An automatic chess compressor can be carried by an emergency worker and applied to a patient to stimulate blood circulation and breathing. Such a chest compressor usually includes a piston that moves up and down in a cylinder (assuming that the patient is reclined so his chest faces upward). The cylinder is held closely over the patient's chest as by a strap wrapped around the patient's chest area. The chest compressions may occur at a frequency such as ½ to one second apart, so the piston moves downward rapidly in each stroke.
A rapidly downwardly-moving piston tends to impart a downward pulse to the patient at the bottom of the stroke, which is not desirable. It is possible to use a spring that is fixed to the piston to reduce the downward force as the piston moves down. However, the spring force applied along most of the piston movement tends to slow piston movement so additional energy is required to move the piston. A spring has the advantage of more rapidly raising the piston after each chest compression, but it is found that resilience of the chest is sufficient to rapidly raise the piston after each downward stroke.
In most cases, the patient's chest should be compressed by about one to two inches in each stroke, to benefit blood circulation and breathing while avoiding harm to the patient's chest (e.g. by breaking a rib). The piston actually must apply a downward stroke of about two to four inches to produce a patient chest compression of about one to two inches because the backup such as the strap wrapped about the patient, presses into the patient and takes up some of the compression. For children and small adults, it is desirable to reduce the chest compression to near the minimum, while for adults of normal to large size it desirable to use chest compressions close to the maximum. The chest compressor should be easily and rapidly convertible between different compression distances.
In accordance with one embodiment of the present invention, a chest compressor is provided of the type that comprises an actuator that includes a piston that moves vertically (when the patient's chest faces upward) to repeatedly compress the patient's chest, wherein piston motion is gradually reversed near the bottom of its downstroke while minimizing the energy absorbed to create such reversal. The piston moves during most of its downstroke without having to overcome the force of a spring that would slow its downward motion. A spring, such as a wave spring, first engages the piston near the bottom of its downstroke and at that time the spring rapidly slows downward motion of the piston and avoids a large downward force at the end of the stroke.
The length of piston stoke is easily varied by the emergency worker, so the stroke length can be changed for different patients. This is accomplished by providing one or more stops that can be moved into the path of the piston. In a telescoping piston arrangement wherein an outer piston part lies within an inner piston part, the stop(s) engage only the outer piston part. The compression spring that reverses piston movement, lies at the bottom of the outer piston part to engage an outward flange at the top of the inner piston part near the end of the piston downstroke.
The novel features of the invention are set forth with particularity in the appended claims. The invention will be best understood from the following description when read in conjunction with the accompanying drawings.
In the chest compressor illustrated, the piston 14 is moved downward by compressed fluid such as compressed air or oxygen that flows through a control into the cylinder though a tube 24 and out though another tube 26, both tubes being connected to a top plate 30 of the cylinder. Applicant finds that sufficiently rapid upward movement is produced by the resilience of the patient. Means other than compressed gas can be used to move the piston up and down, including an electrically powered mover such as a solenoid or motor(s).
The piston illustrated in
In accordance with one aspect of the invention, applicant positions a compression spring 60, in the form of a wave spring, in the path of the inner piston part 42. The wave spring 60 shown in
In normal operation, the outer piston part 40 moves downward until its top flange 52 is stopped by the cylinder flange 50, and the inner piston part has begun to move down within the outer piston part. The inner piston part top flange 56 engages the wave spring 60 and compresses it against the outer piston part bottom flange 54. Such compression of the wave spring as to 60A, slows downward movement of the inner piston part to avoid a large force at the end of piston downward movement, and even helps reverse the piston direction of motion. In the prior art, springs were provided that were continuously connected to the piston to continually urge it upward. As a result, greater energy (e.g. higher pressure air) was required to rapidly move the piston in a full downward stroke. In the present invention, the compression spring engages the piston to slow its downward movement only near the end of downward piston movement, so energy is absorbed from the piston only along a small portion of its stroke.
As mentioned above, a combined piston stroke of about four inches is desirable for full size adults, while a piston stroke of about two inches is desirable for a child or small adult. The emergency worker can rapidly decide the length of piston stroke that is appropriate for a particular patient. Applicant allows the emergency worker to quickly adjust the stroke length by providing at least one pair of stops 90, 92 (
Thus, the invention provides a chest compressor of the type in which a piston moves up and down (relative to a patient with an upwardly facing chest), wherein a spring is provided that engages the piston to slow its downward movement during a downward stroke, only after the piston has completed a majority of its downward stroke. The spring is preferably a compression spring, and is preferably a wave spring. The spring is useful for a chest compressor having a piston with only one piston part, or a piston with a plurality of telescoping piston parts. The downward stroke can be reduced from its maximum, by providing one or more stops that are moveable into the path of an outward flange of a piston or piston part, to prevent the piston or piston part from moving down along its full downward stroke.
Although particular embodiments of the invention have been described and illustrated herein, it is recognized that modifications and variations may readily occur to those skilled in the art, and consequently, it is intended that the claims be interpreted to cover such modifications and equivalents.
Number | Name | Date | Kind |
---|---|---|---|
2970592 | David | Feb 1961 | A |
3289672 | Thomas | Dec 1966 | A |
3512522 | Greenlee et al. | May 1970 | A |
3610233 | Barkalow | Oct 1971 | A |
4088128 | Mabuchi | May 1978 | A |
4495940 | Takaishi | Jan 1985 | A |
4512339 | McShirley | Apr 1985 | A |
4549535 | Wing | Oct 1985 | A |
4669454 | Shamos | Jun 1987 | A |
4915095 | Chun | Apr 1990 | A |
5327887 | Nowakowski | Jul 1994 | A |
5639074 | Greenhill et al. | Jun 1997 | A |
6129005 | Asadi et al. | Oct 2000 | A |
6790184 | Thierman | Sep 2004 | B2 |
6976969 | Messerly | Dec 2005 | B2 |
7060041 | Weil et al. | Jun 2006 | B1 |
20040030272 | Kelly et al. | Feb 2004 | A1 |
20050148909 | Weil et al. | Jul 2005 | A1 |
20050183911 | Wilda et al. | Aug 2005 | A1 |
20070150004 | Colloca et al. | Jun 2007 | A1 |
20070158154 | Bluemle et al. | Jul 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20080287863 A1 | Nov 2008 | US |