Aspects of the present invention relate to electrosurgical procedures, techniques, and devices that utilize enhanced control systems such as robotics and other motion control apparatus. Aspect of the present invention also relate to electrosurgical systems with a monitored safety system capable of monitoring both the electrosurgical instruments and any neutral instruments or other conductive surfaces in the general vicinity of the surgical site.
Enhanced control surgery (ECS) systems broadly refers to devices and systems that consist of mechanical or electro-mechanical configurations and that may provide one or more enhanced endo-mechanical features that enable a surgeon with improved surgical end effector mobility. Examples of such improvements include increased instrument flexibility, better ergonomic positioning, hand tremor reduction, translation of motion frames of reference, telesurgery, robotic surgery systems and the like. ECS systems typically include more elaborate instruments and support structures when compared to traditional laparoscopic surgery and may also include the use of novel body entry devices and different points of entry compared to laparoscopic or other minimally invasive surgical techniques.
Electrosurgical systems have utilized Active Electrode Monitoring (“AEM”) for several years, such as AEM monitor systems manufactured by Encision, Inc. of Boulder, Colo. These systems are generally described in U.S. Pat. No. 5,312,401 and related patents. Despite the success obtained, and increased patient safety realized, by the inventions embodied in the '401 patent, as well as the electrosurgical tools that embody those inventions, there remain certain problems and drawbacks when applied to ECS systems.
These drawbacks include, among other things, 1) the need to provide instrument shielding on structures that are not rigid shafts and that include complex articulating geometries found in ECS systems and tools, and 2) the need to monitor one or more non-electrosurgical instruments. As used herein, the term “cold instrument” refers to a surgical tool or device that does not have or is not meant to have electrosurgical energy actively applied to it or its end effector. These cold instruments can, under certain conditions, conduct electrical energy that can become harmful to the patient and cause burns. The same harmful conditions that can provide electrical energy to the cold instruments can also effect floating conductive surfaces that might also be in contact with the patient or operating room staff, such as the operating table or the mechanical support structure used to hold and control the ECS systems.
Current procedures used in minimally invasive electrosurgery utilize multiple access ports for the various instruments. Though devices such as the Encision AEM® monitoring system protect the active electrode instrument, the potential still exists that the surgeon might inadvertently or purposefully touch another instrument such as a grasper or optical scope with the active and electrically charged instrument. This additional instrument then has the potential to transfer electrical energy directly to the patient in an area that may not be visible to the surgeon. In addition, new surgical techniques involving single port access surgery (SPA), robotic surgery, and natural orifice transluminal endoscopy (NOTES) position the instruments in even closer proximity to each other and contain more non-referenced conductive surfaces that can inadvertently carry electrical energy. While SPA apparatus (instruments and cannulae) are generally not used for ECS systems as described above, they involve different points of entry compared to traditional laparoscopic surgery. For instance, SPA surgery might be used for cosmetic reasons, reduced pain, and reduced chance for herniation. Because all instruments pass through a single incision (e.g. the umbilicus) they are very close together and increase the likelihood of cross-coupling of energy compared to traditional laparoscopic surgery. This highlights the need for both active instrument protection and for cold instrument monitoring and protection.
Thus, there is a need for a better way to provide a monitored electrosurgical energy to the primary “hot” instrument while also monitoring for inadvertent stray electrosurgical energy in cold instruments and other conductive surfaces. In addition, because of the added degrees of freedom and the need to accommodate advanced monitoring techniques in the more complex and larger scale instruments being utilized in ECS surgical techniques, prior monitoring techniques used in rigid shaft embodiments are not adequate.
In accordance with one aspect, a surgical system comprises a device adapted to deliver a plurality of surgical instruments to a site within a patient's body, a first surgical instrument comprising an active electrode probe, a second surgical instrument for performing a non-electrosurgical procedure, a conductive shield surrounding the active electrode probe of the first surgical instrument and connected to a reference potential, and a cold instrument monitor connected to the second surgical instrument and to the reference potential.
In accordance with another aspect, a surgical system comprises a surgical control mechanism for delivering a plurality of surgical instruments to a site within a patient's body, the surgical control mechanism comprising a control arm for maneuvering at least one of the plurality of surgical instruments, a first surgical instrument comprising an active electrode probe having a tip and being adapted for connection to an electrosurgical generator for effecting at the tip thereof an electrosurgical procedure within a patient's body, a second surgical instrument for performing a non-electrosurgical procedure, a conductive shield surrounding the active electrode probe and connected to a reference potential, and a cold instrument monitor connected to the second surgical instrument and to the reference potential. In accordance with another aspect, any current which flows from the active electrode probe to the second surgical instrument is conducted to the reference potential.
In accordance with another aspect, an enhanced control surgery system for aiding in the performance of a surgical procedure comprises a surgical tool control arm having one or more interconnected and articulated members, a controller adapted to maneuver the surgical tool control arm, an active electrode probe having a tip and extending through the surgical tool control arm, the active electrode probe being adapted for connection to an electrosurgical generator, a conductive shield surrounding the active electrode probe, and an electrical terminal connected to the shield and adapted to connect the shield to a reference potential. In accordance with another aspect, the active electrode probe and the conductive shield are adapted to substantially conform to the movements of the surgical tool control arm.
Other aspects will become apparent to one of skill in the art upon a review of the following drawings and detailed description.
Various aspects, objects and advantages, and a more complete understanding of the present invention are apparent and more readily appreciated by reference to the following Detailed Description and to the appended claims when taken in conjunction with the accompanying Drawings, wherein:
The term ECS refers to both Enhanced Control Surgery systems as a whole as well as one or more of the components utilized in such procedures. These may include robotic arms and the individual components, controllers, and other complex mechanical devices used in the robotic systems, as well as any specialty tools or structures used to perform the surgical procedure. While providing a heightened degree of control and accuracy, certain implementations of ECS may involve a field of view that is even more limited than in traditional laparoscopic surgery. This occurs in part because the surgeon may not have the ability to pan a camera inside the patient and may not have direct vision at the port sites. In addition, due to the small size of individual components (including conductors) in ECS and other flexible systems, there is an increased risk of electrical breakdown due to both mechanical and electrical stress. Breakdown may be within the instrument or in the conductor system and may include conduction to shielding components or to the ECS support structure.
ECS tools and systems offer the ability to deliver various forms of electrical power depending on the type of surgery or procedure involved. Thus, there is a need for shielding and protective monitoring in bipolar modes (both electrodes in instrument and both surgically active), sesquipolar modes (both electrodes in instrument but only one electrode surgically active) as well as monopolar modes (one electrode in instrument, the other as a remote return electrode) electrosurgical systems. In all electrosurgical modes the objective is to protect the patient and users from the harmful effects of insulation failure, capacitive coupling and current inadvertently conducted through cold instruments and support structures.
In ECS systems the potential for cross coupling between an active instrument and an adjacent cold instrument or other conductive object may need to be controlled differently than in open or laparoscopic surgery. This is at least partially due to the fact that there may be more conductive objects in closer proximity to each other combined with less opportunity for direct visualization. This is further problematic because an ECS tool may be activated either directly with controls near the patient, or remotely.
In ECS applications, surgery may also take place in an extremely confined space. This could be for example within an organ or the vascular system. In these situations an electrosurgical active electrode may contact other instruments not intended to be electrified, or contact other conductive objects within the body. Under these conditions it is desirable to limit energy delivery so that excessive heating to the conductive object or to body tissue does not occur. Under extreme conditions welding can occur between the electrode and the contacted object and this is particularly important to avoid.
Typically when there is sparking between metallic objects, there is a characteristic frequency spectrum of the conducted current that is different from the spectrum of current delivered to tissue in normal electro surgery. This spectral difference in active current of the electrosurgical system can be sensed and used to determine the presence of a fault condition.
As described in more detail below, an active electrode, as well as any shielding structure associated with that electrode, that extends through the entire element 106a (including mechanism 125 from
While particularly applicable to ECS procedures and the complex devices described above, the need to monitor the non-energized tools used in a surgical procedure also extends to single point access procedures.
Various Conventional electrosurgical applications (e.g. those involving a single rigid shaft tool) create a load impedance within a certain range. That load impedance range depends on the electrode size and tissue type, among other variables. If during an ECS procedure, an active electrode contacts a separate instrument or another conductive object that is not meant to be electrically active, the load impedance value may fall below the otherwise normal range. Thus, sensing the load impedance and using its value in a calculation can aid in the detection of a fault condition under these circumstances.
Also in conventional electrosurgical applications, the load impedance changes in a known fashion, generally starting at a relatively low value and progressing as the contacted tissue dries to a higher value. In an abnormal condition (e.g. where the active electrode contacts another conductive object), the pattern of impedance change may be downward with stabilization at a low value. One or more of this load impedance rate of change, the direction of change along the load impedance curve, and a spectral determination may then be used to detect any abnormal contact conditions. When such conditions are detected, a monitoring device is programmed to respond by reducing or ceasing the application of power to the active electrode.
Turning to
Various embodiments are contemplated for sensing the presence of this abnormal energy. For example, an adaptive filter might be utilized that is sensitive to the driving waveform, and can be used to detect small differences in spectral energy. Either of the above evaluations can be used to determine the presence of a fault condition or they may be used in combination to determine a fault condition.
With the popularity of ECS systems providing additional degrees of freedom for an end effector, the application of shielded and safe (e.g. AEM) electrosurgery energy becomes more complex. The original format of a rigid shaft instrument that provides shielding and rigidity must be modified in many ECS applications.
Enhanced control systems including robotic systems, instruments having wrists, and instruments having flexible shafts impose increased stress on electrosurgical conductors both in monopolar and bipolar implementations. One example of this type of instrument is the device described in U.S. Patent Application 2006/0111210A1. This device is representative of the contrast with conventional laparoscopic instruments having rigid shafts and is representative of the problems solved by aspects of the present invention. These types of “bendable” and articulating shaft instruments pose an additional problem for the shielding used with traditional AEM technology due to the nature of the bending in the shield area. Conventional AEM instruments utilize a rigid tube conductor as the shield and it is this rigid tube that acts as a conductor for electrical shielding while also providing stiffness to the shaft. In accordance with various aspects of the present invention, the shield used in connection with an ECS system employing AEM monitoring does not have to be formed from a rigid material. This shield can be very flexible as long as it is capable of effectively carrying normal and fault current to the AEM monitor.
In accordance with one aspect, instrument shields may embody one or more flexible circuit concepts such as a metal coated flexible polymer as the shield conductor. Other embodiments of flexible shields may be conductive rubber, metal braids such as a coaxial cable, metal braids molded or extruded inside insulation material, or thin conductive film such as a metalized polymer. Further embodiments such as cloth with woven conductive fibers, metal or sprayed on conductors may be utilized as the shield.
A thin film shield made from cloth, polymer, or other flexible materials as described above might not prevent an initial arc from generating a fault (e.g. broken insulation) condition by penetrating the shield. In other words, the flexible shield could have a hole burned through it when a fault occurs. However, the shield monitor would still sense the fault and begin the sequence of shutting down the energy. In tests the total reaction time is less than 10 msec. Therefore, the amount of energy dissipated would cause, at most, only superficial damage to the outer insulation of the shield. Accordingly, there is necessarily a trade-off between a thin flexible shield that might allow superficial damage and a substantially rigid and/or thick flexible shield that would prevent the energy from ever reaching beyond the shield in a fault condition but be more limited in its versatility in complex ECS systems. Further aspects and embodiments of AEM shields used in ECS applications are described below. It is contemplated that one or more of these embodiments made be used either alone or in combination depending on the specific application and the specific ECS system being developed.
In accordance with one aspect,
In accordance with another aspect,
In accordance with another aspect,
In accordance with another aspect,
The use of electrosurgical conductors in ECS systems has specific issues that need to be addressed in a monitored environment. As mentioned above, enhanced control systems may employ a wrist or other flexible element between the electrode and a support structure (See e.g.
A connector for the active electrode can be present at any point in the RF assembly. However any breakdown paths in the connector need to be controlled so that the most likely breakdown is from active to shield rather than to an outside conductor. Optimal locations for the connector are where the environment is dry.
In accordance with another embodiment, a flexible sheath or boot (reusable, limited-use or disposable) may be used to protect against electrical conduction from exposed components in the wrist area or other flexible portion of the ECS system and the patient or users. The sheath or boot may be entirely insulating or shielded with a conductor embedded in the insulation or on the surface of the insulation. The conductor may be connected to other conductive components of the ECS system or to a conductor dedicated for the purpose of conducting shielding currents to monitoring equipment. For example, the fabric matrix of
In general, a shielded electrosurgical conductor may be made more compact than a non-shielded conductor. This is primarily because non-shielded conductors must be made with additional margins of safety against insulation breakdown, resulting in a larger diameter or overall footprint. In addition, the insulator in a non-shielded conductor must be large enough to minimize corona (the local breakdown of air near the outside of an insulated wire conducting high voltage electrosurgical energy). Corona is known to cause heating and produce ozone. Corona can also cause damage to other components of electrosurgical systems from associated chemical mechanisms.
In contrast, a shielded conductor can be constructed with a smaller margin of safety compared to a non-shielded conductor since any failure of the insulation is prevented from causing damage to patients, users, or equipment by the shield and a monitor that causes power shutdown before there is any significant damage. Also no corona is produced in a shielded conductor because there is no air subjected to high electrical field strength. These conditions result in a possible substantial reduction in conductor size. For example, typical non-shielded monopolar electrosurgical conductors measure 0.090 to 0.120 inches or larger in diameter. A shielded monopolar conductor can be made in the range of 0.040 to 0.070″ in diameter. The resulting smaller footprint of shielded electrosurgical conductors give them greater utility when incorporated into monitored ECS system, particularly those embodiments using bundled cabling or other consolidated conductor arrangements.
As in traditional AEM systems, the shield in ECS and other flexible systems is connected to an electrosurgical return or other reference at patient potential. This is to provide a return path directly to the RF current source for capacitive and fault currents. It also provides the shielding with only a minor effect on RF leakage currents. Conversely, if the shield were returned to earth ground there would be a large increase in RF leakage current. This increase is undesirable from the standpoint of patient safety and also conformance with international standards.
Flexible micro-coax cable can be used in connection with the above described embodiments. In general, coaxial cable appropriate for electro-surgery monopolar outputs has high capacitance (20-50 pF/ft). However, the needs in an ECS system for small size, flexibility, and reduced coupling internally may be over a fairly short length, say 2-4 feet as opposed to the normal 10′ monopolar conductors. A coaxial structure with a dual-layer internal insulation system can reduce the capacitance per unit length and thus increase the length possible for a given capacitance. In this embodiment, one layer is a conventional thermoplastic having a relative dielectric constant of 2.0 to 3.5. The second layer is a foamed fluorocarbon having a dielectric constant of 1.1-1.3. The net dielectric constant for a system appropriate for high voltage for example up to 6 KV electrosurgical energy transmission, is in the range of 1.2 to 1.5. This reduces the capacitance per unit length of the coaxial structure 30% or more compared to the use of a simple dielectric. Foamed material withstands the voltage in most places. However if the foamed material is used alone there will be insulation failures at modest voltages, for example 2 KV at particular points. This is because the randomly arranged bubbles in the foam line up so that there is insufficient insulation thickness in a particular line through the material. The conventional material protects against failures at those points. Tests have shown good capacitance results with low heating, thus in most areas the foamed material is withstanding most of the voltage.
In one example, a coaxial conductor was utilized with the following characteristics:
As mentioned above, an ECS unit may employ a structure separately supported from the patient, surgeons, trocar cannulae, etc. These structures may be supported by a frame attached to the operating room (OR) table or OR floor (See e.g.
In accordance with another aspect, an ECS system utilizes a specially designed electrosurgical monitoring system. In one embodiment, the monitor has specialized sensing algorithms for each of the different channels. Referencing potentials may include the return electrode, a reference potential electrode (RPE) earth ground, and a derived reference and may be different for the separate channels. One such system is described in co-pending U.S. patent application Ser. No. 12/257,562 filed on Oct. 24, 2008, the entire details of which are incorporated by reference into the present application. In another example, a dual channel monitoring system as described in U.S. Pat. No. 7,422,589 is utilized. The entire details of U.S. Pat. No. 7,422,589 are incorporated by reference into the present application.
In accordance with another aspect, internal ECS metallic components are monitored for high levels of current and/or power and referenced to the electrosurgical return. Exposed metallic components are monitored for low currents and/or powers and referenced to a return electrode (RE), reference potential electrode (RPE), or derived reference (DR). In some cases it may be desirable to utilize an earth ground or an operating room table reference. The electrode shield can be monitored for high levels of current and/or power and referenced to the electrosurgical return electrode (RE). Embodiments described within U.S. patent application Ser. Nos. 11/202,605 and 11/202,915 may be relevant in performing this type of function. The details of these applications are incorporated by reference in their entirety into the present application.
It is desirable to make the shielded flexible sheaths or boots described above thin for the purposes of minimizing size and for maintaining the flexibility of the ECS devices. However very thin shields may be limited in their ability to accept and conduct insulation fault currents. To compensate for this, these shields may be adapted to function with a fast-responding algorithm to provide for the possibility of temporary conduction lasting for example 1 msec to a delicate shielding coating that partially ablates during an insulation failure. It is anticipated that such a shield would have an RE reference, however RPE and DR references are also possible.
In accordance with another aspect, ECS monitoring systems may be constructed as follows in bipolar systems. Two patient-coupled conductors may be contained within a single shield conductor or they may each have a separate shield. The monitoring system is preferably calibrated to indicate that a fault condition may consist of either or both conductors breaking down to the shielding conductors or to metallic components of the ECS. Given that the shielding conductors are connected to either RE, RPE, or DR potentials, the breakdown would result in a significant fraction of the total current being returned through the referencing connection. Further, in a bipolar application the voltages from each of the active electrodes to the referencing electrode would be significant. No or low voltage from active to reference would be evidence of a possible insulation failure and that asymmetrical voltage condition would be a monitored parameter.
In accordance with another aspect, ECS monitoring systems may be constructed in sesquipolar systems. Sesquipolar systems are monitored similarly to the manner for bipolar systems except that a continuous low voltage between the surgically inactive electrode and the reference potential is considered a normal condition. Thus this condition would not generate a fault response from the monitoring subsystem.
In accordance with another aspect, the electrosurgical generators themselves may be optimized for ECS procedures. For example, the generator may have limited power and voltages, for example powers less than 80 Watts and open-circuit voltages in the range of 2-4 KV peak (compared to 300 W and 3-5 KV peak for standard monopolar generators). This allows the use of minimally thin insulations and small-gauge cables in and around highly compact mechanical assemblies such as wrists and elbows. This also results in lower shield currents in normal states of operation. In practice, the above limited amounts of power and voltage have been shown to be adequate for laparoscopic and most forms of endoscopic surgery not involving fluid environments.
In accordance with another aspect, the electrosurgical generator includes output circuitry to compensate for the loading of the capacitance present in the conductive shield and cabling. Testing has shown that in standard generators, performance degrades both in open circuit voltage and loaded power with increasing load capacitance. For example, 100 pF results in minimal degradation and 200 pF results in a significant but tolerable degree of degradation. In some implementations of ECS systems it may be desirable to support load capacitances in the 200-400 pF range. This can be presented by the combination of the electrode shielding components, the connectors, flexible shielded conductors and generator leads. Optimized generator output circuitry and internal feedback control that adjusts the output to account for load capacitance are examples of design features that permit calibrated operation in the presence of high load capacitance.
The electrosurgical generator can also be designed to operate with frequencies in the low region of the normal operating range of frequencies for general purpose generators of 200-800 KHz, for example in the range of 200-400 KHz. This will tend to facilitate the use of higher load capacitance by reducing the shield currents in the normal states of operation and allow more effective recognition of abnormal states of operation.
AEM monitoring components can be implemented in the generator itself in order to eliminate the need for a separate monitoring hardware. This would tend to reduce cost because of the elimination of the separate enclosure and power supply. It would also increase reliability because of the reduced cabling.
In accordance with another aspect, the potentials between the electrosurgical return electrode and earth ground may be measured and an upper limit placed on these potentials coupled with either an alarm, a reduction in applied voltage or the cessation of power in the event of a breach of the limit. The limits are important for patient safety, operator safety, and reduction of interference. Conditions that would generate high return-ground voltage consist primarily of an abnormally low impedance between active and ground. ECS systems may present low active to ground impedances due to the capacitance inherent in the physical construction of the system. Thus in these systems it may be desirable to include an electrical network between return and ground to maintain an adequately low return to ground voltage. The network may include capacitive, resistive and inductive components.
Normally patient to ground potentials are less than 100 Vrms. However in fault conditions such as the active electrode being connected to ground, the potential could rise to a value approaching 10 times that amount.
In accordance with another aspect, an electrosurgical system monitors for inadvertent electrosurgical energy in normally non-electrified (“cold”) instruments and other large conductive surfaces. In known AEM implementations, the primary electrosurgical instrument is continually monitored for any stray electrosurgical energy via a multi-wire cord. The multi-wire cord provides both the active conductor for the electrosurgical and the reference wires for the shield which allows for continuous draining of any excessive energy due to capacitive coupling or insulation breakdown.
Current surgical procedures and especially new minimally invasive surgeries such as SPA procedures described above, place one or more instruments and cameras in close proximity to each other to minimize the entry points into the patient's body. Many of these tools and instruments are “cold” i.e. non-electrified and are generally used to view or handle the tissue in one way or another. Generally speaking, a “cold” instrument is any instrument that is not electrified via a direct and intentional electrosurgical connection. The various instruments used in SPA procedures usually consist of a camera, several graspers/dissectors, a “hot” instrument for performing the electrosurgical procedure, and various other manipulative instruments. It is desirable that the cold instruments also be protected and monitored to ensure that they remain cold. Most cold instruments are not properly insulated to deal with an electrical charge and become “hot” or otherwise electrically activated. Activated means that voltage is applied to the device. In the case of a cold instrument this can occur via touching the cold instrument with the tip of an activated hot instrument, through tissue that is contacted by an activated instrument and the device, via capacitive coupling from a hot instrument, and via insulation failure from a hot instrument. Even if these cold instruments are insulated, the surgical team is not controlling them as if they are hot and may not be utilizing the same precautions as are used when using an instrument that is intentionally hot. When the electrified instrument is being used, it can inadvertently transfer RF energy to another conductive instrument as described above. The cold instrument may also become energized through loose tissue in the surgical site, for example by a cold grasper holding separated tissue while the active electrode burns it resulting in a non-target tissue being burned by the cold instrument. A cold instrument may also become hot by the active cable being inadvertently attached to the wrong instrument.
Prior systems such as those taught by U.S. Pat. No. 5,312,401 teach that the most effective way to prevent stray RF electrosurgical energy from the hot instrument is to provide a monitored shielding system that actively drains any capacitive energy and monitors the draining (reference ground) circuit for excessive energy indicating a fault condition where the instrument's primary active conductor is shorting directly to the shield.
However, in order to protect the cold conductive surfaces from inadvertent or intended RF energy, each of the cold surfaces needs to be both monitored for excessive voltage and continually drained of any RF energy, for instance, by providing a referencing connection (Referencing Method). A second alternative also exists where the cold conductive surfaces are monitored for excessive voltage but any excessive energy is not drained (Monitoring Method). These two aspects are described below.
One method of achieving both referencing and monitoring is to provide reference potential for every conductive cold surface via wires that can conduct the energy back to monitoring circuits located in the AEM monitor. The conductive wires would work similarly to known shielding circuits contained within the monitor except each can be in a separate circuit where individual monitoring parameters can be adjusted to provide optimum referencing and monitoring. The reference conductors can be disposable, reposable (partially reusable) or reusable. In one embodiment, the wires will each electrically connect to the monitoring unit (AEM monitor) at the proximal end and to the conductive cold surface at the distal end. Connection at the conductive surface can be achieved in several ways depending on the surface. Details of various connection methods are described below. As the cold instrument or surface experiences inadvertent RF electrosurgical energy, the wire acting as a referencing surface will drain away any excessive energy. The monitoring system will also monitor for excessive voltage/current and control the electrosurgical source according to appropriate monitoring parameters.
In accordance with another aspect, each of the cold surfaces or instruments are monitored for excessive voltage. The monitoring of the cold surfaces triggers a monitoring base station (e.g. AEM unit) to shut down the electrosurgical source and provide an alert to the surgical team that a cold surface/instrument has experienced excessive RF energy and that appropriate action needs to be taken such as checking for patient burns around the instrument in question.
With reference to
1) An uninsulated conductive instrument whose surface is exposed to the patient's tissues or users' hands. This type of instrument is never intended to be activated and become hot.
2) An instrument that is insulated except for a small area at the tip. If activated, this type of instrument is capable of protecting against conductive discharge through the insulation if the activation voltage is within the specification of the insulation.
3) A shielded instrument of the type described in U.S. Pat. No. 5,312,401 where the shield is connected to a reference potential through a monitor. The insulated exterior would not be capable of generating a significant patient or user burn even under the condition of an insulation fault because of the low voltage between the shield and the tissues.
In any of the above cases, contact sensors 506 and 508 are adapted to detect a voltage (V1) in the instrument 502. Two thresholds are set in firmware located and running within the connection monitor 514. These thresholds are compared with the detected voltage V1 and a determination is made about how to affect the applied voltage to the hot electrosurgical tool.
A first low threshold is set to result in a safe level of voltage for an uninsulated instrument. In conjunction or in the alternative a second threshold is set to a moderate level appropriate to a simply insulated cold instrument. A shielded instrument would not need to be voltage monitored, but the same threshold as for a simply insulated instrument could be applied.
The dual contacts 506 and 508 are sensed by the connection monitor 514 to determine if the instrument surface is conductive. A processing algorithm uses the conductivity determination to choose between a high-level or low-level threshold for an instrument voltage sensor. For example, the high level might be 2,000 V peak and the low level 50 V peak.
A voltage sensor 516 uses the sensing tube 504 in the cannula which measures the voltage of the instrument outer conductor. It has an outer insulator and may have an inner insulator. The sensing tube 504 may be directly connected to a conductive instrument, or capacitively coupled if there is an inner insulation layer. It will be capacitively coupled to an insulated instrument. The voltage sensor electronics has an input capacitive divider that interacts with the intentional and controlled capacitance of the sensing tube to give an acceptably accurate representation of the voltage on the instrument. The output of a buffer amplifier 518 is detected at 520 (for example peak detected) for an input to an analog-to-digital converter 522 which than presents the data to a processor 524 implementing an algorithm that uses the data, thresholds, and time to make a determination of acceptable performance or a fault.
The dual contacts 506 and 508 may also be used to link a conductive instrument to a voltage reference. A link (L) may also include an isolation capacitor 517, a current sensor 519, a second detector 521, and second analog-to-digital converter 523 for a monitor. In this case the low voltage threshold described above is not used and instead a current threshold takes part in the fault determination. This implementation will generate fewer false-positive fault determinations than a low level voltage sensing due to capacitive coupling among SPA instruments.
The instrumented cannula system 500 is used to provide referencing and monitoring for example to a cold instrument having a conductive exterior such as an irrigation tube, and a cold instrument having an insulated exterior such as a cutting or grasping unit. As mentioned above, in the embodiment of
In one embodiment a cold instrument may be designed so that it can become energized. In this embodiment, cold instruments can be designed with an adequate outer insulation so that if the metallic tip (a housing or end effector) is touched with the active electrode, the patient would not be injured, assuming that the insulation was intact. In many cases, it is desirable to touch a cold instrument with the active electrode, for example, if the cold instrument is grasping a bleeding blood vessel. Given that the result of detection of a voltage is an alert to the user, it would be beneficial in some cases to inhibit this alert if the action is intended and safe. Possible design provisions include:
1. Providing a proximity detector in the instrument and cannula assembly so that the identity of the safe cold instrument is able to inhibit an alert.
2. Providing the function of No. 1 above through an optical property of the insulator recognized by a detector in the cannula assembly.
3. Providing a shield in the safe, cold instrument that would prevent coupling through the inner wall. The shield would be connected to the return.
In the diagram of
In one embodiment, the reference ground should generally be an easily obtainable connection point, be electrically quiet (low RF noise or offset) and have some level of independence from the generator/monitor.
In another embodiment, the shield may be a direct connection to the shield in an AEM system. While this connection is easily obtainable in a hardware based system, there might be several tens of volts of RF noise due to the voltage drop of return current flowing through the return electrode connection impedance and also the shield current flowing through the shield coupling capacitor.
In one embodiment, the return electrode is a direct connection to the return electrode in an AEM system. The same noise problems exist as with the shield described above. The return electrode would then require reliable isolation because this is a patient connection.
In another embodiment, the reference potential electrode is as described in U.S. Pat. No. 7,465,302. This embodiment solves the problem of noise from return electrode voltage drop. However it would require a separate patient electrode which may or may not be housed in the same assembly as the return electrode. While this might introduce connection impedance, it should be of negligible consequence for this connection alone.
In another embodiment, the derived reference can be embodied as described in U.S. Pat. No. 7,465,302. This is a subsystem whose purpose is to avoid the need for a separate RPE and to provide an effective low impedance connection, while also providing an accurate representation of the voltage of the target tissue. It is estimated that this would present noise of only a few volts.
In another embodiment, the circuit ground is provided by the ground of the low voltage signal processing inside the AEM monitor. In any hardware based system this is easily obtainable. Its use would mean that no decoupling circuitry would be required for the detected signals. However, the noise could be expected to be significant.
In yet another embodiment, the environment reference is provided by coupling via an antenna to the general operating room ground. This is useful because it would not involve the design of the cannula or need a wired connection. However, the connection impedance would be extremely high and it could be expected to have noise equal to that of the circuit ground option. Additionally, there could be expected to be a large RF voltage component coupled from the instrument being measured which would reduce the effective differential signal level and also reduce accuracy.
In another embodiment, the abdominal wall reference is the potential of the abdominal wall in contact with the surgical cannula. A metal interior tube would be included in the cannula wall. This would be separate from the inner wall of
Each of the robotic arm assemblies 532, 534, 536, and 538 comprises a linkage that supports and includes a removable surgical instrument or tool 540, 542, 544, and 546, respectively. The tools 540, 542, 544, and 546 of the robotic arm assemblies may include various types of end effectors and may also include an image capture device, an endoscope or a similar tool. Exemplary embodiments of such a surgical system can be found in U.S. Patent Application No. 2009/0192524, the details of which are incorporated herein by reference in their entirety.
Another embodiment of achieving referencing in a system such as that described in
It is desirable to implement monitoring in each referencing channel so that dangerous conditions will cause an alert and excessive energy will be prevented. The monitoring system 550 monitors for excessive voltage, current, power or energy as, for example, disclosed in U.S. patent application Ser. No. 12/257,562 and controls the electrosurgical source according to appropriate monitoring parameters which may be different for each type of surface. The monitoring of the cold surfaces triggers the monitoring system to reduce power or shut down the electrosurgical source. An alert is provided to the surgical team that a cold surface/instrument has experienced excessive RF energy and that appropriate action needs to be taken such as resolving an instrument collision and checking for patient burns around the surface in question.
In accordance with another embodiment, the monitoring circuit comprises a base unit (such as a modified AEM monitor) and individual sensor tags. Each of the tags attaches directly to the conductive surface to be monitored. The tags can be wired, or wireless and provide communication back to a central location where the base unit is connected to the electrosurgical power source and capable of shutting down ESU power should excessive voltage be detected at a tag. In various embodiments the tags include RF tags such as found on most merchandise or clothing, most of which tend to be passive. In addition, active tags can also be utilized (active meaning they have their own power source) usually found in tracking/inventory applications. The tags can be disposable, reposable (have both a disposable and reusable element), or reusable. The tags can also have visible/audible indicators. The indicators can provide one state such as a green light for working, and a second state for alert mode such as a flashing red light indicating the tag has sensed excessive RF energy. The indicators will help the operating room staff quickly identify which of the multiple tags has de-activated the ESU and therefore needs to be accessed for damage to the patient.
For both the referencing and the monitoring methods described above, the wired or wireless tags can attach to the multiple “cold” surfaces in various ways. For the cases where the metal of the surface to monitor is directly exposed, the wired or wireless tag needs to be simply attached, electrically conductive, to the metal surface. This can be achieved through adhesive, mechanical attachment or other methods that place a conductive surface of the wire and/or tag directly to the metal cold surface. In this case, the monitoring assembly can be fully disposable, or have a disposable element such as the adhesive tag and a reusable element such as the wire. For the case where the cold surface to be monitored cannot be directly accessed by the tag or wire, a capacitive assembly is integrated with the surface to be monitored. For example, many of the current electrosurgical instruments are insulated to prevent accidental exposure of active components if the instrument is used “hot.” Therefore, direct access to the metal of the instrument is not possible without damaging the instrument. By placing a conductive tube around this instrument and electrically monitoring any current flow through this tube, or voltage if a known reference is used, RF energy can be detected. The “tube” thus forms a capacitor with the instrument. The tube can take many shapes and forms so long as a capacitor with sufficient surface area is formed. Examples are described below.
In another embodiment, the sensors can be rechargeable and available for use from a docking or other storage and/or charging station. At the discretion of the operating room staff, one or more sensors can be applied to any surface that may need monitoring for voltage or electrosurgical energy. Depending on the procedure, more or less of the sensors may be necessary or otherwise called for. Either of the clamp or adhesive style of the sensors described above are easily applied to instruments and/or other surfaces at a moments notice and at the discretion of the operating room staff.
The above connection methods provide several alternatives that can minimize cost, ease of attachment, variations of surfaces to monitor, and preference of the surgical team although alternative connection methods may also be used such as clip-on brackets, elastic or rigid straps, magnetic strips, or fasteners.
Those skilled in the art can readily recognize that numerous variations and substitutions may be made in the invention, its use and its configuration to achieve substantially the same results as achieved by the embodiments described herein. Accordingly, there is no intention to limit the invention to the disclosed exemplary forms. Many variations, modifications and alternative constructions fall within the scope and spirit of the disclosed invention as expressed in the claims.
This application is a divisional application of, and claims the benefit of, U.S. application Ser. No. 12/543,344 filed on Aug. 18, 2009 now U.S. Pat. No. 8,500,728, issued Aug. 6, 2013, and also claims the benefit of Provisional U.S. Application No. 61/089,668 filed on Aug. 18, 2008. The details of Application No. 61/089,668 and Ser. No. 12/543,344 are incorporated by reference into the present application in their entirety and for all proper purposes.
Number | Name | Date | Kind |
---|---|---|---|
984756 | Frisch | Feb 1911 | A |
1754806 | Stevenson | Apr 1930 | A |
2004559 | Wappler et al. | Jun 1935 | A |
2008367 | Rhinevault | Jul 1935 | A |
2448741 | Scott et al. | Sep 1948 | A |
2741248 | Woodhall | Apr 1956 | A |
3070132 | Sheridan | Dec 1962 | A |
3580983 | Jackson | May 1971 | A |
3585985 | Gould | Jun 1971 | A |
3601126 | Estes | Aug 1971 | A |
3706008 | Kremer | Dec 1972 | A |
3707149 | Hao et al. | Dec 1972 | A |
3804096 | Gonser | Apr 1974 | A |
3834392 | Lampman et al. | Sep 1974 | A |
3838242 | Goucher | Sep 1974 | A |
3895635 | Justus et al. | Jul 1975 | A |
3898991 | Ikuno et al. | Aug 1975 | A |
3905373 | Gonser | Sep 1975 | A |
3913583 | Bross | Oct 1975 | A |
3933157 | Bjurwill et al. | Jan 1976 | A |
3946738 | Newton et al. | Mar 1976 | A |
3963856 | Carlson et al. | Jun 1976 | A |
3974833 | Durden, III | Aug 1976 | A |
3994287 | Turp et al. | Nov 1976 | A |
4003380 | Wien | Jan 1977 | A |
4043342 | Morrison, Jr. | Aug 1977 | A |
4084594 | Mosior | Apr 1978 | A |
4181131 | Ogiu | Jan 1980 | A |
4184492 | Meinke et al. | Jan 1980 | A |
4200104 | Harris | Apr 1980 | A |
4231372 | Newton | Nov 1980 | A |
4232676 | Herczog | Nov 1980 | A |
4237887 | Gonser | Dec 1980 | A |
4248716 | LaValley | Feb 1981 | A |
4303073 | Archibald | Dec 1981 | A |
4311144 | Harada | Jan 1982 | A |
4325374 | Komiya | Apr 1982 | A |
4343308 | Gross | Aug 1982 | A |
4367746 | Derechinsky | Jan 1983 | A |
4374517 | Hagiwara | Feb 1983 | A |
4427006 | Nottke | Jan 1984 | A |
4433687 | Burke et al. | Feb 1984 | A |
4440170 | Golden et al. | Apr 1984 | A |
4449532 | Storz | May 1984 | A |
4494541 | Archibald | Jan 1985 | A |
4562838 | Walker | Jan 1986 | A |
4581021 | Landau et al. | Apr 1986 | A |
4601710 | Moll | Jul 1986 | A |
4615330 | Nagasaki et al. | Oct 1986 | A |
4617927 | Manes | Oct 1986 | A |
4618885 | Nagasaki et al. | Oct 1986 | A |
4638802 | Okada | Jan 1987 | A |
4657015 | Irnich | Apr 1987 | A |
4662369 | Ensslin | May 1987 | A |
4674501 | Greenberg | Jun 1987 | A |
4716897 | Noguchi et al. | Jan 1988 | A |
4719914 | Johnson | Jan 1988 | A |
4741334 | Irnich | May 1988 | A |
4744361 | Karasawa | May 1988 | A |
4781175 | Bertrand et al. | Nov 1988 | A |
4787891 | Harding et al. | Nov 1988 | A |
4800869 | Nakajima | Jan 1989 | A |
4818954 | Flachenecker et al. | Apr 1989 | A |
4832048 | Cohen | May 1989 | A |
4844063 | Clark | Jul 1989 | A |
4886505 | Haynes et al. | Dec 1989 | A |
4919129 | Weber, Jr. et al. | Apr 1990 | A |
4932952 | Wojciechowicz, Jr. | Jun 1990 | A |
4983456 | Iwaskow et al. | Jan 1991 | A |
4998933 | Eggers et al. | Mar 1991 | A |
5007257 | Thompson | Apr 1991 | A |
5009643 | Reich et al. | Apr 1991 | A |
5009656 | Reimels | Apr 1991 | A |
5084045 | Helenowski | Jan 1992 | A |
5087257 | Farin et al. | Feb 1992 | A |
5089002 | Kirwan, Jr. | Feb 1992 | A |
RE33925 | Bales et al. | May 1992 | E |
5116353 | Green | May 1992 | A |
5147357 | Rose et al. | Sep 1992 | A |
5152762 | McElhenney | Oct 1992 | A |
5176702 | Bales et al. | Jan 1993 | A |
5178620 | Eggers et al. | Jan 1993 | A |
5263967 | Lyons, III et al. | Nov 1993 | A |
5275615 | Rose | Jan 1994 | A |
5277696 | Hagen | Jan 1994 | A |
5281216 | Klicek | Jan 1994 | A |
5295993 | Green | Mar 1994 | A |
5308358 | Bond et al. | May 1994 | A |
5312401 | Newton et al. | May 1994 | A |
5318516 | Cosmescu | Jun 1994 | A |
5334198 | Hart et al. | Aug 1994 | A |
5342357 | Nardella | Aug 1994 | A |
5344428 | Griffiths | Sep 1994 | A |
5366443 | Eggers et al. | Nov 1994 | A |
5383876 | Nardella | Jan 1995 | A |
5396900 | Kratsch et al. | Mar 1995 | A |
5403311 | Abele et al. | Apr 1995 | A |
5419767 | Eggers et al. | May 1995 | A |
5423811 | Imran et al. | Jun 1995 | A |
5431638 | Hennig et al. | Jul 1995 | A |
5432549 | Hassler et al. | Jul 1995 | A |
5436566 | Thompson et al. | Jul 1995 | A |
5443463 | Marion et al. | Aug 1995 | A |
5449356 | Bowers et al. | Sep 1995 | A |
5496317 | Goble et al. | Mar 1996 | A |
5520685 | Wojciechowicz | May 1996 | A |
5531676 | Edwards et al. | Jul 1996 | A |
5558671 | Yates | Sep 1996 | A |
5571137 | Marlow et al. | Nov 1996 | A |
5599350 | Schulze et al. | Feb 1997 | A |
5609601 | Aranyi et al. | Mar 1997 | A |
5626608 | Aranyi et al. | May 1997 | A |
5674220 | Fox et al. | Oct 1997 | A |
5683366 | Eggers et al. | Nov 1997 | A |
5688269 | Newton et al. | Nov 1997 | A |
5688270 | Yates et al. | Nov 1997 | A |
5693051 | Schulze et al. | Dec 1997 | A |
5697281 | Eggers et al. | Dec 1997 | A |
5697536 | Eggers et al. | Dec 1997 | A |
5697882 | Eggers et al. | Dec 1997 | A |
5697909 | Eggers et al. | Dec 1997 | A |
5709680 | Yates et al. | Jan 1998 | A |
5720744 | Eggleston et al. | Feb 1998 | A |
5731896 | Baumann et al. | Mar 1998 | A |
5735849 | Baden et al. | Apr 1998 | A |
5752951 | Yanik | May 1998 | A |
5766165 | Gentelia et al. | Jun 1998 | A |
5766167 | Eggers et al. | Jun 1998 | A |
5769841 | Odell et al. | Jun 1998 | A |
5772659 | Becker et al. | Jun 1998 | A |
5776130 | Buysse et al. | Jul 1998 | A |
5792141 | Logeman | Aug 1998 | A |
5797941 | Fox et al. | Aug 1998 | A |
5800449 | Wales | Sep 1998 | A |
5817093 | Williamson, IV et al. | Oct 1998 | A |
5827271 | Buysse et al. | Oct 1998 | A |
5833690 | Yates et al. | Nov 1998 | A |
5868742 | Manes et al. | Feb 1999 | A |
5919191 | Lennox et al. | Jul 1999 | A |
5954686 | Ellman et al. | Sep 1999 | A |
5976128 | Schilling et al. | Nov 1999 | A |
6001096 | Bissinger et al. | Dec 1999 | A |
6024741 | Williamson, IV et al. | Feb 2000 | A |
6039732 | Ichikawa et al. | Mar 2000 | A |
6059781 | Patil et al. | May 2000 | A |
6063075 | Mihori | May 2000 | A |
6086586 | Hooven | Jul 2000 | A |
6113597 | Eggers et al. | Sep 2000 | A |
6142992 | Cheng | Nov 2000 | A |
6174309 | Wrublewski et al. | Jan 2001 | B1 |
6228080 | Gines | May 2001 | B1 |
6228083 | Lands et al. | May 2001 | B1 |
6238388 | Ellman et al. | May 2001 | B1 |
6245063 | Uphoff | Jun 2001 | B1 |
6273887 | Yamauchi et al. | Aug 2001 | B1 |
6277114 | Bullivant et al. | Aug 2001 | B1 |
6398779 | Buysse et al. | Jun 2002 | B1 |
6409728 | Ehr et al. | Jun 2002 | B1 |
6436096 | Hareyama | Aug 2002 | B1 |
6440130 | Mulier et al. | Aug 2002 | B1 |
6451018 | Lands et al. | Sep 2002 | B1 |
6458130 | Frazier et al. | Oct 2002 | B1 |
6471701 | Brommersma et al. | Oct 2002 | B2 |
6500176 | Truckai et al. | Dec 2002 | B1 |
6502608 | Burchett et al. | Jan 2003 | B1 |
6511476 | Hareyama | Jan 2003 | B2 |
6582451 | Marucci et al. | Jun 2003 | B1 |
6585735 | Frazier et al. | Jul 2003 | B1 |
6620157 | Dabney et al. | Sep 2003 | B1 |
6634924 | Ono et al. | Oct 2003 | B1 |
6682527 | Strul | Jan 2004 | B2 |
6682528 | Frazier et al. | Jan 2004 | B2 |
6695840 | Schulze | Feb 2004 | B2 |
6730080 | Harano et al. | May 2004 | B2 |
6733498 | Paton et al. | May 2004 | B2 |
6743230 | Lutze et al. | Jun 2004 | B2 |
6767349 | Ouchi | Jul 2004 | B2 |
6796981 | Wham et al. | Sep 2004 | B2 |
6802843 | Truckai et al. | Oct 2004 | B2 |
6817974 | Cooper et al. | Nov 2004 | B2 |
6827717 | Brommersma et al. | Dec 2004 | B2 |
6830569 | Thompson et al. | Dec 2004 | B2 |
6855142 | Harano et al. | Feb 2005 | B2 |
6890331 | Kristensen | May 2005 | B2 |
6905497 | Truckai et al. | Jun 2005 | B2 |
6929641 | Goble et al. | Aug 2005 | B2 |
6929643 | Ohyama et al. | Aug 2005 | B2 |
6929644 | Truckai et al. | Aug 2005 | B2 |
6984231 | Goble et al. | Jan 2006 | B2 |
7011657 | Truckai et al. | Mar 2006 | B2 |
7052496 | Yamauchi | May 2006 | B2 |
7083618 | Couture et al. | Aug 2006 | B2 |
7083619 | Truckai et al. | Aug 2006 | B2 |
7089054 | Palti | Aug 2006 | B2 |
7090673 | Couture et al. | Aug 2006 | B2 |
7094231 | Ellman et al. | Aug 2006 | B1 |
7101371 | Dycus et al. | Sep 2006 | B2 |
7101372 | Brown et al. | Sep 2006 | B2 |
7101373 | Brown et al. | Sep 2006 | B2 |
7112199 | Cosmescu | Sep 2006 | B2 |
7112201 | Truckai et al. | Sep 2006 | B2 |
7115121 | Novak | Oct 2006 | B2 |
7118587 | Dycus | Oct 2006 | B2 |
7131445 | Amoah | Nov 2006 | B2 |
7131971 | Couture et al. | Nov 2006 | B2 |
7135020 | Buysse et al. | Nov 2006 | B2 |
7147638 | Chapman et al. | Dec 2006 | B2 |
7150097 | Hampton et al. | Dec 2006 | B2 |
7150749 | Dycus et al. | Dec 2006 | B2 |
7153300 | Goble | Dec 2006 | B2 |
7156846 | Dycus et al. | Jan 2007 | B2 |
7160298 | Lawes et al. | Jan 2007 | B2 |
7160299 | Baily | Jan 2007 | B2 |
7169146 | Truckai et al. | Jan 2007 | B2 |
7179258 | Buysse et al. | Feb 2007 | B2 |
7186253 | Truckai et al. | Mar 2007 | B2 |
7186261 | Prestel | Mar 2007 | B2 |
7189233 | Truckai et al. | Mar 2007 | B2 |
7195631 | Dumbauld | Mar 2007 | B2 |
7203556 | Daners | Apr 2007 | B2 |
7204835 | Latterell et al. | Apr 2007 | B2 |
7207990 | Cunningham et al. | Apr 2007 | B2 |
7211081 | Goble | May 2007 | B2 |
7211084 | Goble et al. | May 2007 | B2 |
7214224 | Goble | May 2007 | B2 |
7422589 | Newton et al. | Sep 2008 | B2 |
7465302 | Newton et al. | Dec 2008 | B2 |
20010056279 | Odell et al. | Dec 2001 | A1 |
20020165541 | Whitman | Nov 2002 | A1 |
20030073987 | Sakurai et al. | Apr 2003 | A1 |
20040019348 | Gifford et al. | Jan 2004 | A1 |
20040019351 | Harano et al. | Jan 2004 | A1 |
20040167515 | Manzo et al. | Aug 2004 | A1 |
20040193148 | Buysse et al. | Sep 2004 | A1 |
20040267256 | Garabedian et al. | Dec 2004 | A1 |
20050013190 | Beatty et al. | Jan 2005 | A1 |
20050021027 | Meagher et al. | Jan 2005 | A1 |
20050113827 | Dumbauld et al. | May 2005 | A1 |
20050137590 | Cosgriff et al. | Jun 2005 | A1 |
20050187547 | Sugi | Aug 2005 | A1 |
20050203504 | Wham et al. | Sep 2005 | A1 |
20050251134 | Davison et al. | Nov 2005 | A1 |
20050256522 | Francischelli et al. | Nov 2005 | A1 |
20060041252 | Newton et al. | Feb 2006 | A1 |
20060041253 | Odell et al. | Feb 2006 | A1 |
20060079876 | Barton et al. | Apr 2006 | A1 |
20060111210 | Hinman | May 2006 | A1 |
20060129146 | Dycus et al. | Jun 2006 | A1 |
20060161136 | Anderson et al. | Jul 2006 | A1 |
20060167450 | Buysse et al. | Jul 2006 | A1 |
20060173452 | Buysse et al. | Aug 2006 | A1 |
20060224158 | Hammill et al. | Oct 2006 | A1 |
20060293656 | Shadduck et al. | Dec 2006 | A1 |
20070043353 | Dycus et al. | Feb 2007 | A1 |
20070066969 | McGreevy et al. | Mar 2007 | A1 |
20070078456 | Dumbauld et al. | Apr 2007 | A1 |
20070106297 | Dumbauld et al. | May 2007 | A1 |
20090192524 | Dimaio et al. | Jul 2009 | A1 |
Number | Date | Country |
---|---|---|
1139927 | Aug 1961 | DE |
3013784 | Oct 1980 | DE |
4419070 | Dec 1994 | DE |
53-13583 | Feb 1978 | JP |
52-47278 | Dec 1998 | JP |
2010022088 | Feb 2010 | WO |
Entry |
---|
Peffley, Michael F. , “Office Action re U.S. Appl. No. 11/202,915”, Jan. 8, 2008, p. 3, Published in: US. |
Peffley, Michael F. , “Office Action re U.S. Appl. No. 11/202,915”, Apr. 23, 2007, p. 6, Published in: US. |
Giuliani, Thomas Anthony, “Office Action re U.S. Appl. No. 12/543,344”, May 10, 2012, p. 10, Published in: US. |
Giuliani, Thomas Anthony, “Office Action re U.S. Appl. No. 12/543,344”, Jul. 30, 2012, p. 29, Published in: US. |
Papapietro, Jacqueline M., “Office Action re U.S. Appl. No. 11/202,458”, Aug. 17, 2007, p. 13, Published in: US. |
Dicicco, John R., “Office Action re U.S. Appl. No. 11/202,605”, Oct. 25, 2007, p. 7, Published in: US. |
Peffley, Michael F., “Office Action re U.S. Appl. No. 11/202,915”, Nov. 1, 2007, p. 1, Published in: US. |
O'Dowd, Sean R., “Response to Office Action re U.S. Appl. No. 11/202,458”, Jan. 17, 2008, p. 15, Published in: US. |
O'Dowd, Sean R., “Response to Office Action re U.S. Appl. No. 11/202,605”, Feb. 24, 2008, p. 8, Published in: US. |
O'Dowd, Sean R., “Response to Office Action re U.S. Appl. No. 11/202,915”, Mar. 3, 2008, p. 9, Published in: US. |
O'Dowd, Sean R., “Response to Office Action re U.S. Appl. No. 11/202,915”, Sep. 24, 2007, p. 13, Published in: US. |
O'Dowd, Sean R. , “Response to Office Action re U.S. Appl. No. 11/202,915”, Dec. 31, 2007, p. 3, Published in: US. |
Young, Lee W., “PCT/US/09154206 International Search Report, dated Dec. 3, 2009”, p. 10, Published in: US. |
Beijer, Gijsbertus, “International Preliminary Report on Patentability re Application No. PCT/US09/54206”, Feb. 22, 2011, p. 9, Published in: CH. |
Viegas Da Cruz, Isabel, “Notification of Transmittal of the International Search Report and Written Opinion re Application No. PCT/US05/029016”, Apr. 12, 2006, p. 16, Published in: PCT. |
Nickitas-Etienne, Athina, “International Preliminary Report of Patentability re Application No. PCT/US2005/029016”, Mar. 1, 2007, p. 10, Published in: CH. |
Neugeboren, Craig, “Response to Office Action re U.S. Appl. No. 12/543,344”, May 30, 2012, p. 10, Published in: US. |
Neugeboren, Craig, “Response to Office Action re U.S. Appl. No. 12/543,344”, Dec. 30, 2012, p. 13, Published in: US. |
Number | Date | Country | |
---|---|---|---|
20130317496 A1 | Nov 2013 | US |
Number | Date | Country | |
---|---|---|---|
61089668 | Aug 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12543344 | Aug 2009 | US |
Child | 13788714 | US |