for
CGACGACAAGACCCTAGACCATATCATCCACT
108
VIGS-NbCUL3


Niben001Scf01326g05017
CTAGC




LIC2 for
GAGGAGAAGAGCCCTGTGCATTGCATCCTGAG
109
VIGS-NbCUL3


Niben001Scf06545g03015
AAGTTTTC




LIC1 for
CGACGACAAGACCCTGCAAACATTTGTGGTAA
110
VIGS-NbCUL3


Niben101Scf14780g01001.1
AGCATGC




LIC2 for
GAGGAGAAGAGCCCTGCTACAGCATAATGGA
ill
VIGS-NbCUL3


Niben101Scf14780g01001.1
GAGC




NbeIF4A-QF
GCTTTGGTCTTGGCACCTACTC
112
qPCRon VIGS


NbeIF4A-QR
TGCTCGCATGACCTTTTCAA
113
qPCRon VIGS


NbCUL3-1-QF
GCCAACACAGTCCGTCACTA
114
qPCRon VIGS


NbCUL3-1-QR
TTATCGCAGACCCCCAAA
115
qPCRon VIGS


NbCUL3-2-QF
TGTGGATCCGAAATATGCTG
116
qPCRon VIGS


NbCUL3-2-QR
AACTAAGACCACTAGCGTTATGATTG
117
qPCRon VIGS


NbCUL3-3-QF
TGAGTACGCTTCTTGGACTGAT
118
qPCRon VIGS


NbCUL3-3-QR
TTCTCATCAGTCCCCGGTTA
119
qPCRon VIGS


NbCUL3-4-QF
TTCTTGGAAGAGCTGAATAGGC
120
qPCRon VIGS


NbCUL3-4-QR
TCAGAATATCCCGTATCATTTGC
121
qPCRon VIGS


NbNPR1a-QF
TGTGTGTGTTTGTGTGGACAAT
122
qPCRon VIGS


NbNPR1a-QR
GAACGCTACAGCTGGCCTAC
123
qPCRon VIGS


NbNPR1b-QF
CTTCGAAGGTTCGGTTATGC
124
qPCRon VIGS


NbNPR1b-QR
GCTTCTCCTAGCAGTGGATCTC
125
qPCRon VIGS


NbPR1-QF
GTGCCCAAAATTCTCAACAAG
126
qPCRon VIGS


NbPR1-QR
TTCTACACCTACATCTGCACGAG
127
qPCRon VIGS










Genotyping of npr1-2, wrky54 and wrky70 mutations










npr1-2-LP
GATGATTTCTACAGCGACGC
128
npr1-2 mutant





genotyping


npr1-2-RP
CCATAGCTTAATGCAGATGG
129
npr1-2 mutant





genotyping


WRKY54-LP
TTCTTGATTCTTTTGATCCCG
130
wrky54





(SALK_017254)





mutant genotyping


WRKY54-RP
GCTGGTGTTGTTCTCTTGCTC
131
wrky54





(SALK_017254)





mutant genotyping


WRKY70-LP
TGATCTTCGGAATCCATGAAG
132
wrky70





(SALK_025198)





mutant genotyping


WRKY70-RP
CAAACCACACCAAGAGGAAAG
133
wrky70





(SALK_025198)





mutant genotyping
















TABLE 7







Key Resources Table.









REAGENT or RESOURCE
SOURCE
IDENTIFIER










Antibodies









Mouse monoclonal anti-GFP (JL8)
Clontech
Cat. #632381;




RRID: AB_2313808


Mouse monoclonal anti-RFP (6G6)
Chromotek
Cat. #6g6-20


Mouse monoclonal anti-Ubiquitin (P4D1)
Santa Cruz
Cat. #sc-8017;




RRID: AB_2762364


Mouse monoclonal anti-HA
BioLegend
Cat. #901502;




RRID: AB_2565007


Alpaca anti-GFP coupled to agarose beads (GFP- Trap_A)
Chromotek
Cat. #gta-10


Alpaca anti-RFP coupled to agarose beads (RFP- Trap_A)
Chromotek
Cat. #rta-10


Pierce ™ anti-HA coupled Magnetic Beads
ThermoFisher
Cat. #88837


Pierce ™ anti-DYKDDDDK coupled Magnetic Agarose
ThermoFisher
Cat. #A36797


Pierce ™ Glutathione Magnetic Agarose Beads
ThermoFisher
Cat. #78601


Mouse monoclonal anti-Baculovirus Envelope gp64 (AcV5)
ThermoFisher
Cat. #14-6995-82;




RRID: AB 468384


Rabbit polyclonal anti-AtCUL3A
PhytoAB,
Cat. #PHY0978S



Dieterle et al.



(2005)


Rabbit polyclonal anti-AtEDS1
Agrisera
Cat. #AS13-2751


Rabbit polyclonal anti-AtNIMIN1 (E2374)
ABclonal
Cat. #WG-01110D


Rabbit polyclonal anti-AtNPR1
Mou et al., 2003
N/A


Mouse monoclonal anti-c-Myc (9E10)
Santa Cruz
Cat. #sc-40;




RRID: AB_627268


Direct-Blot ™ HRP anti-DYKDDDDK Tag Antibody (anti-
BioLegend
Cat. #637311;


FLAG)

RRID: AB_2566706


Mouse monoclonal anti-β-Tubulin (F-1)
Santa Cruz
Cat. #sc-166729;




RRID: AB_2010699


Rabbit polyclonal anti-Histone H3
Agrisera
Cat. #AS10-710


Rabbit polyclonal anti-Actin
Agrisera
Cat. #AS13-2640


Anti-GST Antibody, HRP Conjugated
GE Healthcare
Cat. #RPN1236;




RRID: AB_771429







Bacterial and Virus Strains










Pseudomonas syringae pv. maculicola ES4326/AvrRpt2

Cao et al., 1994
N/A



Pseudomonas syringae pv. maculicola ES4326/AvrRpm1

Reuber and
N/A



Ausbel, 1996



Pseudomonas fluorescens Pf0-1/AvrRps4

Sohn et al., 2012
N/A



Pseudomonas fluorescens Pf0-1/AvrRps4KRVY-AAAA

Sohn et al., 2012
N/A



Agrobacterium tumefaciens, strain GV3101

N/A
N/A



Escherichia coli (E. coli), strain BL21(DE3)

NEB
Cat. #C2527H







Chemicals, Peptides, and Recombinant Proteins









Sodium salicylate
Sigma-Aldrich
Cat. #S3007;




CAS: 54-21-7


Dexamethasone
Sigma-Aldrich
Cat. #D1756-25MG;




CAS: 50-02-2


β-Estradiol
Sigma-Aldrich
Cat. #E2758;




CAS: 50-28-2


Methyl viologen dichloride hydrate (MV)
Sigma-Aldrich
Cat. #856177;




CAS: 75365-73-0


Deubiquitinase (DUB) inhibitor (PR-619)
Life Sensors
Cat. #SI9619;




CAS: 2645-32-1


N-Ethylmaleimide (NEM)
Sigma-Aldrich
Cat. #E3876;




CAS: 128-53-0







Critical Commercial Assays









Pierce ™ Silver Stain Kit
ThermoFisher
Cat. #24612


Dual-Luciferase Reporter Assay System
Promega
Cat. #E1910


QuikChange II Site-Directed Mutagenesis Kit
Agilent
Cat. #200524


FastStart Universal SYBR Green Master Kit
Roche
Cat. #04913850001







Experimental Models: Organisms/Strains









Arabidopsis: npr1-2
Cao et al., 1997
N/A


Arabidopsis: sid2-2
Wildermuth
N/A



et al., 2001


Arabidopsis: NPR1-GFP/npr1-2
Mou et al., 2003
N/A


Arabidopsis: npr1sim3-GFP/npr1-2
Saleh et al., 2015
N/A


Arabidopsis: npr1□BTB-GFP/npr1-2
This paper
N/A


Arabidopsis: npr1sim3-GFP/Col-0
This paper
N/A


Arabidopsis: npr1rdr1-GFP/npr1-2
This paper
N/A


Arabidopsis: npr1rdr2-GFP/npr1-2
This paper
N/A


Arabidopsis: npr1rdr3-GFP/npr1-2
This paper
N/A


Arabidopsis: dex: AvrRpt2/Col-0
McNellis
N/A



et al., 1998


Arabidopsis: dex: AvrRpt2/rps2
Gu et al., 2016
N/A


Arabidopsis: dex: AvrRpt2/npr1-2
This paper
N/A







Oligonucleotides









Primers used in this study are listed in Table 6
This paper
N/A







Recombinant DNA









pTRV2-NbCUL3/NbNPR1
This paper
N/A


pEG203-CUL3/cul3□DRBX1
This paper
N/A


pK7WGF2-CUL3
This paper
N/A


pEG204-Ubiquitin
This paper
N/A


pEG100-mCherry-ATG8/NBR1/Ubiquitin/NLS
This paper
N/A


pSITE-4NB-EDS1/GSTU19/BCS1/NIMIN1
This paper
N/A


pSITE-cEYFP-N1-NPR1 (NPR1-YC, WT and mutant
This paper
N/A


variants)


pSITE-nEYFP-C1-NPR1 (YN-NPR1)
This paper
N/A


pSITE-cEYFP-N1-NPR1/2/3/4/5/6 (NPR1/2/3/4/5/6-YC)
This paper
N/A


pSITE-nEYFP-C1-CUL3 (YN-CUL3)
This paper
N/A


pK7FWG2-NPR1 (WT, mutant and truncation variants)
This paper,
N/A



Saleh et al.



(2015)


pK7FWG2-NPR2/3/4/5/6
This paper
N/A


pLN462-NPR1 (WT, mutant and truncation variants)
This paper
N/A


pLN462-NPR2/3/4/5/6
This paper
N/A


pETDuet-1: FLAG-WRKY70 + GST-NPR1/GST-
This paper
N/A


npr1sim3/GST


pETDuet-1: FLAG-EDS1 + GST-NPR1/GST
This paper
N/A


pCDFDuet-1: HA-Ub + UBC8 + UBA1
This paper
N/A


pACYCDuet-1: RBX1 + Myc-CUL3
This paper
N/A


pCDFDuet-1: Myc-CUL3
This paper
N/A


pDEST15-NPR1 (WT, mutant and truncation variants)
This paper,
N/A



Saleh et al.



(2015)







Software and Algorithms









ImageJ (FIJI) (v2.0.0-rc-69/1.52p)
Schindelin et al., 2012
https://imagej.nih.go v/ij/


Scaffold (v4.8.2)
Proteome Software
N/A


R (v3.5.3)
N/A
N/A


Prism 8
GraphPad
https://www.graphpad.com/


ShinyGO v0.61
Ge et al., 2019
http://bioinformatics.sdstate.edu/go/


UpSet plots
Khan and Mathelier,
https://asntech.shinyapps.io/intervene/



2017


IUPred2a
Meszaros et al., 2018
http://iupred.elte.hu/







Other









Orion Star ™ A222 Portable
ThermoFisher
Cat. #STARA2220


Conductivity Meter with 4-

(meter); #013005MD


Electrode Conductivity Cell

(probe)









  • Banani, S. F., Lee, H. O., Hyman, A. A., and Rosen, M. K. (2017). Biomolecular condensates: organizers of cellular biochemistry. Nat Rev Mol Cell Biol 18, 285-298.

  • Bartsch, M., Gobbato, E., Bednarek, P., Debey, S., Schultze, J. L., Bautor, J., and Parker, J. E. (2006). Salicylic acid-independent ENHANCED DISEASE SUSCEPTIBILITY1 signaling in Arabidopsis immunity and cell death is regulated by the monooxygenase FMO1 and the Nudix hydrolase NUDT7. The Plant cell 18, 1038-1051.

  • Bolte, S., and Cordelieres, F. P. (2006). A guided tour into subcellular colocalization analysis in light microscopy. J Microsc 224, 213-232.

  • Bouchard, J. J., Otero, J. H., Scott, D. C., Szulc, E., Martin, E. W., Sabri, N., Granata, D., Marzahn, M. R., Lindorff-Larsen, K., Salvatella, X., et al. (2018). Cancer Mutations of the Tumor Suppressor SPOP Disrupt the Formation of Active, Phase-Separated Compartments. Mol Cell 72, 19-36 e18.

  • Brkljacic, J., Zhao, Q., and Meier, I. (2009). WPP-domain proteins mimic the activity of the HSC70-1 chaperone in preventing mistargeting of RanGAP1-anchoring protein WIT1. Plant physiology 151, 142-154.

  • Bruggeman, Q., Raynaud, C., Benhamed, M., and Delarue, M. (2015). To die or not to die? Lessons from lesion mimic mutants. Frontiers in plant science 6, 24.

  • Cao, H., Bowling, S. A., Gordon, A. S., and Dong, X. N. (1994). Characterization of an Arabidopsis Mutant That Is Nonresponsive to Inducers of Systemic Acquired-Resistance. The Plant cell 6, 1583-1592.

  • Cao, H., Glazebrook, J., Clarke, J. D., Volko, S., and Dong, X. (1997). The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88, 57-63.

  • Chahtane, H., Zhang, B., Norberg, M., LeMasson, M., Thevenon, E., Bako, L., Benlloch, R., Holmlund, M., Parcy, F., Nilsson, O., et al. (2018). LEAFY activity is post-transcriptionally regulated by BLADE ON PETIOLE2 and CULLIN3 in Arabidopsis. New Phytol 220, 579-592.

  • Chang, M., Zhao, J., Chen, H., Li, G., Chen, J., Li, M., Palmer, I. A., Song, J., Alfano, J. R., Liu, F., et al. (2019). PBS3 Protects EDS1 from Proteasome-Mediated Degradation in Plant Immunity. Mol Plant 12, 678-688.

  • Clarke, S. M., Mur, L. A., Wood, J. E., and Scott, I. M. (2004). Salicylic acid dependent signaling promotes basal thermotolerance but is not essential for acquired thermotolerance in Arabidopsis thaliana. Plant J 38, 432-447.

  • Clough, S. J., and Bent, A. F. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16, 735-743.

  • Devadas, S. K., Enyedi, A., and Raina, R. (2002). The Arabidopsis hrl1 mutation reveals novel overlapping roles for salicylic acid, jasmonic acid and ethylene signalling in cell death and defence against pathogens. Plant J 30, 467-480.

  • Dieterle, M., Thomann, A., Renou, J. P., Parmentier, Y., Cognat, V., Lemonnier, G., Muller, R., Shen, W. H., Kretsch, T., and Genschik, P. (2005). Molecular and functional characterization of Arabidopsis Cullin 3A. Plant J 41, 386-399.

  • Ding, Y., Dommel, M., and Mou, Z. (2016). Abscisic acid promotes proteasome-mediated degradation of the transcription coactivator NPR1 in Arabidopsis thaliana. Plant J 86, 20-34.

  • Dong, Y., Burch-Smith, T. M., Liu, Y., Mamillapalli, P., and Dinesh-Kumar, S. P. (2007). A ligation-independent cloning tobacco rattle virus vector for high-throughput virus-induced gene silencing identifies roles for NbMADS4-1 and -2 in floral development. Plant physiology 145, 1161-1170.

  • Erdos, G., Meszaros, B., Reichmann, D., and Dosztanyi, Z. (2019). Large-Scale Analysis of Redox-Sensitive Conditionally Disordered Protein Regions Reveals Their Widespread Nature and Key Roles in High-Level Eukaryotic Processes. Proteomics 19, e1800070.

  • Fernandez-Pozo, N., Menda, N., Edwards, J. D., Saha, S., Tecle, I. Y., Strickler, S. R., Bombarely, A., Fisher-York, T., Pujar, A., Foerster, H., et al. (2015a). The Sol Genomics Network (SGN)—from genotype to phenotype to breeding. Nucleic acids research 43, D1036-1041.

  • Fernandez-Pozo, N., Rosli, H. G., Martin, G. B., and Mueller, L. A. (2015b). The SGN VIGS tool: user-friendly software to design virus-induced gene silencing (VIGS) constructs for functional genomics. Mol Plant 8, 486-488.

  • Fu, Z. Q., and Dong, X. (2013). Systemic acquired resistance: turning local infection into global defense. Annual review of plant biology 64, 839-863.

  • Fu, Z. Q., Yan, S., Saleh, A., Wang, W., Ruble, J., Oka, N., Mohan, R., Spoel, S. H., Tada, Y., Zheng, N., et al. (2012). NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature 486, 228-232.

  • Furukawa, M., He, Y. J., Borchers, C., and Xiong, Y. (2003). Targeting of protein ubiquitination by BTB-Cullin 3-Roc1 ubiquitin ligases. Nat Cell Biol 5, 1001-1007.

  • Ge, S. X., Jung, D., and Yao, R. (2019). ShinyGO: a graphical enrichment tool for animals and plants. Bioinformatics.

  • Geyer, R., Wee, S., Anderson, S., Yates, J., and Wolf, D. A. (2003). BTB/POZ domain proteins are putative substrate adaptors for cullin 3 ubiquitin ligases. Mol Cell 12, 783-790.

  • Gomez-Diaz, C., and Ikeda, F. (2018). Roles of ubiquitin in autophagy and cell death. Semin Cell Dev Biol.

  • Gu, Y., Zebell, S. G., Liang, Z., Wang, S., Kang, B. H., and Dong, X. (2016). Nuclear Pore Permeabilization Is a Convergent Signaling Event in Effector-Triggered Immunity. Cell 166, 1526-1538 e1511.

  • Haynes, C., Oldfield, Ji, F., Klitgord, N., Cusick, M. E., Radivojac, P., Uversky, V. N., Vidal, M., and Iakoucheva, L. M. (2006). Intrinsic disorder is a common feature of hub proteins from four eukaryotic interactomes. PLoS Comput Biol 2, e100.

  • Heidrich, K., Wirthmueller, L., Tasset, C., Pouzet, C., Deslandes, L., and Parker, J. E. (2011). Arabidopsis EDS1 connects pathogen effector recognition to cell compartment-specific immune responses. Science (New York, N.Y. 334, 1401-1404.

  • Jakob, U., Kriwacki, R., and Uversky, V. N. (2014). Conditionally and transiently disordered proteins: awakening cryptic disorder to regulate protein function. Chem Rev 114, 6779-6805.

  • Jin, H., Choi, S. M., Kang, M. J., Yun, S. H., Kwon, D. J., Noh, Y. S., and Noh, B. (2018). Salicylic acid-induced transcriptional reprogramming by the HAC-NPR1-TGA histone acetyltransferase complex in Arabidopsis. Nucleic acids research 46, 11712-11725.

  • Jones, J. D., and Dangl, J. L. (2006). The plant immune system. Nature 444, 323-329.

  • Khan, A., and Mathelier, A. (2017). Intervene: a tool for intersection and visualization of multiple gene or genomic region sets. BMC Bioinformatics 18, 287.

  • Kinkema, M., Fan, W., and Dong, X. (2000). Nuclear localization of NPR1 is required for activation of PR gene expression. The Plant cell 12, 2339-2350.

  • Knoth, C., Ringler, J., Dangl, J. L., and Eulgem, T. (2007). Arabidopsis WRKY70 is required for full RPP4-mediated disease resistance and basal defense against Hyaloperonospora parasitica. Mol Plant Microbe Interact 20, 120-128.

  • Lai, Y. S., Renna, L., Yarema, J., Ruberti, C., He, S. Y., and Brandizzi, F. (2018). Salicylic acid-independent role of NPR1 is required for protection from proteotoxic stress in the plant endoplasmic reticulum. Proceedings of the National Academy of Sciences of the United States of America 115, E5203-E5212.

  • Levin-Kravets, O., Tanner, N., Shohat, N., Attali, I., Keren-Kaplan, T., Shusterman, A., Artzi, S., Varvak, A., Reshef, Y., Shi, X., et al. (2016). A bacterial genetic selection system for ubiquitylation cascade discovery. Nature methods 13, 945-952.

  • Li, M., Chen, H., Chen, J., Chang, M., Palmer, I. A., Gassmann, W., Liu, F., and Fu, Z. Q. (2018). TCP Transcription Factors Interact With NPR1 and Contribute Redundantly to Systemic Acquired Resistance. Frontiers in plant science 9, 1153.

  • Liu, L., Sonbol, F. M., Huot, B., Gu, Y., Withers, J., Mwimba, M., Yao, J., He, S. Y., and Dong, X. (2016). Salicylic acid receptors activate jasmonic acid signalling through a non-canonical pathway to promote effector-triggered immunity. Nat Commun 7, 13099.

  • Liu, Y., Schiff, M., Czymmek, K., Talloczy, Z., Levine, B., and Dinesh-Kumar, S. P. (2005). Autophagy regulates programmed cell death during the plant innate immune response. Cell 121, 567-577.

  • Liu, Y., Schiff, M., Marathe, R., and Dinesh-Kumar, S. P. (2002). Tobacco Rarl, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus. Plant J 30, 415-429.

  • Maier, F., Zwicker, S., Huckelhoven, A., Meissner, M., Funk, J , Pfitzner, A. J., and Pfitzner, U. M. (2011). NONEXPRESSOR OF PATHOGENESIS-RELATED PROTEINS1 (NPR1) and some NPR1-related proteins are sensitive to salicylic acid. Molecular plant pathology 12, 73-91.

  • Mao, P., Duan, M., Wei, C., and Li, Y. (2007). WRKY62 transcription factor acts downstream of cytosolic NPR1 and negatively regulates jasmonate-responsive gene expression. Plant Cell Physiol 48, 833-842.

  • McNellis, T. W., Mudgett, M. B., Li, K., Aoyama, T., Horvath, D., Chua, N. H., and Staskawicz, B. J. (1998). Glucocorticoid-inducible expression of a bacterial avirulence gene in transgenic Arabidopsis induces hypersensitive cell death. Plant J 14, 247-257.

  • Meszaros, B., Erdos, G., and Dosztanyi, Z. (2018). IUPred2A: context-dependent prediction of protein disorder as a function of redox state and protein binding. Nucleic acids research 46, W329-W337.

  • Mindrinos, M., Katagiri, F., Yu, G. L., and Ausubel, F. M. (1994). The A. thaliana disease resistance gene RPS2 encodes a protein containing a nucleotide-binding site and leucine-rich repeats. Cell 78, 1089-1099.

  • Mou, Z., Fan, W., and Dong, X. (2003). Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113, 935-944.

  • Munch, D., Rodriguez, E., Bressendorff, S., Park, O. K., Hofius, D., and Petersen, M. (2014). Autophagy deficiency leads to accumulation of ubiquitinated proteins, ER stress, and cell death in Arabidopsis. Autophagy 10, 1579-1587.

  • Nelson, B. K., Cai, X., and Nebenfuhr, A. (2007). A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J 51, 1126-1136.

  • Olate, E., Jimenez-Gomez, J. M., Holuigue, L., and Salinas, J. (2018). NPR1 mediates a novel regulatory pathway in cold acclimation by interacting with HSFA1 factors. Nat Plants 4, 811-823.

  • Pike, S. M., Zhang, X. C., and Gassmann, W. (2005). Electrophysiological characterization of the Arabidopsis avrRpt2-specific hypersensitive response in the absence of other bacterial signals. Plant physiology 138, 1009-1017.

  • Rate, D. N., and Greenberg, J. T. (2001). The Arabidopsis aberrant growth and death2 mutant shows resistance to Pseudomonas syringae and reveals a role for NPR1 in suppressing hypersensitive cell death. Plant J 27, 203-211.

  • Reichmann, D , Xu, Y., Cremers, C. M., Ilbert, M., Mittelman, R., Fitzgerald, M. C., and Jakob, U. (2012). Order out of disorder: working cycle of an intrinsically unfolded chaperone. Cell 148, 947-957.

  • Reuber, T. L., and Ausubel, F. M. (1996). Isolation of Arabidopsis genes that differentiate between resistance responses mediated by the RPS2 and RPM1 disease resistance genes. The Plant cell 8, 241-249.

  • Rodriguez, E., El Ghoul, H., Mundy, J., and Petersen, M. (2016). Making sense of plant autoimmunity and ‘negative regulators’. FEBS J 283, 1385-1391.

  • Saleh, A., Withers, J., Mohan, R., Marques, J., Gu, Y., Yan, S., Zavaliev, R., Nomoto, M., Tada, Y., and Dong, X. (2015). Posttranslational Modifications of the Master Transcriptional Regulator NPR1 Enable Dynamic but Tight Control of Plant Immune Responses. Cell Host Microbe 18, 169-182.

  • Sappl, P. G., Onate-Sanchez, L., Singh, K. B., and Millar, A. H. (2004). Proteomic analysis of glutathione S-transferases of Arabidopsis thaliana reveals differential salicylic acid-induced expression of the plant-specific phi and tau classes. Plant molecular biology 54, 205-219.

  • Sarris, P. F., Duxbury, Z., Huh, S. U., Ma, Y., Segonzac, C., Sklenar, J., Derbyshire, P., Cevik, V., Rallapalli, G., Saucet, S. B., et al. (2015). A Plant Immune Receptor Detects Pathogen Effectors that Target WRKY Transcription Factors. Cell 161, 1089-1100.

  • Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., et al. (2012). Fiji: an open-source platform for biological-image analysis. Nature methods 9, 676-682.

  • Shimada, S., Komatsu, T., Yamagami, A., Nakazawa, M., Matsui, M., Kawaide, H., Natsume, M., Osada, H., Asami, T., and Nakano, T. (2015). Formation and dissociation of the BSS1 protein complex regulates plant development via brassinosteroid signaling. The Plant cell 27, 375-390.

  • Silva, K. J. P., Mahna, N., Mou, Z., and Folta, K. M. (2018). NPR1 as a transgenic crop protection strategy in horticultural species. Hortic Res 5, 15.

  • Sohn, K. H., Hughes, R. K., Piquerez, S. J., Jones, J. D., and Banfield, M. J. (2012). Distinct regions of the Pseudomonas syringae coiled-coil effector AvrRps4 are required for activation of immunity. Proceedings of the National Academy of Sciences of the United States of America 109, 16371-16376.

  • Spoel, S. H., Koornneef, A., Claessens, S. M., Korzelius, J. P., Van Pelt, J. A., Mueller, M. J., Buchala, A. J., Metraux, J. P., Brown, R., Kazan, K., et al. (2003). NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. The Plant cell 15, 760-770.

  • Spoel, S. H., Mou, Z., Tada, Y., Spivey, N. W., Genschik, P., and Dong, X. (2009). Proteasome-mediated turnover of the transcription coactivator NPR1 plays dual roles in regulating plant immunity. Cell 137, 860-872.

  • Tada, Y., Spoel, S. H., Pajerowska-Mukhtar, K., Mou, Z., Song, J., Wang, C., Zuo, J., and Dong, X. (2008). Plant immunity requires conformational changes of NPR1 via S-nitrosylation and thioredoxins. Science (New York, N.Y. 321, 952-956.

  • Tsuda, K., Mine, A., Bethke, G., Igarashi, D., Botanga, C. J., Tsuda, Y., Glazebrook, J., Sato, M., and Katagiri, F. (2013). Dual regulation of gene expression mediated by extended MAPK activation and salicylic acid contributes to robust innate immunity in Arabidopsis thaliana. PLoS genetics 9, e1004015.

  • Ustun, S., Hafren, A., and Hofius, D. (2017). Autophagy as a mediator of life and death in plants. Current opinion in plant biology 40, 122-130.

  • Wang, D., Amornsiripanitch, N., and Dong, X. (2006). A genomic approach to identify regulatory nodes in the transcriptional network of systemic acquired resistance in plants. PLoS pathogens 2, e 123.

  • Wang, D., Weaver, N. D., Kesarwani, M., and Dong, X. (2005). Induction of protein secretory pathway is required for systemic acquired resistance. Science (New York, N.Y. 308, 1036-1040.

  • Wang, W., Ye, R., Xin, Y., Fang, X., Li, C., Shi, H., Zhou, X., and Qi, Y. (2011). An importin beta protein negatively regulates MicroRNA activity in Arabidopsis. The Plant cell 23, 3565-3576.

  • Wiermer, M., Feys, B. J., and Parker, J. E. (2005). Plant immunity: the EDS1 regulatory node. Current opinion in plant biology 8, 383-389.

  • Wildermuth, M. C., Dewdney, J., Wu, G., and Ausubel, F. M. (2001). Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature 414, 562-565.

  • Xu, G., Greene, G. H., Yoo, H., Liu, L., Marques, J., Motley, J., and Dong, X. (2017a). Global translational reprogramming is a fundamental layer of immune regulation in plants. Nature 545, 487-490.

  • Xu, G., Yuan, M., Ai, C., Liu, L., Zhuang, E., Karapetyan, S., Wang, S., and Dong, X. (2017b). uORF-mediated translation allows engineered plant disease resistance without fitness costs. Nature 545, 491-494.

  • Xu, L., Wei, Y., Reboul, J., Vaglio, P., Shin, T. H., Vidal, M., Elledge, S. J., and Harper, J. W. (2003). BTB proteins are substrate-specific adaptors in an SCF-like modular ubiquitin ligase containing CUL-3. Nature 425, 316-321.

  • Yoshimoto, K., Jikumaru, Y., Kamiya, Y., Kusano, M., Consonni, C., Panstruga, R., Ohsumi, Y., and Shirasu, K. (2009). Autophagy negatively regulates cell death by controlling NPR1-dependent salicylic acid signaling during senescence and the innate immune response in Arabidopsis. The Plant cell 21, 2914-2927.

  • Zavaliev, R., and Epel, B. L. (2015). Imaging Callose at Plasmodesmata Using Aniline Blue: Quantitative Confocal Microscopy. In Plasmodesmata: Methods and Protocols (ed. M. Heinlein). Methods in Molecular Biology 1217, 105-119.

  • Zhang, B., Holmlund, M., Lorrain, S., Norberg, M., Bako, L., Fankhauser, C., and Nilsson, O. (2017). BLADE-ON-PETIOLE proteins act in an E3 ubiquitin ligase complex to regulate PHYTOCHROME INTERACTING FACTOR 4 abundance. Elife 6.

  • Zhang, B., Van Aken, O., Thatcher, L., De Clercq, I., Duncan, O., Law, S. R., Murcha, M. W., van der Merwe, M., Seifi, H. S., Carrie, C., et al. (2014). The mitochondrial outer membrane AAA ATPase AtOM66 affects cell death and pathogen resistance in Arabidopsis thaliana. Plant J 80, 709-727.

  • Zhang, Y., Yang, Y., Fang, B., Gannon, P., Ding, P., Li, X., and Zhang, Y. (2010). Arabidopsis snc2-1D activates receptor-like protein-mediated immunity transduced through WRKY70. The Plant cell 22, 3153-3163.

  • Zhou, J., Spallek, T., Faulkner, C., and Robatzek, S. (2012). CalloseMeasurer: a novel software solution to measure callose deposition and recognize spreading callose patterns. Plant Methods 8, 49.

  • Zhou, J., Wang, J., Cheng, Y., Chi, Y. J., Fan, B., Yu, J. Q., and Chen, Z. (2013). NBR1-mediated selective autophagy targets insoluble ubiquitinated protein aggregates in plant stress responses. PLoS genetics 9, e1003196.

  • Zhou, J., Zhang, Y., Qi, J., Chi, Y., Fan, B., Yu, J. Q., and Chen, Z. (2014). E3 ubiquitin ligase CHIP and NBR1-mediated selective autophagy protect additively against proteotoxicity in plant stress responses. PLoS genetics 10, e1004116.



One skilled in the art will readily appreciate that the present disclosure is well adapted to carry out the objects and obtain the ends and advantages mentioned, as well as those inherent therein. The present disclosure described herein are presently representative of preferred embodiments, are exemplary, and are not intended as limitations on the scope of the present disclosure. Changes therein and other uses will occur to those skilled in the art which are encompassed within the spirit of the present disclosure as defined by the scope of the claims.


No admission is made that any reference, including any non-patent or patent document cited in this specification, constitutes prior art. In particular, it will be understood that, unless otherwise stated, reference to any document herein does not constitute an admission that any of these documents forms part of the common general knowledge in the art in the United States or in any other country. Any discussion of the references states what their authors assert, and the applicant reserves the right to challenge the accuracy and pertinence of any of the documents cited herein. All references cited herein are fully incorporated by reference, unless explicitly indicated otherwise. The present disclosure shall control in the event there are any disparities between any definitions and/or description found in the cited references.

Claims
  • 1. A nucleic acid encoding a npr1 protein, wherein the npr1 protein forms salicylic acid-independent NPR1 condensates.
  • 2. (canceled)
  • 3. The nucleic acid of claim 1, wherein the nucleic acid is operably linked to one or more expression control elements selected from the group consisting of: a promoter, one or more upstream open reading frames (uORFs), or the promoter and the one or more uORFs.
  • 4. The nucleic acid of claim 3, wherein the promoter is selected from the group consisting of: a constitutive promoter, an inducible promoter, a temporally-regulated promoter, a developmentally regulated promoter, a chemically regulated promoter, a tissue-preferred promoter, a tissue-specific promoter, a TBF1 promoter, a 35S promoter, a ubiquitin promoter, a tCUP cryptic constitutive promoter, a Rsyn7 promoter, a pathogen-inducible promoter, a maize In2-2 promoter, a tobacco PR-1a promoter, a glucocorticoid-inducible promoter, an estrogen-inducible promoter, a tetracycline-inducible promoter, a tetracycline-repressible promoter, a T3 promoter, a T7 promoter, and a SP6 promoter.
  • 5. (canceled)
  • 6. The nucleic acid of claim 3, wherein the uORF comprises a TBF1 gene uORF.
  • 7. The nucleic acid of claim 5, wherein the expression control elements comprise the TBF1 promoter and one or more TBF1 uORFs.
  • 8. (canceled)
  • 9. The nucleic acid of claim 1, wherein the npr1 protein comprises one or more mutations in at least one redox-sensitive intrinsically disordered region (RDR), wherein the one or more mutations reduce the redox-sensitivity of the RDR.
  • 10. The nucleic acid of claim 9, wherein the one or more mutations comprises a substitution of one or more cysteines in at least one RDR, a deletion of one or more cysteines in at least one RDR, or a combination thereof.
  • 11. The nucleic acid of claim 10, wherein the one or more cysteines are located in a region corresponding to residues 140-160, 368-404, or 510-539 of SEQ ID NO: 1.
  • 12. (canceled)
  • 13. The nucleic acid of claim 9, wherein the npr1 protein has increased interaction with CUL3 compared to wild-type NPR1 in the absence of salicylic acid.
  • 14. (canceled)
  • 15. The nucleic acid of claim 11, wherein the npr1 protein comprises a mutation of a cysteine corresponding to the cysteine at position 378, of SEQ ID NO: 1, position 385 of SEQ ID NO: 1, position 394 of SEQ ID NO: 1, positions 378 and 385 of SEQ ID NO: 1, positions 378 and 394 of SEQ ID NO: 1, positions 385 and 394 of SEQ ID NO: 1, or positions 378, 385, and 394 of SEQ ID NO: 1, or positions 150, 155, 156, and 160 of SEQ ID NO: 1.
  • 16. (canceled)
  • 17. The nucleic acid of claim 15, wherein the mutation of the cysteine comprises an alanine substitution.
  • 18. (canceled)
  • 19. The nucleic acid of claim 1, wherein the nucleic acid encodes a ΔCTD npr1 ΔCTD protein, a BTB domain npr1 protein, or a sim3 npr1 protein.
  • 20. The nucleic acid of claim 1, where the nucleic acid encodes: (a) a protein comprising the amino acid sequence of any of SEQ ID NOS: 134-160 or an ortholog thereof; or(b) a protein having at least 70% identity to a protein comprising the amino acid sequence of any of SEQ ID NOS: 134-160.
  • 21. (canceled)
  • 22. A plant or plant cell expressing the nucleic acid of claim 1.
  • 23. (canceled)
  • 24. The plant or plant cell of claim 22, wherein the plant is a food crop plant, a biofuel plant, a corn plant, a legume plant, a bean plant, a rice plant, a soybean plant, a cotton plant, a sugarcane plant, a tobacco plant, a palm oil plant, a date palm, a wheat, a vegetable plant, a squash plant, a Solanaceae plant, a tomato, a banana plant, a potato plant, a pepper plant, a moss plant, a parsley plant, a sunflower plant, a mustard plant, a sorghum plant, a millet plant, a citrus plant, an apple plant, a strawberry plant, a rapeseed plant, a cabbage plant, a cassava plant, a coffee plant, a sweet potato plant, a jatropha plant, or a switchgrass plant.
  • 25. (canceled)
  • 26. (canceled)
  • 27. A method of increasing stress tolerance in a plant, comprising expressing in the plant the nucleic acid of claim 1.
  • 28. The method of claim 27, wherein the stress is biotic or abiotic stress.
  • 29. The method of claim 28, wherein the biotic stress comprises pathogen infection.
  • 30. (canceled)
  • 31. The method of claim 28, wherein the abiotic stress comprises high temperature (heat shock) stress, low temperature (cold shock) stress, oxidative stress, or DNA damage.
  • 32. The method of claim 27, wherein increasing stress tolerance comprises one or more of: decreasing programmed cell death, decreasing effector-triggered immunity (ETI)-induced cell death, increasing formation of NPR1 condensates, and degrading EDS1 and specific WRKY transcription factors required for pathogen ETI.
  • 33. (canceled)
  • 34. The method of claim 27, wherein the plant is a food crop plant, a biofuel plant, a corn plant, a legume plant, a bean plant, a rice plant, a soybean plant, a cotton plant, a sugarcane plant, a tobacco plant, a palm oil plant, a date palm, a wheat, a vegetable plant, a squash plant, a Solanaceae plant, a tomato, a banana plant, a potato plant, a pepper plant, a moss plant, a parsley plant, a sunflower plant, a mustard plant, a sorghum plant, a millet plant, a citrus plant, an apple plant, a strawberry plant, a rapeseed plant, a cabbage plant, a cassava plant, a coffee plant, a sweet potato plant, a jatropha plant, or a switchgrass plant.
  • 35. (canceled)
  • 36. (canceled)
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 63/042,237, filed Jun. 22, 2020, which is incorporated herein by reference.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2021/038430 6/22/2021 WO
Provisional Applications (1)
Number Date Country
63042237 Jun 2020 US