Enhanced coal-bed methane production

Information

  • Patent Grant
  • 9810050
  • Patent Number
    9,810,050
  • Date Filed
    Friday, November 16, 2012
    12 years ago
  • Date Issued
    Tuesday, November 7, 2017
    7 years ago
Abstract
Methods and systems for enhanced recovery of coal bed methane. A method includes generating a diluent gas mixture comprising N2 and CO2 in a semi-closed Brayton cycle power plant, injecting at least a portion of the diluent gas mixture into a coal bed, and recovering a mixed production gas comprising methane from the coal bed.
Description
FIELD OF THE INVENTION

Exemplary embodiments of the present techniques relate to techniques for enhancing the production of coal bed methane through injection of diluent from a gas turbine operating in a semi-closed Brayton cycle.


BACKGROUND

This section is intended to introduce various aspects of the art, which may be associated with exemplary embodiments of the present techniques. This discussion is believed to assist in providing a framework to facilitate a better understanding of particular aspects of the present techniques. Accordingly, it should be understood that this section should be read in this light, and not necessarily as admissions of prior art.


Coal deposits may hold significant amounts of hydrocarbon gases, such as methane, ethane, and propane, generally adsorbed onto the surface of the coal. A significant amount of natural gas reserves exists as adsorbed species within coal beds or as free gas within fractures (cleats) in the coal. The natural gas from coal beds, commonly referred to as “coalbed methane” (CBM), currently constitutes a major source of the natural gas production in the United States. Open fractures in the coal (called the cleats) can also contain free gas or can be saturated with water. Coal bed methane is often produced by reducing pressure, which reduces the partial pressure of methane in the cleats and causes desorption of methane from the coal. This pressure reduction can be performed by dewatering the coal bed. This, however, requires water handling and disposal.


Further, even using well stimulation methods, such as cavitation (see, for example, U.S. Pat. No. 5,147,111), only a small fraction of the CBM is economically recoverable. More specifically, depressurization is limited to higher permeability coal beds. This is because as pressure is decreased, coal cleats (i.e., natural fractures) may collapse and decrease the permeability of the coalbed. Loss of permeability is particularly a concern for deep coal beds, which may have a low initial permeability. Depressurization may also result in production of low-pressure gas needing significant power for compression to permit pipelining to market.


As an alternative to, or in conjunction with, depressurization, improved recovery of CBM may be obtained by injecting another gas into the coalbed. For example, CO2 may be used to enhance the production of CBM (see, for example, U.S. Pat. Nos. 4,043,395; 5,085,274; and 5,332,036). CO2 more strongly adsorbs to the coal than CBM and, thus, may displace adsorbed CBM. In other applications, nitrogen (N2), which less strongly adsorbs onto coal than CBM, may be used (see, for example, U.S. Pat. Nos. 5,014,785; 5,566,756; Scott R. Reeves, “Geological Sequestration of CO2 in Deep, Unmineable Coalbeds: An Integrated Research and Commercial-Scale Field Demonstration Project,” SPE 71749 (Society of Petroleum Engineers, 2001); and Jichun Zhu, et al., “Recovery of Coalbed Methane by Gas Injection,” SPE 75255 (Society of Petroleum Engineers, 2002). N2, and other less strongly adsorbing gases, lower the partial pressure of the CBM components in the bulk gas phase, which causes the CBM to desorb from the coal. Both of these methods can maintain the coalbed at relatively high pressures and hence aid permeability by keeping the cleat system open.


Other gases have also been described as enhancing production of coalbed methane or modifying coal beds for other purposes. For example, U.S. Patent Publication No. 2007/0144747 describes a process for pretreating an underground coal bed to enhance the potential for carbon dioxide sequestration. The method involves injecting hydrogen into an underground coal bed, wherein the hydrogen is at a temperature below about 800° C.; extracting hydrogen and methane from the coalbed; separating the hydrogen and methane; delivering the methane as a product of the process; and injecting the separated hydrogen into the deposit to continue the process. When the sequestration of carbon dioxide is desired, hydrogen may be optionally produced from methane and carbon dioxide may optionally be injected for sequestration.


The methods above are generally limited by the availability of the gas in sufficient amounts for injection. Larger amounts of injection gas may be generated by coupling a power plant to the injection process, wherein sequestration of the exhaust gases occurs in tandem with the production of energy. For example, in S. Reeves, “Enhanced Coalbed Methane Recovery,” presented in the SPE Distinguished Lecture Series, Society of Petroleum Engineers, 101466-DL (2003), the author discusses test projects for enhancing the production of coalbed methane from deep coal seams. The enhancement in the production of coal bed methane is related to adsorption isotherms. For example, N2/CH4 adsorption ratio is around 0.5/1, i.e., one unit of methane is adsorbed for every 0.5 units of nitrogen. In the case of CO2, CO2/CH4 adsorption ratio is 2/1, i.e., one unit of methane is adsorbed for every two units of CO2. In one project, N2 was used to lower the partial pressure of methane in cleats in the coal, enhancing the desorption of methane from the coal. Another project discussed was the use of CO2 from a pipeline to enhance production and sequester CO2 in the coalbed. The sources discussed for the N2 and CO2 were commercial pipelines in the region of the fields. The author does not discuss the isolation process used to generate the injection gases, or the use of mixed streams of N2 and CO2 for the injection.


In U.S. Patent Application Publication No. 2010/0326084, by Anderson, et al., a method for power generation using a low heating value fuel is disclosed. In the method, an oxy-combustor is used to combust oxygen with a gaseous low heating value fuel. A compressor upstream of the combustor compresses the fuel. The combustor produces a drive gas including steam and carbon dioxide as well as other non-condensable gases, which pass through a turbine to output power. The drive gas can be recirculated to the combustor, either through the compressor, the oxygen inlet or directly to the combustor. Recirculation can occur before or after a condenser for separation of a portion of the water from the carbon dioxide. Excess carbon dioxide and steam is collected from the system. The turbine, combustor, and compressor can be derived from an existing gas turbine with fuel and air/oxidizer lines swapped. The excess carbon dioxide can be sequestered, for example, by use in enhanced oil recovery, enhanced natural gas recovery, or in enhanced coalbed methane recovery.


However, in the application described above, the oxygen supply for the combustor is provided by an air separation unit (ASU) or any other system capable of providing a substantially pure oxygen stream. The application does not disclose the use of air as an oxidizer and, thus, does not disclose the generation or use of a combined N2 and CO2 stream.


In addition to supply issues, the cost of separation to isolate gases, for example, by a swing adsorption process or a cryogenic air separation unit from either the atmosphere or produced gases may be prohibitively expensive. Further, after separation, the gases may need substantial compression, e.g., 2500 psia or more depending on subsurface depth, for injection into a formation. Thus, techniques for improving the enhanced recovery of coal bed methane would be valuable.


Other related material may be found in at least U.S. Patent Publication No. 2005/0201929, U.S. Pat. Nos. 5,402,847; 6,412,559; and 7,491,250, and P. van Hemert, et al., “Adsorption of carbon dioxide and a hydrogen-carbon dioxide mixture,” 2006 International Coalbed Methane Symposium (Tuscaloosa, Ala., May 22-26, 2006), Paper 0615.


SUMMARY

An embodiment described herein provides a method for enhanced recovery of coalbed methane. The method includes generating a gas mixture including N2 and CO2 in a semi-closed Brayton cycle power plant. At least a portion of the gas mixture is injected into a coal bed and a mixed production gas including methane is recovered from the coal bed.


Another embodiment provides a system for enhancing the recovery of coalbed methane. The system includes a semi-closed Brayton cycle power plant, wherein an exhaust gas from the semi-closed Brayton cycle power plant provides a diluent gas mixture including substantial amounts of N2 and CO2. An injection well is configured to inject the diluent gas mixture from the semi-closed Brayton cycle power plant into a coalbed. A production well is configured to harvest a production gas mixture from the coal bed, wherein the production gas mixture includes methane.


Another embodiment provides a system for enhancing the recovery of coalbed methane. The system includes a gas turbine configured to operate at a substantially stoichiometrically balanced condition, wherein cooling is provided by a diluent gas injected into a combustor, and wherein the diluent gas substantially includes N2 and CO2. A generator is configured to convert mechanical energy provided by the gas turbine into electrical energy. A heat recovery steam generator (HRSG) is configured to generate steam by heating a boiler with an exhaust stream from the gas turbine. A Rankine cycle power plant is configured to generate electricity from the steam. A cooler is configured to condense water from the exhaust stream downstream of the HRSG, generating the diluent. A diluent compressor is configured to increase the pressure of the diluent and direct at least a portion of the diluent to the combustor. An injection system is configured to inject a portion of the diluent from the compressor into a coalbed and a production system is configured to harvest a production gas from the coalbed, wherein the production gas includes methane.





BRIEF DESCRIPTION OF THE DRAWINGS

The advantages of the present techniques are better understood by referring to the following detailed description and the attached drawings, in which:



FIG. 1 is a block diagram of a system for using a diluent gas mixture of CO2 and N2 from a power plant in enhanced coalbed methane recovery;



FIG. 2 is a schematic diagram of a simple-cycle, semi-closed Brayton power plant utilizing a gas turbine generator that can be used to supply a diluent gas mixture for enhanced recovery of coal bed methane;



FIG. 3 is a schematic diagram of a combined-cycle, semi-closed Brayton power plant (CSBPP) that can be used to provide a diluent gas mixture for enhanced recovery of coal bed methane;



FIG. 4 is a schematic diagram of another combined cycle, semi-closed Brayton cycle power plant (CSBPP) that can be used to provide a diluent gas mixture for enhanced recovery of coal be methane;



FIG. 5 is a schematic diagram of an exemplary enhanced coal bed methane recovery (ECBM) system; and



FIG. 6 is a process flow diagram of a method for using a diluent gas mixture to enhance the recovery of coal bed methane.





DETAILED DESCRIPTION

In the following detailed description section, specific embodiments of the present techniques are described. However, to the extent that the following description is specific to a particular embodiment or a particular use of the present techniques, this is intended to be for exemplary purposes only and simply provides a description of the exemplary embodiments. Accordingly, the techniques are not limited to the specific embodiments described below, but rather, include all alternatives, modifications, and equivalents falling within the true spirit and scope of the appended claims.


At the outset, for ease of reference, certain terms used in this application and their meanings as used in this context are set forth. To the extent a term used herein is not defined below, it should be given the broadest definition persons in the pertinent art have given that term as reflected in at least one printed publication or issued patent. Further, the present techniques are not limited by the usage of the terms shown below, as all equivalents, synonyms, new developments, and terms or techniques that serve the same or a similar purpose are considered to be within the scope of the present claims.


An “adsorbent material” is any material or combination of materials capable of adsorbing gaseous components. For example, an adsorbent material discussed herein is a natural coal bed, as discussed further below. Other material could include for examples zeolites.


“Adsorption” refers to a process whereby certain components of a mixture adhere to the surface of solid bodies that it contacts. This process is generally reversible.


A “combined cycle power plant” (CCPP) includes a gas turbine, a steam turbine, a generator, and a heat recovery steam generator (HRSG), and uses both steam and gas turbines to generate power. The gas turbine operates in an open Brayton cycle, and the steam turbine operates in a Rankine cycle. Combined cycle power plants utilize heat from the gas turbine exhaust to boil water in the HRSG to generate steam. The steam generated is utilized to power the steam turbine. After powering the steam turbine, the steam may be condensed and the resulting water returned to the HRSG. The gas turbine and the steam turbine can be utilized to separately power independent generators, or in the alternative, the steam turbine can be combined with the gas turbine to jointly drive a single generator via a common drive shaft. These combined cycle gas/steam power plants generally have higher energy conversion efficiency than Rankine-cycle or steam-only power plants. Currently, simple-cycle plant efficiency can exceed 44% while combined cycle plant efficiency can exceed 60%. The higher combined cycle efficiencies result from synergistic utilization of a combination of the gas turbine with the steam turbine.


“Coal” is generally a solid hydrocarbon, including, but not limited to, lignite, sub-bituminous, bituminous, anthracite, peat, and the like. The coal may be of any grade or rank. This can include, but is not limited to, low grade, high sulfur coal that is not suitable for use in coal-fired power generators due to the production of emissions having high sulfur content.


“Coal bed methane” or CBM is natural gas that is adsorbed onto the surface of coal. CBM may be substantially comprised of methane, but may also include ethane, propane, and other hydrocarbons. Further, CBM may include some amount of other gases, such as carbon dioxide (CO2), nitrogen (N2), and H2S, among others.


A “compressor” is a machine that increases the pressure of a gas by the application of work (compression). Accordingly, a low pressure gas (e.g., 5 psig) may be compressed into a high-pressure gas (e.g., 1000 psig) for transmission through a pipeline, injection into a well, or other processes.


A “dehydration device” is a device for removing water, in gaseous or liquid form, from a gas mixture. “Dewatered” describes broadly any reduction of water content. Typically, a dewatered hydrocarbon-containing material can have a majority of the water content substantially removed, e.g., less than about 5% by volume water or less than about 1% depending on the particular material and starting water content. Water contents much less than 1% may be desirable for certain gas streams.


“Enriched” as applied to any stream withdrawn from a process means that the withdrawn stream contains a concentration of a particular component that is higher than the concentration of that component in the feed stream to the process.


A “facility” is a representation of a tangible piece of physical equipment through which hydrocarbon fluids are either produced from a reservoir or injected into a reservoir. In its broadest sense, the term facility is applied to any equipment that may be present along the flow path between a reservoir and its delivery outlets, which are the locations at which hydrocarbon fluids either enter the reservoir (injected fluids) or leave the reservoir (produced fluids). Facilities may comprise production wells, injection wells, well tubulars, wellhead equipment, gathering lines, manifolds, pumps, compressors, separators, surface flow lines, and delivery outlets. As used herein, a facility may also include a gas treatment unit, such as an acid gas separation unit, a cryogenic separation system, or a dehydration unit. In some instances, the term “surface facility” is used to distinguish those facilities other than wells. A “facility network” is the complete collection of facilities that are present in the system, which would include all wells and the surface facilities between the wellheads and the delivery outlets.


The term “gas” is used interchangeably with “vapor,” and means a substance or mixture of substances in the gaseous state as distinguished from the liquid or solid state. Likewise, the term “liquid” means a substance or mixture of substances in the liquid state as distinguished from the gas or solid state.


A “hydrocarbon” is an organic compound that primarily includes the elements hydrogen and carbon although nitrogen, sulfur, oxygen, metals, or any number of other elements may be present in small amounts. As used herein, hydrocarbons generally refer to organic materials that are harvested from hydrocarbon containing sub-surface rock layers, termed reservoirs. For example, natural gas, oil, and coal are hydrocarbons.


“Hydrocarbon production” or “production” refers to any activity associated with extracting hydrocarbons from a well or other opening. Hydrocarbon production normally refers to any activity conducted in or on the well after the well is completed. Accordingly, hydrocarbon production or extraction includes not only primary hydrocarbon extraction but also secondary and tertiary production techniques, such as injection of gas or liquid for increasing drive pressure, mobilizing the hydrocarbon or treating by, for example chemicals or hydraulic fracturing the well bore to promote increased flow, well servicing, well logging, and other well and wellbore treatments.


The term “natural gas” refers to a gas obtained from a crude oil well (associated gas), from a subterranean gas-bearing formation (non-associated gas), or from a coal bed. The composition and pressure of natural gas can vary significantly. A typical natural gas stream contains methane (CH4) as a significant component. Raw natural gas may also contain ethane (C2H6), higher molecular weight hydrocarbons, acid gases (such as carbon dioxide, hydrogen sulfide, carbonyl sulfide, carbon disulfide, and mercaptans), and contaminants such as water, nitrogen, iron sulfide, wax, and crude oil.


“Pressure” is the force exerted per unit area by the gas on the walls of the volume. Pressure can be shown as pounds per square inch (psi).


As used herein, a “Rankine cycle power plant” includes a vapor generator, a turbine, a condenser, and a recirculation pump. For example when the vapor is steam, a “Rankine cycle power plant” includes a steam generator, a steam turbine, a steam condenser, and a boiler feedwater pump. The steam generator is often a gas fired boiler that boils water to generate the steam. However, in embodiments, the steam generator may be a geothermal energy source, such as a hot rock layer in a subsurface formation. The steam is used to generate electricity in the steam turbine generator, and the reduced pressure steam is then condensed in the steam condenser. The resulting water is recirculated to the steam generator to complete the loop.


“Reservoir formations” or “reservoirs” are typically pay zones include sandstone, limestone, chalk, coal and some types of shale. Pay zones can vary in thickness from less than one foot (0.3048 m) to hundreds of feet (hundreds of m). The permeability of the reservoir formation provides the potential for production.


“Sequestration” refers to the storing of a gas or fluid that is a by-product of a process rather than discharging the fluid to the atmosphere or open environment. For example, as described herein, carbon dioxide gas formed from the burning or steam reforming of hydrocarbons may be sequestered in underground formations, such as coal beds.


“Substantial” when used in reference to a quantity or amount of a material, or a specific characteristic thereof, refers to an amount that is sufficient to provide an effect that the material or characteristic was intended to provide. The exact degree of deviation allowable may in some cases depend on the specific context.


“Well” or “wellbore” refers to a hole in the subsurface made by drilling or insertion of a conduit into the subsurface. The terms are interchangeable when referring to an opening in the formation. A well may have a substantially circular cross section, or other cross-sectional shapes. Wells may be cased, cased and cemented, or open-hole well, and may be any type, including, but not limited to a producing well, an injection well, an experimental well, and an exploratory well, or the like. A well may be vertical, horizontal, or any angle between vertical and horizontal (a deviated well), for example a vertical well may comprise a non-vertical component.


Overview


Embodiments described herein provide methods for supplying a diluent gas mixture to a coal bed for the enhanced recovery of coal bed methane. The diluent gas mixture can include substantial amounts of N2 and CO2, which is generated from the exhaust stream of a semi-closed Brayton cycle power plant. The diluent gas mixture can be used as an injection gas for enhancing a recovery of methane from a coal bed. The semi-closed Brayton cycle generator is used to provide power in addition to the diluent gas mixture.


As noted above, lab studies indicate that coal adsorbs nearly twice as much volume of carbon dioxide as methane. The higher carbon dioxide adsorptivity forces more methane to be released while keeping carbon dioxide sequestered in coal beds. On the other hand, nitrogen has lower adsorptivity compared to methane and remains relatively free in the coal structure, i.e., in cleats or fractures in the coal. This larger quantity of free nitrogen reduces the partial pressure of methane in the cleats, resulting in an increased release of methane. Studies have indicated that for each volume of nitrogen that is injected, two volumes of methane are produced, while for CO2 injection one volume of methane is released for every two volumes of CO2 injected.


However, there are two issues associated with enhanced CBM recovery as currently performed. When using carbon dioxide injection in the enhanced CBM process, maintaining injectivity is a challenge, since the CO2 adsorption may swell the coal, leading to closure of the cleats. Further, the use of nitrogen for enhanced CBM suffers from early breakthrough and reproduction of N2.


In some embodiments described herein, this issue is addressed by using a N2/CO2 diluent gas mixture, in which the injection of N2 provides rapid early recovery and the coinjection of CO2 provides better displacement in later stages. Further, the cost of acquiring either substantially pure CO2 or substantially pure N2 for current injection processes may be uneconomical. For example, capturing CO2 from the exhaust of a standard power plant exhaust is very expensive. The same is true for producing nitrogen via air separation or other means. Thus, a mixed N2/CO2 injection stream may provide a potential synergy for both issues. A semi-closed Brayton cycle power plant can generate a mixed N2/CO2 gas by using a stoichiometric ratio between oxygen and fuel, in which the oxygen is supplied by air. The resulting gases will predominately be a mixture of N2 and CO2.


Accordingly, a dedicated natural gas combined-cycle power plant can supply both electricity for hydrocarbon production from a coal bed and an injection gas for enhanced recovery. If other oil and gas fields are present, the power plant may also provide electricity and gases for enhanced oil recovery to those fields. The fuel for the power plant fuel can be supplied from the gas production, for example, as a portion of the gas harvested from the coal bed. Waste heat from power generation may be provided to oil and gas facilities. The power plant exhaust gas is treated, cooled, and compressed for use as a diluent in the power plant, and for use in enhanced hydrocarbon recovery (EHR).



FIG. 1 is a block diagram of a system 100 for using a diluent gas mixture of CO2 and N2 from a power plant in enhanced coalbed methane recovery. In the system 100, oxidizer 102 and fuel gas 104 are provided to a semi-closed Brayton cycle power plant 106, for example, using a gas turbine generator (GTG), at a substantially stoichiometric ratio. The oxidizer 102 can be air having about 70% N2 and about 21% oxygen and, thus, the ratio would be calculated between the fuel gas 104 and the oxygen portion of the oxidizer 102. The fuel gas 104 and oxygen are substantially completely combusted in the GTG of the semi-closed Brayton cycle power plant 106 to form an exhaust that includes N2, CO2, and H2O, as well as trace amounts of CO, O2, and fuel. The energy from the exhaust is used to drive a turbine expander that turns a shaft. A generator coupled to the shaft generates electricity 108.


The exhaust stream 110 from the turbine expander of the gas turbine generator 106 can be used to boil water, or other heat transfer fluids, in a heat recovery steam generator (HRSG) that can be used to power a Rankine cycle power plant 112. In the Rankine cycle power plant 112, the steam, or other vapor, can be used to drive a turbine and generate more electricity 108. The cooled, lower pressure, gas stream 114 can be dehydrated and fed to a booster compressor 116 to be pressurized, or may be fed directly to the booster compressor 116 before dehydration. The pressurized stream 118 from the booster compressor 116 can be cooled or chilled in a heat exchanger 120 to condense and remove water 122.


The treated stream forms the diluent gas mixture 124 which may be returned to the semi-closed Brayton cycle power plant 106 for compression by the gas turbine's axial compressor. The compressed diluent gas is fed to a combustor in place of a portion of the fuel gas 104 and oxidizer 102, cooling the combustor and allowing the use of a stoichiometric ratio between the reactants without overheating the combustor. The recycling of the diluent gas mixture 124 completes the semi-closed Brayton cycle. After compression, a portion of the diluent gas mixture 124 can be used as an injection gas 126, which is injected into a coal bed 128 to enhance the recovery of coal bed methane (CBM), as described herein. A produced gas mixture 130 from the coal bed 128 can be processed in a gas treatment facility 132 to remove excess non-condensable gases, such as nitrogen, and other impurities, such as CO2, H2O, H2S, solids, and the like. The gas treatment facility 132 may include a compressor to boost the pressure of the resulting gas 134 before sending the gas to a gas sales facility 136 for sales by pipeline, or returning a portion to the semi-closed Brayton cycle power plant 106 as the fuel gas 104. The gas sales facilities 136 can be used to measure and further compress the gas for sale. Further, the gas sales facility 136 may include a gas liquefaction plant to produce liquefied natural gas (LNG) for shipment by tanker.



FIG. 2 is a schematic diagram of a simple-cycle, semi-closed Brayton power plant 200 utilizing a gas turbine generator that can be used to supply a diluent gas mixture 126 for enhanced recovery of coal bed methane. Like number items are as described with respect to FIG. 1. In this example, the Rankine cycle power plant 112 (FIG. 1) has been omitted to simplify the figure. The oxidant 102 and fuel gas 104 are fed to a combustor 202 to be burned. A compressed diluent stream 204 is also fed to the combustor 202 to lower the total amount of fuel gas 104 and oxidant 102, allowing the combustion process to be run at near stoichiometric conditions without overheating. As a result, the amount of O2 and CO generated in the combustion process is decreased, and the hot exhaust gases 206 include mostly CO2, H2O, and N2, in addition to some trace gases.


The oxidant 102 and fuel gas 104 pressures may be increased, for example, using compressors, to boost the pressure to match the injection pressure of the compressed diluent stream 204 at the combustor 202. The hot gases 206 from the combustor 202 are passed to a turbine 208, which uses the energy of the hot gases 206 to spin a shaft 210. The shaft 210 provides energy to an electric generator 211 to generate the electricity 108. The electric generator 211 does not have to be directly coupled to the shaft 210 from the turbine 208, but may instead be coupled to the shaft 210 by a gear box, clutch, or other device.


From the turbine 208, the hot gas stream 212 is passed to a cooler 214. The cooler 214 chills the hot gas stream 212, causing the water vapor to condense out, allowing its removal as a separate water stream 216. In this embodiment, the cooler 214 may correspond to the heat exchanger/dehydrator 120 and the water stream 216 may correspond to the water 122 of FIG. 1. After removal of the water 216, the diluent gas mixture 124 is provided to a compressor 218 for recompression, prior to feeding the compressed diluent stream 204 to the combustor 202 to help in cooling the combustor 202. The recycling of the diluent gas mixture 124 partially closes the Brayton cycle in the simple-cycle, semi-closed Brayton power plant 200, resulting in a semi-closed Brayton cycle. As fuel gas 104 and oxidant 102 are continuously being fed to the simple-cycle, semi-closed Brayton power plant 200 to maintain the combustion, a portion 220 of the diluent gas mixture 124 is continuously removed. This portion 220 can be fed through a cooler 222 to remove the heat of compression, generating the injection gas 126, which can be used to enhance the recovery of coal bed methane. If the demand for the injection gas 126 is lower than the corresponding amount of oxidant 102 and fuel gas 104 injected into the simple-cycle, semi-closed Brayton power plant 200, excess gases may be vented, sent to a separator, provided to customers in a pipeline, and the like.


Many options are available to increase the level of integration between the power generation process, hydrocarbon production facilities, and coal beds, as discussed further with respect to FIGS. 3-5. Increased integration may improve overall system efficiency or reliability while reducing greenhouse gas emissions. For example, a coal bed can provide fuel gas 104 for the combustor 202 on the simple-cycle, semi-closed Brayton power plant 200. A steam Rankine cycle, for example, using a HRSG, can be added to the power plant to increase the power produced and reduce the size the working fluid cooler. A water desalination process can be added to the power plant to reduce the size the working fluid cooler and produce clean water. Water produced with the gas from the coal bed is used as a feedstock for the desalination process. The power plant can be used to provide steam, heat, or electric power for the processing, treating, or refining hydrocarbons from the coal bed or a nearby reservoir. Water produced from working fluid condensation or desalination is used for well drilling, fracturing, processing, treating, or refining hydrocarbons.



FIG. 3 is a schematic diagram of a combined-cycle, semi-closed Brayton power plant (CSBPP) 300 that can be used to provide a diluent gas mixture for enhanced recovery of coal bed methane. Like numbered items are as discussed with respect to FIGS. 1 and 2 above. The CSBPP 300 has a semi-closed Brayton power plant 302, coupled to a Rankine cycle power plant 304. In this arrangement, the semi-closed Brayton power plant 302 will usually be considered the prime mover, i.e., the largest self powered equipment in the system.


In the CSBPP 300, the hot gas stream 212 from the turbine 208 is passed through a heat-recovery steam generator (HRSG) 306. The HRSG 306 uses the heat from the hot gas stream 212 to boil a water stream 308 and generate a steam stream 310. In the Rankine cycle power plant 304, the steam stream 310 is fed to a steam turbine 312 which converts some of the energy of the steam stream 310 to mechanical energy. The mechanical energy drives a shaft 314, which powers a generator 316. The generator 316 can provide electricity 108 to a plant power grid in addition to the electricity 108 generated by the generator 211 in the semi-closed Brayton power plant 302. The remaining low pressure steam 318 is sent to a steam condenser 320 to be recondensed into the water stream 308, which is returned to the HRSG 306 by a pump 322. The steam condenser 320 may be a cooling tower, heat exchanger, or other device configured to harvest heat energy while condensing the steam. In an embodiment, the steam condenser 320 is a heat exchanger providing energy to boil an organic fluid, which may be used to provide more energy in an organic Rankine cycle. The HRSG 306 may also condense water 324 from the hot gas stream 212, which can be combined with the water stream 216 from the cooler 214.


The cooled gas stream 326 from the HRSG 306 may have a substantially lower pressure than the hot gas stream 212. Accordingly, a booster compressor 328 can be used to increase the pressure. The high pressure stream 330 from the booster compressor 328 is passed through the cooler 214, and returned to the diluent compressor 218 as the diluent gas mixture 124. In the embodiment shown, an air compressor 332 is used to increase the pressure of an air stream 334, prior to feeding the high pressure air stream 336 to the combustor 202. The high pressure air stream 336 acts as the oxidizer 102 (FIG. 1) and reacts with the fuel gas 104 in the combustor 202.


The CSBPP 300 may be a single or a multi-shaft system. In a single shaft system, the shaft 210 in the semi-closed Brayton power plant 302 and the shaft 314 of the Rankine cycle power plant 304 are a single contiguous shaft with all units operating in tandem. The single-shaft arrangement has increased operating simplicity and higher reliability than multi-shaft blocks. In some configurations, the steam turbine 312 and generator 316 of the Rankine cycle power plant 304 can be decoupled, for example, using a hydraulic clutch, during startup or for simple-cycle operation of the semi-closed Brayton power plant 302. In other embodiments, the shaft 210 of the semi-closed Brayton power plant 302 may be separate from the shaft 314 of the Rankine cycle power plant 304. In multi-shaft systems, one or more semi-closed Brayton power plants 302 may use individual HRSGs 306 to supply steam through a common header to a Rankine cycle power plant 304. Further, the booster compressor 328 may be located on a shaft with the other units, or may be a separate compressor powered by mechanical energy from the shaft or electrical energy, for example, from the generators.


Fuel treatment processes may be used to modify the fuel gas 104 to meet the requirements of the prime movers, e.g., the gas turbine generator of the semi-closed Brayton power plant 302. Prime movers operate safely and reliably within defined ranges for fuel components that will allow acceptable prime mover performance. Typical requirements for gas turbines include limits for heating value, Wobbe Index, contaminants (for example, water, oils, hydrogen sulfide, carbon dioxide, nitrogen, etc), dew point, solid particle sizes, hydrogen and carbon monoxide. If the fuel gas source has a composition outside these ranges a fuel treatment process can be used to achieve the desired composition.


Fuel compressors are often used to increase the pressure of the fuel gas to optimize operation of the prime movers. Prime movers operate safely and reliably within a defined range of fuel pressure that will allow acceptable prime mover performance. If the fuel gas source is below this range a gas compressor is used to raise the pressure to the desired level. The minimum requirement for gas turbines depends on the pressure ratio and design of the gas turbine, for example, this may range from 10 bar to 60 bar. Gas scrubbers and coolers may be used with multiple stages of compressors to achieve higher pressure ratios.



FIG. 4 is a schematic diagram of another combined cycle, semi-closed Brayton cycle power plant (CSBPP) 400 that can be used to provide a diluent gas mixture for enhanced recovery of coal be methane. Like numbered items are as described with respect to FIGS. 1-3. Any number of different equipment variations may be used as illustrated by the CCPP 400 in FIG. 4. In this CCPP 400, an air compressor 402 that is independent of the shaft 210 in the semi-closed Brayton power plant 302 is used to generate the high pressure air stream 336. The separation from the shaft 210 allows the air compressor 402 to be powered by other means, such as electricity 108, mechanical couplings to the shaft 210 of the semi-closed Brayton power plant 302, mechanical couplings to the shaft 314 of the steam turbine 312, and the like. Further, the portion 220 of the compressed diluent stream 204 is passed through an independent cooler 404 to form the injection gas 126. These variations allow more flexibility in some embodiments, providing greater control over the CCPP 400, and over the injection gas 126.


As described herein, the semi-closed Brayton power plant 302 utilizes a thermodynamic process that uses a compressor 218, combustor 202, turbine 208 and cooler 214 (and HRSG 306 in some embodiments) to convert energy in the fuel gas 104 to mechanical power, driving the shaft 210. As noted, adding oxidant 102, for example, as high pressure air stream 336, and fuel 104 to the combustor 202 requires that some of the diluent gas mixture 124 or cooled exhaust gas 326 be bled out of the system to maintain a steady state mass balance. An electrical generator 211 may be coupled to the turbine 208 to generate electrical power 108, for example, for powering equipment associate with the gas production facility, including, for example, injection compressors, gas treating facilities, hydrocarbon sales facilities, a LNG liquefaction plant, equipment associated with production wells, injection wells, drilling, and the like. In some embodiments, the mechanical power generated may be used directly to perform other tasks for the field, such as powering compressors in an LNG plant.



FIG. 5 is a schematic diagram of an exemplary enhanced coal bed methane recovery system 500. The system 500 includes a semi-closed Brayton cycle power plant 502, coal bed 504, and hydrocarbon production facilities 506. In some embodiments, a liquefaction plant 508 may be used for LNG production. However, embodiments are not limited to the system shown, as those of skill in the art will recognize that any number of arrangements may be used to provide an injection gas 510 to a coal bed 504 using a semi-closed Brayton cycle power plant 502. Using hydrocarbon fuel and an oxygen-containing oxidant, the semi-closed Brayton cycle power plant 502 generates electrical power 512 and the injection gas 510, for example, including carbon dioxide and nitrogen. The electrical power 512 may be used in a plant grid to power any number of facilities, which may include compressors, purification systems, and measurement systems, among others. The injection gas 510 is injected into the coal bed 504 through an injection well 514. The injection enhances the liberation of methane from the coal, which can then be produced with a producing well 516.


The injection gas 510 is generated as an exhaust stream 518 from the semi-closed Brayton cycle power plant 502. Power 520 from the semi-closed Brayton cycle power plant 502, such as electricity or mechanical power, can be used to drive an injection compressor 522 to increase the pressure of the exhaust stream 518 prior to injection. Injection compressors 522 are often used to inject gas into subterranean formations, such as coal beds 504. The injection compressors 522 increase the pressure of the injection gas 510 to allow the injection gas 510 to overcome the pressure of the subterranean coal bed 504.


The injection well 514 is the conduit used to direct the gas from the surface 524 to the coal bed 504. The injection well 514 can include valves located near the surface 524 to control the well, pipes to convey the injection gas 510 below the surface 524, and pipe perforations to allow the injection gas 510 to leave the pipe and enter the coal bed. A cathodic protection system may be included to inhibit corrosion of the injection well 514. Injection wells 514 often have measurement equipment installed near the well head to track the amount, pressure, and temperature, among others, of the injection gas 510.


The production well 516 is used to produce gas from the coal bed 504. The production well 516 can include valves located near the surface 524 to control the production well 516. Pipes are used to convey the gas below the surface. Pipe perforations allow the produced gas to enter the pipe from the coal bed 504. As for the injection well 514, a cathodic protection system may be used to inhibit well corrosion in the production well 516. Water, and other liquids, may enter the production well 516 and artificial lift can be used to remove the liquids. Production wells 516 that are primarily for gas production will often have measurement equipment and may use a compressor 526 to boost the pressure of the produced gas.


The produced gas stream 528 may be passed to the production facilities 506. The production facilities 506 can include systems for heating produced fluids, separating liquids from gases, and for the injection of chemicals into the separated streams, among others. The chemicals can include corrosion inhibitors, emulsion breaking chemicals, hydrate inhibitors, and the like. Additionally, the production facilities 506 can include systems for measuring produced fluids, storing produced fluids, and pumping or compressing produced fluids.


A gas stream 530 from the production facilities 506 may be divided into a fuel stream 532 that is used to fuel the semi-closed Brayton cycle power plant 502 and a liquefaction feed stream 534. The liquefaction feed stream 534 can be passed to a liquefaction plant 508 and is used to produce LNG 536 as a product. In other embodiments, the gas can be sold directly to a pipeline without liquefaction, as described below. The fuel stream 532 can be sent to a treatment facility 538 to remove contaminants or improve the suitability of the fuel gas prior to use in the prime movers. A compressor 540 can be used to boost the pressure of the fuel gas 542 to enable injection into the combustors of the GTG 502.


Additional equipment may be included for enhanced production or efficiency. This equipment may include a Rankine cycle power plant 544. The Rankine cycle power plant 544 can use a heat recovery steam generator (HRSG) to cool the hot exhaust stream 518 associated with the power generation process, for example, boiling water to create stream. The steam from the HRSG can then be used in a Rankine cycle to generate electricity by turning a steam turbine to power a generator. The steam is recondensed and recycled to the HRSG. Other fluids may be used instead of or in addition to water. For example, an organic Rankine may be used to recover further energy from the steam after it leaves the steam turbine, for example, by vaporizing an organic solvent which can be used to power a second Rankine cycle. The heat from the HRSG may be used to at least partially supply process heat to the production facilities 506, gas treating facilities 538, equipment associated with production wells 516, injection wells 514, and the like.


A gas stream 546 from the production facilities 506 can be sent to a treatment facility 548, treated to pipeline quality, e.g., by the removal of acid gases, water vapor, and other contaminates and the addition of odorants or other compounds. The treated gas may then be provided to a market, for example, by a pipeline 550.


The system 500 may also include a drilling rig 552 and other equipment to create additional injection wells 514 or production wells 516. The equipment may include fracturing systems to increase the productivity of the wells 514 and 516. Well fracturing is a technique to improve the performance of a production well 516 or injection well 514 by using a high pressure fluid injection to create new fractures in a formation or open old fractures in the formation. When this technique is applied it typically requires large amounts of clean water. The water may be supplied by the water condensed from the exhaust 518, or may be obtained from desalination of water produced from the coal bed 504.


A desalination system may be incorporated into the HRSG or use steam from the Rankine cycle power plant 544. The desalination unit may use the heat from the exhaust stream 518 to power the desalination, e.g., by distilling produced water from the coal bed 504. As the system 500 described above is a single integrated unit, a single control system may be used to control the power generation, injection compressors, production facilities, hydrocarbon sales facilities, any equipment associated with production wells or injection wells, drilling equipment, and the like.


In some embodiments, further separation of input or output gases may be useful. For example, treatment equipment may reduce oxygen and carbon monoxide in the exhaust gas 518 to lower the amount of hydrocarbons lost to oxidation in the coal bed 504. Further, a nitrogen and carbon dioxide separation process may be used on the exhaust gas 518, to create a rich carbon dioxide stream and lean carbon dioxide stream. Such processes can include CO2 frost, membrane separation, and cryogenic separation processes. The use of a CO2 rich injection gas 510 may increase the efficiency of the process or reduce the cost of mitigating greenhouse gases. In an embodiment, an air separation unit (ASU) could be used to provide an oxidant stream with a higher concentration of oxygen than air. The high oxygen stream will lower the amount of nitrogen in the exhaust gas 518 and subsequently increase the amount of CO2 in the injection gases 510.



FIG. 6 is a process flow diagram of a method 600 for using a diluent gas mixture to enhance the recovery of coal bed methane. The method begins at block 602, when a fuel gas and oxidant are used to power a semi-closed Brayton cycle power plant. The fuel gas and oxidant are mixed with a diluent to provide cooling and lower the amount of oxidant used. At block 604, heat energy may be recovered from the exhaust of the semi-closed Brayton cycle power plant. This may be performed by using a HRSG to boil water and generate electricity using a steam turbine. At block 606, after the HRSG, the pressure of the exhaust stream from the semi-closed Brayton cycle power plant is boosted to allow injection into a combustor. At block 608, the pressurized exhaust stream is cooled to condense water out. The pressurized, dewatered exhaust stream is provided to the combustor as a diluent and coolant at block 610. At block 612, a portion of the diluent is injected into a coal bed reservoir. At block 614, coal bed methane is harvested from the reservoir.


Embodiments

Embodiments of the techniques described herein can include any combination of elements described in the following numbered paragraphs:


1. A method for enhanced recovery of coalbed methane, including:

    • generating a gas mixture including N2 and CO2 in a semi-closed Brayton cycle power plant;
    • injecting at least a portion of the gas mixture into a coal bed; and
    • recovering a mixed production gas including methane from the coal bed.


2. The method of paragraph 1, including completing an injection well in a coal bed.


3. The methods of paragraphs 1 or 2, including completing a production well in a coal bed.


4. The methods of paragraph 1, 2, or 3, including compressing the gas mixture prior to injection.


5. The methods of any of the preceding paragraphs, including using at least a portion of the mixed production gas to fuel the semi-closed Brayton cycle power plant.


6. The methods of any of the preceding paragraphs, including recovering heat energy from the exhaust of the semi-closed Brayton cycle power plant in a heat recovery steam generator (HRSG).


7. The method of paragraph 6, including generating power with steam generated in the HRSG.


8. The methods of any of the preceding paragraphs, including processing the mixed production gas to generate a pipeline quality natural gas.


9. The method of paragraph 8, including liquefying the natural gas.


10. The methods of any of the preceding paragraphs, including compressing a gaseous fuel for use in the semi-closed Brayton cycle power plant.


11. The methods of any of the preceding paragraphs, including cooling the gas mixture prior to injection into the coal bed.


12. The method of paragraph 11, including recovering heat from the gas mixture to supply process heat to a facility.


13. The methods of any of the preceding paragraphs, wherein an oxidant for the semi-closed Brayton cycle power plant is air.


14. The methods of any of the preceding paragraphs, wherein the oxygen concentration used by an oxidant for the semi-closed Brayton cycle power plant, is greater than 21%, by volume.


15. A system for enhancing the recovery of coalbed methane, including:

    • a semi-closed Brayton cycle power plant, wherein an exhaust gas from the semi-closed Brayton cycle power plant provides a diluent gas mixture including substantial amounts of N2 and CO2;
    • an injection well configured to inject the diluent gas mixture from the semi-closed Brayton cycle power plant into a coalbed; and
    • a production well configured to harvest a production gas mixture from the coal bed, wherein the production gas mixture includes methane.


16. The system of paragraph 15, including a heat recovery steam generator configured to use an exhaust heat from the semi-closed Brayton cycle power plant to generate steam.


17. The systems of paragraphs 15 or 16, including a power plant configured to use the steam to generate electricity.


18. The systems of paragraphs 15, 16, or 17, including a gas separation system configured to generate a CO2 rich gas stream and a CO2 lean gas stream.


19. The systems of any of paragraphs 15-18, including injecting the CO2 rich gas stream into the coalbed.


20. The systems of any of paragraphs 15-19, including a liquefied natural gas plant configured to use electricity generated by the semi-closed Brayton cycle power plant to power a liquefaction process.


21. A system for enhancing the recovery of coalbed methane, including:

    • a gas turbine configured to operate at a stoichiometrically balanced condition, wherein cooling is provided by a diluent gas injected into a combustor, and wherein the diluent gas substantially includes N2 and CO2;
    • a generator configured to convert mechanical energy provided by the gas turbine into electrical energy;
    • a heat recovery steam generator (HRSG) configured to generate steam by heating a boiler with an exhaust stream from the gas turbine;
    • a Rankine cycle power plant configured to generate electricity from the steam;
    • a cooler configured to condense water from the exhaust stream downstream of the HRSG, generating the diluent;
    • a diluent compressor configured to increase the pressure of the diluent and direct at least a portion of the diluent to the combustor;
    • an injection system configured to inject a portion of the diluent from the compressor into a coalbed; and
    • a production system configured to harvest a production gas from the coalbed, wherein the production gas includes methane.


22. The system of paragraph 21, including a desalination unit integrated into the HRSG that is configured to produce a fresh water stream.


23. The systems of paragraphs 21 or 22, including a compressor after a gas treating facility, wherein the compressor is configured to compress a stream of coal bed methane.


24. The systems of paragraphs 21, 22, or 23, including a pipeline configured to convey the compressed stream of coal bed methane to a market.


25. The systems of any of paragraphs 21-24, wherein at least a portion of the electricity from the power plant is used to power facilities associated with the production gas mixture.


While the present techniques may be susceptible to various modifications and alternative forms, the exemplary embodiments discussed above have been shown only by way of example. However, it should again be understood that the techniques is not intended to be limited to the particular embodiments disclosed herein. Indeed, the present techniques include all alternatives, modifications, and equivalents falling within the true spirit and scope of the appended claims.

Claims
  • 1. A method for enhanced recovery of coalbed methane, comprising: compressing a gaseous fuel for use in a semi-closed Brayton cycle power plant;generating a gas mixture comprising N2 and CO2 in the semi-closed Brayton cycle power plant operating to combust the gaseous fuel and an oxygen component of an oxidant at a stoichiometric ratio;injecting at least a portion of the gas mixture into a coal bed; andrecovering a mixed production gas comprising methane from the coal bed.
  • 2. The method of claim 1, comprising completing an injection well in a coal bed.
  • 3. The method of claim 1, comprising completing a production well in a coal bed.
  • 4. The method of claim 1, comprising compressing the gas mixture prior to injection.
  • 5. The method of claim 1, comprising using at least a portion of the mixed production gas to fuel the semi-closed Brayton cycle power plant.
  • 6. The method of claim 1, comprising recovering heat energy from an exhaust generated by the semi-closed Brayton cycle power plant in a heat recovery steam generator (HRSG).
  • 7. The method of claim 6, comprising generating power with steam generated in the HRSG.
  • 8. The method of claim 1, comprising processing the mixed production gas to remove acid gases and water vapor to generate a natural gas capable of transport by pipeline.
  • 9. The method of claim 8, comprising liquefying the natural gas.
  • 10. The method of claim 1, comprising cooling the gas mixture prior to injection into the coal bed.
  • 11. The method of claim 10, comprising recovering heat from the gas mixture to supply process heat to a facility.
  • 12. The method of claim 1, wherein the oxidant for the semi-closed Brayton cycle power plant is air.
  • 13. The method of claim 1, wherein the oxidant used in the semi-closed Brayton cycle power plant has an oxygen concentration greater than about 21% by volume.
  • 14. A system for enhancing the recovery of coalbed methane, comprising: a semi-closed Brayton cycle power plant operating to combust a gaseous fuel and an oxygen component of an oxidant at a stoichiometric ratio, wherein an exhaust gas from the semi-closed Brayton cycle power plant provides a diluent gas mixture comprising substantial amounts of N2 and CO2;a compressor configured to compress the gaseous fuel prior to combustion in the semi-closed Brayton cycle power plant;an injection well configured to inject the diluent gas mixture from the semi-closed Brayton cycle power plant into a coalbed; anda production well configured to harvest a production gas mixture from the coal bed, wherein the production gas mixture comprises methane.
  • 15. The system of claim 14, comprising a heat recovery steam generator configured to use an exhaust heat from the semi-closed Brayton cycle power plant to generate steam.
  • 16. The system of claim 15, comprising a power plant configured to use the steam to generate electricity.
  • 17. The system of claim 14, comprising a gas separation system configured to generate a CO2 rich gas stream and a CO2 lean gas stream.
  • 18. The system of claim 17, comprising injecting the CO2 rich gas stream into the coalbed.
  • 19. The system of claim 14, comprising a liquefied natural gas plant configured to use electricity generated by the semi-closed Brayton cycle power plant to power a liquefaction process.
  • 20. A system for enhancing the recovery of coalbed methane, comprising: a combustor associated with a gas turbine, the combustor configured to combust therein a gaseous fuel and an oxygen component of an oxidant at a stoichiometric ratio, wherein the gas turbine receives hot exhaust gases from the combustor, wherein cooling is provided by a diluent gas injected into the combustor, and wherein the diluent gas substantially comprises N2 and CO2;a generator configured to convert mechanical energy provided by the gas turbine into electrical energy;a heat recovery steam generator (HRSG) configured to generate steam by heating a boiler with an exhaust stream from the gas turbine;a Rankine cycle power plant configured to generate electricity from the steam;a cooler configured to condense water from the exhaust stream downstream of the HRSG, generating the diluent;a diluent compressor configured to increase the pressure of the diluent and direct at least a portion of the diluent to the combustor;an injection system configured to inject a portion of the diluent from the compressor into a coalbed;a production system configured to harvest a production gas from the coalbed, wherein the production gas comprises methane; anda compressor configured to compress a portion of the production gas to generate a compressed stream of coal bed methane, wherein a portion of the compressed stream of coal bed methane is used as part of the gaseous fuel.
  • 21. The system of claim 20, comprising a desalination unit integrated into the HRSG that is configured to produce a fresh water stream.
  • 22. The system of claim 20, comprising a pipeline configured to convey another portion of the compressed stream of coal bed methane to a market.
  • 23. The system of claim 20, wherein at least a portion of the electricity from the power plant is used to power facilities associated with the production gas.
CROSS-REFERENCE TO RELATED APPLICATION

This application is the National Stage of International Application No. PCT/US2012/065656, filed Nov. 16, 2012, which claims the priority benefit of U.S. Patent Application No. 61/578,045 filed Dec. 20, 2011 entitled ENHANCED COAL-BED METHANE PRODUCTION the entirety of which is incorporated by reference herein.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2012/065656 11/16/2012 WO 00
Publishing Document Publishing Date Country Kind
WO2013/095829 6/27/2013 WO A
US Referenced Citations (707)
Number Name Date Kind
2488911 Hepburn et al. Nov 1949 A
2884758 Oberle May 1959 A
3631672 Gentile et al. Jan 1972 A
3643430 Emory et al. Feb 1972 A
3705492 Vickers Dec 1972 A
3841382 Gravis et al. Oct 1974 A
3949548 Lockwood Apr 1976 A
4018046 Hurley Apr 1977 A
4043395 Every et al. Aug 1977 A
4050239 Kappler et al. Sep 1977 A
4066214 Johnson Jan 1978 A
4077206 Ayyagari Mar 1978 A
4085578 Kydd Apr 1978 A
4092095 Straitz May 1978 A
4101294 Kimura Jul 1978 A
4112676 DeCorso Sep 1978 A
4117671 Neal et al. Oct 1978 A
4160640 Maev et al. Jul 1979 A
4165609 Rudolph Aug 1979 A
4171349 Cucuiat et al. Oct 1979 A
4204401 Earnest May 1980 A
4222240 Castellano Sep 1980 A
4224991 Sowa et al. Sep 1980 A
4236378 Vogt Dec 1980 A
4253301 Vogt Mar 1981 A
4271664 Earnest Jun 1981 A
4344486 Parrish Aug 1982 A
4345426 Egnell et al. Aug 1982 A
4352269 Dineen Oct 1982 A
4380895 Adkins Apr 1983 A
4399652 Cole et al. Aug 1983 A
4414334 Hitzman Nov 1983 A
4434613 Stahl Mar 1984 A
4435153 Hashimoto et al. Mar 1984 A
4442665 Fick et al. Apr 1984 A
4445842 Syska May 1984 A
4479484 Davis Oct 1984 A
4480985 Davis Nov 1984 A
4488865 Davis Dec 1984 A
4498288 Vogt Feb 1985 A
4498289 Osgerby Feb 1985 A
4528811 Stahl Jul 1985 A
4543784 Kirker Oct 1985 A
4548034 Maguire Oct 1985 A
4561245 Ball Dec 1985 A
4569310 Davis Feb 1986 A
4577462 Robertson Mar 1986 A
4602614 Percival et al. Jul 1986 A
4606721 Livingston Aug 1986 A
4613299 Backheim Sep 1986 A
4637792 Davis Jan 1987 A
4651712 Davis Mar 1987 A
4653278 Vinson et al. Mar 1987 A
4681678 Leaseburge et al. Jul 1987 A
4684465 Leaseburge et al. Aug 1987 A
4753666 Pastor et al. Jun 1988 A
4762543 Pantermuehl et al. Aug 1988 A
4817387 Lashbrook Apr 1989 A
4858428 Paul Aug 1989 A
4895710 Hartmann et al. Jan 1990 A
4898001 Kuroda et al. Feb 1990 A
4946597 Sury Aug 1990 A
4976100 Lee Dec 1990 A
5014785 Puri et al. May 1991 A
5044932 Martin et al. Sep 1991 A
5073105 Martin et al. Dec 1991 A
5084438 Matsubara et al. Jan 1992 A
5085274 Puri et al. Feb 1992 A
5098282 Schwartz et al. Mar 1992 A
5123248 Monty et al. Jun 1992 A
5135387 Martin et al. Aug 1992 A
5141049 Larsen et al. Aug 1992 A
5142866 Yanagihara et al. Sep 1992 A
5147111 Montgomery Sep 1992 A
5154596 Schwartz et al. Oct 1992 A
5183232 Gale Feb 1993 A
5195884 Schwartz et al. Mar 1993 A
5197289 Glevicky et al. Mar 1993 A
5238395 Schwartz et al. Aug 1993 A
5255506 Wilkes et al. Oct 1993 A
5265410 Hisatome Nov 1993 A
5271905 Owen et al. Dec 1993 A
5275552 Schwartz et al. Jan 1994 A
5295350 Child et al. Mar 1994 A
5304362 Madsen Apr 1994 A
5325660 Taniguchi et al. Jul 1994 A
5332036 Shirley et al. Jul 1994 A
5344307 Schwartz et al. Sep 1994 A
5345756 Jahnke et al. Sep 1994 A
5355668 Weil et al. Oct 1994 A
5359847 Pillsbury et al. Nov 1994 A
5361586 McWhirter et al. Nov 1994 A
5388395 Scharpf et al. Feb 1995 A
5394688 Amos Mar 1995 A
5402847 Wilson et al. Apr 1995 A
5444971 Holenberger Aug 1995 A
5457951 Johnson et al. Oct 1995 A
5458481 Surbey et al. Oct 1995 A
5468270 Borszynski Nov 1995 A
5490378 Berger et al. Feb 1996 A
5542840 Surbey et al. Aug 1996 A
5566756 Chaback et al. Oct 1996 A
5572862 Mowill Nov 1996 A
5581998 Craig Dec 1996 A
5584182 Althaus et al. Dec 1996 A
5590518 Janes Jan 1997 A
5628182 Mowill May 1997 A
5634329 Andersson et al. Jun 1997 A
5638675 Zysman et al. Jun 1997 A
5640840 Briesch Jun 1997 A
5657631 Androsov Aug 1997 A
5680764 Viteri Oct 1997 A
5685158 Lenahan et al. Nov 1997 A
5709077 Beichel Jan 1998 A
5713206 McWhirter et al. Feb 1998 A
5715673 Beichel Feb 1998 A
5724805 Golomb et al. Mar 1998 A
5725054 Shayegi et al. Mar 1998 A
5740786 Gartner Apr 1998 A
5743079 Walsh et al. Apr 1998 A
5755114 Foglietta May 1998 A
5765363 Mowill Jun 1998 A
5771867 Amstutz et al. Jun 1998 A
5771868 Khair Jun 1998 A
5819540 Massarani Oct 1998 A
5832712 Ronning et al. Nov 1998 A
5836164 Tsukahara et al. Nov 1998 A
5839283 Dobbeling Nov 1998 A
5850732 Willis et al. Dec 1998 A
5894720 Willis et al. Apr 1999 A
5901547 Smith et al. May 1999 A
5924275 Cohen et al. Jul 1999 A
5930990 Zachary et al. Aug 1999 A
5937634 Etheridge et al. Aug 1999 A
5950417 Robertson et al. Sep 1999 A
5956937 Beichel Sep 1999 A
5968349 Duyvesteyn et al. Oct 1999 A
5974780 Santos Nov 1999 A
5992388 Seger Nov 1999 A
6016658 Willis et al. Jan 2000 A
6032465 Regnier Mar 2000 A
6035641 Lokhandwala Mar 2000 A
6062026 Woollenweber et al. May 2000 A
6079974 Thompson Jun 2000 A
6082093 Greenwood et al. Jul 2000 A
6089855 Becker et al. Jul 2000 A
6094916 Puri et al. Aug 2000 A
6101983 Anand et al. Aug 2000 A
6148602 Demetri Nov 2000 A
6170264 Viteri et al. Jan 2001 B1
6183241 Bohn et al. Feb 2001 B1
6201029 Waycuilis Mar 2001 B1
6202400 Utamura et al. Mar 2001 B1
6202442 Brugerolle Mar 2001 B1
6202574 Liljedahl et al. Mar 2001 B1
6209325 Alkabie Apr 2001 B1
6216459 Daudel et al. Apr 2001 B1
6216549 Davis et al. Apr 2001 B1
6230103 DeCorso et al. May 2001 B1
6237339 Åsen et al. May 2001 B1
6247315 Marin et al. Jun 2001 B1
6247316 Viteri Jun 2001 B1
6248794 Gieskes Jun 2001 B1
6253555 Willis Jul 2001 B1
6256976 Kataoka et al. Jul 2001 B1
6256994 Dillon, IV Jul 2001 B1
6263659 Dillon, IV et al. Jul 2001 B1
6266954 McCallum et al. Jul 2001 B1
6269882 Wellington et al. Aug 2001 B1
6276171 Brugerolle Aug 2001 B1
6282901 Marin et al. Sep 2001 B1
6283087 Isaksen Sep 2001 B1
6289666 Ginter Sep 2001 B1
6289677 Prociw et al. Sep 2001 B1
6298652 Mittricker et al. Oct 2001 B1
6298654 Vermes et al. Oct 2001 B1
6298664 Åsen et al. Oct 2001 B1
6301888 Gray Oct 2001 B1
6301889 Gladden et al. Oct 2001 B1
6305929 Chung et al. Oct 2001 B1
6314721 Mathews et al. Nov 2001 B1
6324867 Fanning et al. Dec 2001 B1
6332313 Willis et al. Dec 2001 B1
6345493 Smith et al. Feb 2002 B1
6360528 Brausch et al. Mar 2002 B1
6363709 Kataoka et al. Apr 2002 B2
6367258 Wen et al. Apr 2002 B1
6370870 Kamijo et al. Apr 2002 B1
6374591 Johnson et al. Apr 2002 B1
6374594 Kraft et al. Apr 2002 B1
6383461 Lang May 2002 B1
6389814 Viteri et al. May 2002 B2
6405536 Ho et al. Jun 2002 B1
6412278 Matthews Jul 2002 B1
6412302 Foglietta Jul 2002 B1
6412559 Gunter et al. Jul 2002 B1
6418725 Maeda et al. Jul 2002 B1
6429020 Thornton et al. Aug 2002 B1
6449954 Bachmann Sep 2002 B2
6450256 Mones Sep 2002 B2
6461147 Sonju et al. Oct 2002 B1
6467270 Mulloy et al. Oct 2002 B2
6470682 Gray Oct 2002 B2
6477859 Wong et al. Nov 2002 B2
6484503 Raz Nov 2002 B1
6484507 Pradt Nov 2002 B1
6487863 Chen et al. Dec 2002 B1
6499990 Zink et al. Dec 2002 B1
6502383 Janardan et al. Jan 2003 B1
6505567 Anderson et al. Jan 2003 B1
6505683 Minkkinen et al. Jan 2003 B2
6508209 Collier Jan 2003 B1
6523349 Viteri Feb 2003 B2
6532745 Neary Mar 2003 B1
6539716 Finger et al. Apr 2003 B2
6584775 Schneider et al. Jul 2003 B1
6598398 Viteri et al. Jul 2003 B2
6598399 Liebig Jul 2003 B2
6598402 Kataoka et al. Jul 2003 B2
6606861 Snyder Aug 2003 B2
6612291 Sakamoto Sep 2003 B2
6615576 Sheoran et al. Sep 2003 B2
6615589 Allam et al. Sep 2003 B2
6622470 Viteri et al. Sep 2003 B2
6622645 Havlena Sep 2003 B2
6637183 Viteri et al. Oct 2003 B2
6644041 Eyermann Nov 2003 B1
6655150 Åsen et al. Dec 2003 B1
6668541 Rice et al. Dec 2003 B2
6672863 Doebbeling et al. Jan 2004 B2
6675579 Yang Jan 2004 B1
6684643 Frutschi Feb 2004 B2
6694735 Sumser et al. Feb 2004 B2
6698412 Dalla Betta Mar 2004 B2
6702570 Shah et al. Mar 2004 B2
6722436 Krill Apr 2004 B2
6725665 Tuschy et al. Apr 2004 B2
6731501 Cheng May 2004 B1
6732531 Dickey May 2004 B2
6742506 Grandin Jun 2004 B1
6743829 Fischer-Calderon et al. Jun 2004 B2
6745573 Marin et al. Jun 2004 B2
6745624 Porter et al. Jun 2004 B2
6748004 Jepson Jun 2004 B2
6752620 Heier et al. Jun 2004 B2
6767527 Åsen et al. Jul 2004 B1
6772583 Bland Aug 2004 B2
6790030 Fischer et al. Sep 2004 B2
6805483 Tomlinson et al. Oct 2004 B2
6810673 Snyder Nov 2004 B2
6813889 Inoue et al. Nov 2004 B2
6817187 Yu Nov 2004 B2
6820428 Wylie Nov 2004 B2
6821501 Matzakos et al. Nov 2004 B2
6823852 Collier Nov 2004 B2
6824710 Viteri et al. Nov 2004 B2
6826912 Levy et al. Dec 2004 B2
6826913 Wright Dec 2004 B2
6838071 Olsvik et al. Jan 2005 B1
6851413 Tamol Feb 2005 B1
6868677 Viteri et al. Mar 2005 B2
6886334 Shirakawa May 2005 B2
6887069 Thornton et al. May 2005 B1
6899859 Olsvik May 2005 B1
6901760 Dittmann et al. Jun 2005 B2
6904815 Widmer Jun 2005 B2
6907737 Mittricker et al. Jun 2005 B2
6910335 Viteri et al. Jun 2005 B2
6923915 Alford et al. Aug 2005 B2
6939130 Abbasi et al. Sep 2005 B2
6945029 Viteri Sep 2005 B2
6945052 Frutschi et al. Sep 2005 B2
6945087 Porter et al. Sep 2005 B2
6945089 Barie et al. Sep 2005 B2
6946419 Kaefer Sep 2005 B2
6969123 Vinegar et al. Nov 2005 B2
6971242 Boardman Dec 2005 B2
6981358 Bellucci et al. Jan 2006 B2
6988549 Babcock Jan 2006 B1
6993901 Shirakawa Feb 2006 B2
6993916 Johnson et al. Feb 2006 B2
6994491 Kittle Feb 2006 B2
7007487 Belokon et al. Mar 2006 B2
7010921 Intile et al. Mar 2006 B2
7011154 Maher et al. Mar 2006 B2
7015271 Bice et al. Mar 2006 B2
7032388 Healy Apr 2006 B2
7040400 de Rouffignac et al. May 2006 B2
7043898 Rago May 2006 B2
7043920 Viteri et al. May 2006 B2
7045553 Hershkowitz May 2006 B2
7053128 Hershkowitz May 2006 B2
7056482 Hakka et al. Jun 2006 B2
7059152 Oakey et al. Jun 2006 B2
7065953 Kopko Jun 2006 B1
7065972 Zupanc et al. Jun 2006 B2
7074033 Neary Jul 2006 B2
7077199 Vinegar et al. Jul 2006 B2
7089743 Frutschi et al. Aug 2006 B2
7096942 de Rouffignac et al. Aug 2006 B1
7097925 Keefer Aug 2006 B2
7104319 Vinegar et al. Sep 2006 B2
7104784 Hasegawa et al. Sep 2006 B1
7124589 Neary Oct 2006 B2
7137256 Stuttaford et al. Nov 2006 B1
7137623 Mockry et al. Nov 2006 B2
7143572 Ooka et al. Dec 2006 B2
7143606 Tranier Dec 2006 B2
7146969 Weirich Dec 2006 B2
7147461 Neary Dec 2006 B2
7148261 Hershkowitz et al. Dec 2006 B2
7152409 Yee et al. Dec 2006 B2
7162875 Fletcher et al. Jan 2007 B2
7168265 Briscoe et al. Jan 2007 B2
7168488 Olsvik et al. Jan 2007 B2
7183328 Hershkowitz et al. Feb 2007 B2
7185497 Dudebout et al. Mar 2007 B2
7194869 McQuiggan et al. Mar 2007 B2
7197880 Thornton et al. Apr 2007 B2
7217303 Hershkowitz et al. May 2007 B2
7225623 Koshoffer Jun 2007 B2
7237385 Carrea Jul 2007 B2
7284362 Marin et al. Oct 2007 B2
7299619 Briesch et al. Nov 2007 B2
7299868 Zapadinski Nov 2007 B2
7302801 Chen Dec 2007 B2
7305817 Blodgett et al. Dec 2007 B2
7305831 Carrea et al. Dec 2007 B2
7313916 Pellizzari Jan 2008 B2
7318317 Carrea Jan 2008 B2
7343742 Wimmer et al. Mar 2008 B2
7353655 Bolis et al. Apr 2008 B2
7357857 Hart et al. Apr 2008 B2
7363756 Carrea et al. Apr 2008 B2
7363764 Griffin et al. Apr 2008 B2
7381393 Lynn Jun 2008 B2
7401577 Saucedo et al. Jul 2008 B2
7410525 Liu et al. Aug 2008 B1
7416137 Hagen et al. Aug 2008 B2
7434384 Lord et al. Oct 2008 B2
7438744 Beaumont Oct 2008 B2
7467942 Carroni et al. Dec 2008 B2
7468173 Hughes et al. Dec 2008 B2
7472550 Lear et al. Jan 2009 B2
7481048 Harmon et al. Jan 2009 B2
7481275 Olsvik et al. Jan 2009 B2
7482500 Johann et al. Jan 2009 B2
7485761 Schindler et al. Feb 2009 B2
7488857 Johann et al. Feb 2009 B2
7490472 Lynghjem et al. Feb 2009 B2
7491250 Hershkowitz et al. Feb 2009 B2
7492054 Catlin Feb 2009 B2
7493769 Jangili Feb 2009 B2
7498009 Leach et al. Mar 2009 B2
7503178 Bucker et al. Mar 2009 B2
7503948 Hershkowitz et al. Mar 2009 B2
7506501 Anderson et al. Mar 2009 B2
7513099 Nuding et al. Apr 2009 B2
7513100 Motter et al. Apr 2009 B2
7516626 Brox et al. Apr 2009 B2
7520134 Durbin et al. Apr 2009 B2
7523603 Hagen et al. Apr 2009 B2
7536252 Hibshman et al. May 2009 B1
7536873 Nohlen May 2009 B2
7540150 Schmid et al. Jun 2009 B2
7559977 Fleischer et al. Jul 2009 B2
7562519 Harris et al. Jul 2009 B1
7562529 Kuspert et al. Jul 2009 B2
7566394 Koseoglu Jul 2009 B2
7574856 Mak Aug 2009 B2
7591866 Bose Sep 2009 B2
7594386 Narayanan et al. Sep 2009 B2
7610752 Dalla Betta et al. Nov 2009 B2
7610759 Yoshida et al. Nov 2009 B2
7611681 Kaefer Nov 2009 B2
7614352 Anthony et al. Nov 2009 B2
7618606 Fan et al. Nov 2009 B2
7631493 Shirakawa et al. Dec 2009 B2
7634915 Hoffmann et al. Dec 2009 B2
7635408 Mak et al. Dec 2009 B2
7637093 Rao Dec 2009 B2
7644573 Smith et al. Jan 2010 B2
7650744 Varatharajan et al. Jan 2010 B2
7654320 Payton Feb 2010 B2
7654330 Zubrin et al. Feb 2010 B2
7655071 De Vreede Feb 2010 B2
7670135 Zink et al. Mar 2010 B1
7673454 Saito et al. Mar 2010 B2
7673685 Huntley Shaw et al. Mar 2010 B2
7674443 Davis Mar 2010 B1
7677309 Shaw et al. Mar 2010 B2
7681394 Haugen Mar 2010 B2
7682597 Blumenfeld et al. Mar 2010 B2
7690204 Drnevich et al. Apr 2010 B2
7691788 Tan et al. Apr 2010 B2
7695703 Sobolevskiy et al. Apr 2010 B2
7717173 Grott May 2010 B2
7721543 Massey et al. May 2010 B2
7726114 Evulet Jun 2010 B2
7734408 Shiraki Jun 2010 B2
7739864 Finkenrath et al. Jun 2010 B2
7749311 Saito et al. Jul 2010 B2
7752848 Balan et al. Jul 2010 B2
7752850 Laster et al. Jul 2010 B2
7753039 Harima et al. Jul 2010 B2
7753972 Zubrin et al. Jul 2010 B2
7762084 Martis et al. Jul 2010 B2
7763163 Koseoglu Jul 2010 B2
7763227 Wang Jul 2010 B2
7765810 Pfefferle Aug 2010 B2
7788897 Campbell et al. Sep 2010 B2
7789159 Bader Sep 2010 B1
7789658 Towler et al. Sep 2010 B2
7789944 Saito et al. Sep 2010 B2
7793494 Wirth et al. Sep 2010 B2
7802434 Varatharajan et al. Sep 2010 B2
7815873 Sankaranarayanan et al. Oct 2010 B2
7815892 Hershkowitz et al. Oct 2010 B2
7819951 White et al. Oct 2010 B2
7824179 Hasegawa et al. Nov 2010 B2
7827778 Finkenrath et al. Nov 2010 B2
7827794 Pronske et al. Nov 2010 B1
7841186 So et al. Nov 2010 B2
7845406 Nitschke Dec 2010 B2
7846401 Hershkowitz et al. Dec 2010 B2
7861511 Chillar et al. Jan 2011 B2
7874140 Fan et al. Jan 2011 B2
7874350 Pfefferle Jan 2011 B2
7875402 Hershkowitz et al. Jan 2011 B2
7882692 Pronske et al. Feb 2011 B2
7886522 Kammel Feb 2011 B2
7895822 Hoffmann et al. Mar 2011 B2
7896105 Dupriest Mar 2011 B2
7906304 Kohr Mar 2011 B2
7909898 White et al. Mar 2011 B2
7914749 Carstens et al. Mar 2011 B2
7914764 Hershkowitz et al. Mar 2011 B2
7918906 Zubrin et al. Apr 2011 B2
7921633 Rising Apr 2011 B2
7922871 Price et al. Apr 2011 B2
7926292 Rabovitser et al. Apr 2011 B2
7931712 Zubrin et al. Apr 2011 B2
7931731 Van Heeringen et al. Apr 2011 B2
7931888 Drnevich et al. Apr 2011 B2
7934926 Kornbluth et al. May 2011 B2
7942003 Baudoin et al. May 2011 B2
7942008 Joshi et al. May 2011 B2
7943097 Golden et al. May 2011 B2
7955403 Ariyapadi et al. Jun 2011 B2
7966822 Myers et al. Jun 2011 B2
7976803 Hooper et al. Jul 2011 B2
7980312 Hill et al. Jul 2011 B1
7985399 Drnevich et al. Jul 2011 B2
7988750 Lee et al. Aug 2011 B2
8001789 Vega et al. Aug 2011 B2
8029273 Paschereit et al. Oct 2011 B2
8036813 Tonetti et al. Oct 2011 B2
8038416 Ono et al. Oct 2011 B2
8038746 Clark Oct 2011 B2
8038773 Ochs et al. Oct 2011 B2
8046986 Chillar et al. Nov 2011 B2
8047007 Zubrin et al. Nov 2011 B2
8051638 Aljabari et al. Nov 2011 B2
8061120 Hwang Nov 2011 B2
8062617 Stakhev et al. Nov 2011 B2
8065870 Jobson et al. Nov 2011 B2
8065874 Fong et al. Nov 2011 B2
8074439 Foret Dec 2011 B2
8080225 Dickinson et al. Dec 2011 B2
8083474 Hashimoto et al. Dec 2011 B2
8097230 Mesters et al. Jan 2012 B2
8101146 Fedeyko et al. Jan 2012 B2
8105559 Melville et al. Jan 2012 B2
8110012 Chiu et al. Feb 2012 B2
8117825 Griffin et al. Feb 2012 B2
8117846 Wilbraham Feb 2012 B2
8127558 Bland et al. Mar 2012 B2
8127936 Liu et al. Mar 2012 B2
8127937 Liu et al. Mar 2012 B2
8133298 Lanyi et al. Mar 2012 B2
8166766 Draper May 2012 B2
8167960 Gil May 2012 B2
8176982 Gil et al. May 2012 B2
8191360 Fong et al. Jun 2012 B2
8191361 Fong et al. Jun 2012 B2
8196387 Shah et al. Jun 2012 B2
8196413 Mak Jun 2012 B2
8201402 Fong et al. Jun 2012 B2
8205455 Popovic Jun 2012 B2
8206669 Schaffer et al. Jun 2012 B2
8209192 Gil et al. Jun 2012 B2
8215105 Fong et al. Jul 2012 B2
8220247 Wijmans et al. Jul 2012 B2
8220248 Wijmans et al. Jul 2012 B2
8220268 Callas Jul 2012 B2
8225600 Theis Jul 2012 B2
8226912 Kloosterman et al. Jul 2012 B2
8240142 Fong et al. Aug 2012 B2
8240153 Childers et al. Aug 2012 B2
8245492 Draper Aug 2012 B2
8245493 Minto Aug 2012 B2
8247462 Boshoff et al. Aug 2012 B2
8257476 White et al. Sep 2012 B2
8261823 Hill et al. Sep 2012 B1
8262343 Hagen Sep 2012 B2
8266883 Ouellet et al. Sep 2012 B2
8266913 Snook et al. Sep 2012 B2
8268044 Wright et al. Sep 2012 B2
8281596 Rohrssen et al. Oct 2012 B1
8316665 Mak Nov 2012 B2
8316784 D'Agostini Nov 2012 B2
8337613 Zauderer Dec 2012 B2
8347600 Wichmann et al. Jan 2013 B2
8348551 Baker et al. Jan 2013 B2
8371100 Draper Feb 2013 B2
8372251 Goller et al. Feb 2013 B2
8377184 Fujikawa et al. Feb 2013 B2
8377401 Darde et al. Feb 2013 B2
8388919 Hooper et al. Mar 2013 B2
8397482 Kraemer et al. Mar 2013 B2
8398757 Iijima et al. Mar 2013 B2
8409307 Drnevich et al. Apr 2013 B2
8414694 Iijima et al. Apr 2013 B2
8424282 Vollmer et al. Apr 2013 B2
8424601 Betzer-Zilevitch Apr 2013 B2
8436489 Stahlkopf et al. May 2013 B2
8453461 Draper Jun 2013 B2
8453462 Wichmann et al. Jun 2013 B2
8453583 Malavasi et al. Jun 2013 B2
8454350 Berry et al. Jun 2013 B2
8475160 Campbell et al. Jul 2013 B2
8539749 Wichmann et al. Sep 2013 B1
8567200 Brook et al. Oct 2013 B2
8616294 Zubrin et al. Dec 2013 B2
8627643 Chillar et al. Jan 2014 B2
20010000049 Kataoka et al. Mar 2001 A1
20010029732 Bachmann Oct 2001 A1
20010045090 Gray Nov 2001 A1
20020023423 Viteri Feb 2002 A1
20020043063 Kataoka et al. Apr 2002 A1
20020053207 Finger et al. May 2002 A1
20020069648 Levy et al. Jun 2002 A1
20020187449 Doebbeling et al. Dec 2002 A1
20030005698 Keller Jan 2003 A1
20030131582 Anderson Jul 2003 A1
20030134241 Marin et al. Jul 2003 A1
20030221409 McGowan Dec 2003 A1
20040006994 Walsh et al. Jan 2004 A1
20040011523 Sarada Jan 2004 A1
20040068981 Siefker et al. Apr 2004 A1
20040166034 Kaefer Aug 2004 A1
20040170559 Hershkowitz et al. Sep 2004 A1
20040223408 Mathys et al. Nov 2004 A1
20040238654 Hagen et al. Dec 2004 A1
20050028529 Bartlett et al. Feb 2005 A1
20050144961 Colibaba-Evulet et al. Jul 2005 A1
20050197267 Zaki et al. Sep 2005 A1
20050229585 Webster Oct 2005 A1
20050236602 Viteri et al. Oct 2005 A1
20060112675 Anderson et al. Jun 2006 A1
20060158961 Ruscheweyh et al. Jul 2006 A1
20060183009 Berlowitz et al. Aug 2006 A1
20060196812 Beetge et al. Sep 2006 A1
20060248888 Geskes Nov 2006 A1
20070000242 Harmon et al. Jan 2007 A1
20070044475 Leser et al. Mar 2007 A1
20070044479 Brandt et al. Mar 2007 A1
20070089425 Motter et al. Apr 2007 A1
20070107430 Schmid et al. May 2007 A1
20070144747 Steinberg Jun 2007 A1
20070231233 Bose Oct 2007 A1
20070234702 Hagen et al. Oct 2007 A1
20070245736 Barnicki Oct 2007 A1
20070249738 Haynes et al. Oct 2007 A1
20070272201 Amano et al. Nov 2007 A1
20080000229 Kuspert et al. Jan 2008 A1
20080006561 Moran et al. Jan 2008 A1
20080010967 Griffin et al. Jan 2008 A1
20080034727 Sutikno Feb 2008 A1
20080038598 Berlowitz et al. Feb 2008 A1
20080047280 Dubar Feb 2008 A1
20080066443 Frutschi et al. Mar 2008 A1
20080115478 Sullivan May 2008 A1
20080118310 Graham May 2008 A1
20080127632 Finkenrath et al. Jun 2008 A1
20080155984 Liu et al. Jul 2008 A1
20080178611 Ding Jul 2008 A1
20080202123 Sullivan et al. Aug 2008 A1
20080223038 Lutz et al. Sep 2008 A1
20080250795 Katdare et al. Oct 2008 A1
20080251234 Wilson et al. Oct 2008 A1
20080290719 Kaminsky et al. Nov 2008 A1
20080309087 Evulet et al. Dec 2008 A1
20090000762 Wilson et al. Jan 2009 A1
20090025390 Christensen et al. Jan 2009 A1
20090038247 Taylor et al. Feb 2009 A1
20090056342 Kirzhner Mar 2009 A1
20090064653 Hagen et al. Mar 2009 A1
20090071166 Hagen et al. Mar 2009 A1
20090107141 Chillar et al. Apr 2009 A1
20090117024 Weedon et al. May 2009 A1
20090120087 Sumser et al. May 2009 A1
20090157230 Hibshman et al. Jun 2009 A1
20090193809 Schroder et al. Aug 2009 A1
20090205334 Aljabari et al. Aug 2009 A1
20090218821 ElKady et al. Sep 2009 A1
20090223227 Lipinski et al. Sep 2009 A1
20090229263 Ouellet et al. Sep 2009 A1
20090235637 Foret Sep 2009 A1
20090241506 Nilsson Oct 2009 A1
20090255242 Paterson et al. Oct 2009 A1
20090262599 Kohrs et al. Oct 2009 A1
20090284013 Anand et al. Nov 2009 A1
20090301054 Simpson et al. Dec 2009 A1
20090301099 Nigro Dec 2009 A1
20100003123 Smith Jan 2010 A1
20100018218 Riley et al. Jan 2010 A1
20100058732 Kaufmann et al. Mar 2010 A1
20100115960 Brautsch et al. May 2010 A1
20100126176 Kim May 2010 A1
20100126906 Sury May 2010 A1
20100162703 Li et al. Jul 2010 A1
20100170253 Berry et al. Jul 2010 A1
20100180565 Draper Jul 2010 A1
20100186586 Chinn Jul 2010 A1
20100300102 Bathina et al. Dec 2010 A1
20100310439 Brok et al. Dec 2010 A1
20100322759 Tanioka Dec 2010 A1
20100326084 Anderson et al. Dec 2010 A1
20110000221 Minta et al. Jan 2011 A1
20110000671 Hershkowitz et al. Jan 2011 A1
20110023498 DeKoeijer et al. Feb 2011 A1
20110036082 Collinot Feb 2011 A1
20110048002 Taylor et al. Mar 2011 A1
20110048010 Balcezak et al. Mar 2011 A1
20110072779 ELKady et al. Mar 2011 A1
20110088379 Nanda Apr 2011 A1
20110110759 Sanchez et al. May 2011 A1
20110126512 Anderson Jun 2011 A1
20110138766 ELKady et al. Jun 2011 A1
20110162353 Vanvolsem et al. Jul 2011 A1
20110205837 Gentgen Aug 2011 A1
20110226010 Baxter Sep 2011 A1
20110227346 Klenven Sep 2011 A1
20110232545 Clements Sep 2011 A1
20110239653 Valeev et al. Oct 2011 A1
20110265447 Cunningham Nov 2011 A1
20110300493 Mittricker et al. Dec 2011 A1
20120023954 Wichmann Feb 2012 A1
20120023955 Draper Feb 2012 A1
20120023956 Popovic Feb 2012 A1
20120023957 Draper et al. Feb 2012 A1
20120023958 Snook et al. Feb 2012 A1
20120023960 Minto Feb 2012 A1
20120023962 Wichmann et al. Feb 2012 A1
20120023963 Wichmann et al. Feb 2012 A1
20120023966 Ouellet et al. Feb 2012 A1
20120031581 Chillar et al. Feb 2012 A1
20120032810 Chillar et al. Feb 2012 A1
20120085100 Hughes et al. Apr 2012 A1
20120096870 Wichmann et al. Apr 2012 A1
20120119512 Draper May 2012 A1
20120131925 Mittricker et al. May 2012 A1
20120144837 Rasmussen et al. Jun 2012 A1
20120185144 Draper Jul 2012 A1
20120192565 Tretyakov et al. Aug 2012 A1
20120247105 Nelson et al. Oct 2012 A1
20120260660 Kraemer et al. Oct 2012 A1
20130086916 Oelfke et al. Apr 2013 A1
20130086917 Slobodyanskiy et al. Apr 2013 A1
20130091853 Denton et al. Apr 2013 A1
20130091854 Gupta et al. Apr 2013 A1
20130104562 Oelfke et al. May 2013 A1
20130104563 Oelfke et al. May 2013 A1
20130125554 Mittricker et al. May 2013 A1
20130125555 Mittricker et al. May 2013 A1
20130232980 Chen et al. Sep 2013 A1
20130269310 Wichmann et al. Oct 2013 A1
20130269311 Wichmann et al. Oct 2013 A1
20130269355 Wichmann et al. Oct 2013 A1
20130269356 Butkiewicz et al. Oct 2013 A1
20130269357 Wichmann et al. Oct 2013 A1
20130269358 Wichmann et al. Oct 2013 A1
20130269360 Wichmann et al. Oct 2013 A1
20130269361 Wichmann et al. Oct 2013 A1
20130269362 Wichmann et al. Oct 2013 A1
20130283808 Kolvick Oct 2013 A1
20140000271 Mittricker et al. Jan 2014 A1
20140000273 Mittricker et al. Jan 2014 A1
20140007590 Huntington et al. Jan 2014 A1
20140013766 Mittricker et al. Jan 2014 A1
20140020398 Mittricker et al. Jan 2014 A1
20140060073 Slobodyanskiy et al. Mar 2014 A1
20140123620 Huntington et al. May 2014 A1
20140123624 Minto May 2014 A1
20140123659 Biyani et al. May 2014 A1
20140123660 Stoia et al. May 2014 A1
20140123668 Huntington et al. May 2014 A1
20140123669 Huntington et al. May 2014 A1
20140123672 Huntington et al. May 2014 A1
20140182298 Krull et al. Jul 2014 A1
20140182301 Fadde et al. Jul 2014 A1
20140182302 Antoniono et al. Jul 2014 A1
20140182303 Antoniono et al. Jul 2014 A1
20140182304 Antoniono et al. Jul 2014 A1
20140182305 Antoniono et al. Jul 2014 A1
20140196464 Biyani et al. Jul 2014 A1
Foreign Referenced Citations (22)
Number Date Country
2231749 Sep 1998 CA
2645450 Sep 2007 CA
0770771 May 1997 EP
0776269 Jun 1957 GB
2117053 Oct 1983 GB
WO9906674 Feb 1999 WO
WO9963210 Dec 1999 WO
WO2007068682 Jun 2007 WO
WO2008142009 Nov 2008 WO
WO2011003606 Jan 2011 WO
WO2012003489 Jan 2012 WO
WO2012128928 Sep 2012 WO
WO2012128929 Sep 2012 WO
WO2012170114 Dec 2012 WO
PCTRU2013000162 Feb 2013 WO
WO2013095829 Jun 2013 WO
WO2013147632 Oct 2013 WO
WO2013147633 Oct 2013 WO
WO2013155214 Oct 2013 WO
WO2014071118 May 2014 WO
WO2014071215 May 2014 WO
WO2014106265 Jul 2014 WO
Non-Patent Literature Citations (34)
Entry
Ahmed, S. et al. (1998) “Catalytic Partial Oxidation Reforming of Hydrocarbon Fuels,” 1998 Fuel Cell Seminar, 7 pgs.
Air Products and Chemicals, Inc. (2008) “Air Separation Technology—Ion Transport Membrane (ITM),” www.airproducts.com/ASUsales, 3 pgs.
Air Products and Chemicals, Inc. (2011) “Air Separation Technology Ion Transport Membrane (ITM),” www.airproducts.com/gasification, 4 pgs.
Anderson, R. E. (2006) “Durability and Reliability Demonstration of a Near-Zero-Emission Gas-Fired Power Plant,” California Energy Comm., CEC 500-2006-074, 80 pgs.
Baxter, E. et al. (2003) “Fabricate and Test an Advanced Non-Polluting Turbine Drive Gas Generator,” U. S. Dept. of Energy, Nat'l Energy Tech. Lab., DE-FC26-00NT 40804, 51 pgs.
Bolland, O. et al. (1998) “Removal of CO2 From Gas Turbine Power Plants Evaluation of Pre- and Postcombustion Methods,” SINTEF Group, www.energy.sintef.no/publ/xergi/98/3/art-8engelsk.htm, 11 pgs.
BP Press Release (2006) “BP and Edison Mission Group Plan Major Hydrogen Power Project for California,” www.bp.com/hydrogenpower, 2 pgs.
Bryngelsson, M. et al. (2005) “Feasibility Study of CO2 Removal From Pressurized Flue Gas in a Fully Fired Combined Cycle—The Sargas Project,” KTH—Royal Institute of Technology, Dept. of Chemical Engineering and Technology, 9 pgs.
Clark, Hal (2002) “Development of a Unique Gas Generator for a Non-Polluting Power Plant,” California Energy Commission Feasibility Analysis, P500-02-011F, 42 pgs.
Foy, Kirsten et al. (2005) “Comparison of Ion Transport Membranes,” Fourth Annual Conference on Carbon Capture and Sequestration, DOE/NETL; 11 pgs.
Cho, J. H. et al. (2005) “Marrying LNG and Power Generation,” Energy Markets; 10, 8; ABI/INFORM Trade & Industry, 8 pgs.
Ciulia, Vincent. (2001-2003) “Auto Repair. How the Engine Works,”http://autorepair.about.com/cs/generalinfo/a/aa060500a.htm, 1 page.
Corti, A. et al. (1988) “Athabasca Mineable Oil Sands: The RTR/Gulf Extraction Process Theoretical Model of Bitumen Detachment,” 4th UNITAR/UNDP Int'l Conf. on Heavy Crude and Tar Sands Proceedings, v.5, paper No. 81, Edmonton, AB, Canada, 4 pgs.
Science Clarified (2012) “Cryogenics,” http://www.scienceclarified.com/Co-Di/Cryogenics.html; 6 pgs.
Defrate, L. A. et al. (1959) “Optimum Design of Ejector Using Digital Computers,” Chem. Eng. Prog. Symp. Ser., 55 ( 21), 12 pgs.
Ditaranto, M. et al. (2006) “Combustion Instabilities in Sudden Expansion Oxy-Fuel Flames,” ScienceDirect, Combustion and Flame, v.146, 19 pgs.
Elwell, L. C. et al. (2005) “Technical Overview of Carbon Dioxide Capture Technologies for Coal-Fired Power Plants,” MPR Associates, Inc., www.mpr.com/uploads/news/co2-capture-coal-fired.pdf, 15 pgs.
Eriksson, Sara. (2005) “Development of Methane Oxidation Catalysts for Different Gas Turbine Combustor Concepts,” KTH—The Royal Institute of Technology, Department of Chemical Engineering and Technology, Chemical Technology, Licentiate Thesis, Stockholm Sweden; 45 pgs.
Ertesvag, I. S. et al. (2005) “Exergy Analysis of a Gas-Turbine Combined-Cycle Power Plant With Precombustion CO—2 Capture,” Elsevier, 34 pgs.
ElKady, Ahmed. M. et al. (2009) “Application of Exhaust Gas Recirculation in a DLN F-Class Combustion System for Postcombustion Carbon Capture,” ASME J. Engineering for Gas Turbines and Power, vol. 131, 6 pgs.
Evulet, Andrei T. et al. (2009) “On the Performance and Operability of GE's Dry Low NOx Combustors utilizing Exhaust Gas Recirculation for Post-Combustion Carbon Capture,” Energy Procedia I, 7 pgs.
Caldwell Energy Company (2011) “Wet Compression”; IGTI 2011—CTIC Wet Compression, http://www.turbineinletcooling.org/resources/papers/CTIC—WetCompression—Shepherd—ASMETurb oExpo2011.pdf , 22 pgs.
Luby, P. et al. (2003) “Zero Carbon Power Generation: IGCC as the Premium Option,” Powergen International, 19 pgs.
MacAdam, S. et al. (2007) “Coal-Based Oxy-Fuel System Evaluation and Combustor Development,” Clean Energy Systems, Inc.; presented at the 2nd International Freiberg Conference on IGCC & XtL Technologies, 6 pgs.
Morehead, H. (2007) “Siemens Global Gasification and IGCC Update,” Siemens, Coal-Gen, 17 pgs.
Nanda, R. et al. (2007) “Utilizing Air Based Technologies as Heat Source for LNG Vaporization,” presented at the 86th Annual convention of the Gas Processors of America (GPA 2007), San Antonio, TX; 13 pgs.
Reeves, S. R. (2001) “Geological Sequestration of CO2 in Deep, Unmineable Coalbeds: An Integrated Research and Commercial-Scale Field Demonstration Project,” SPE 71749; presented at the 2001 SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, 10 pgs.
Reeves, S. R. (2003) “Enhanced Coalbed Methane Recovery,” Society of Petroleum Engineers 101466-DL; SPE Distinguished Lecture Series, 8 pgs.
Richards, Geo A., et al. (2001) “Advanced Steam Generators,” National Energy Technology Lab., Pittsburgh, PA, and Morgantown, WV; NASA Glenn Research Center (US).
Rosetta, M. J. et al. (2006) “Integrating Ambient Air Vaporization Technology with Waste Heat Recovery—A Fresh Approach to LNG Vaporization,” presented at the 85th annual convention of the Gas Processors of America (GPA 2006), Grapevine, Texas, 22 pgs.
Snarheim, D. et al. (2006) “Control Design for a Gas Turbine Cycle With CO2 Capture Capabilities,” Modeling, Identification and Control, vol. 00; presented at the 16th IFAC World Congress, Prague, Czech Republic, 10 pgs.
Ulfsnes, R. E. et al. (2003) “Investigation of Physical Properties for CO2/H2O Mixtures for use in Semi-Closed O2/CO2 Gas Turbine Cycle With CO2-Capture,” Department of Energy and Process Eng., Norwegian Univ. of Science and Technology, 9 pgs.
van Hemert, P. et al. (2006) “Adsorption of Carbon Dioxide and a Hydrogen-Carbon Dioxide Mixture,” Int'l Coalbed Methane Symposium (Tuscaloosa, AL) Paper 0615, 9 pgs.
Zhu, J. et al. (2002) “Recovery of Coalbed Methane by Gas Injection,” Society of Petroleum Engineers 75255; presented at the 2002 SPE Annual Technical Conference and Exhibition, Tulsa, Oklahoma, 15 pgs.
Related Publications (1)
Number Date Country
20140338901 A1 Nov 2014 US
Provisional Applications (1)
Number Date Country
61578045 Dec 2011 US