This invention relates to delivery of compressed digital audio data, potentially at rates much faster than the real time rate, for conversion to speech for portable audio reception in recreational or educational activities.
Available information that is relevant to operation of a business or of a household increases at an exponential growth rate. A user of such information must become concerned with how to find the time, in an already crowded workday, to absorb the most relevant of such information. A menu of such information can be provided on a subscription basis, for individual selection by each user, as discussed in U.S. Ser. No. 08/643,963. One useful medium for delivery and reception of such information is sound, which requires use of the ears and of a portion of the user's brain but does not require simultaneous use of other senses. Previous systems have usually provided this information as a combination of video and audio in which the audio information was often treated as an afterthought.
The approaches disclosed by previous workers in this field usually combine video and audio data so that the video requirements control the choice of transmission system, or the selection of audio information is limited to features closely associated with use of a telephone. These approaches do not provide transmission and storage of a wide variety of audio-only information in a format that takes advantage of unique features of audio format information.
Also, these approaches do not take advantage of the possibility of using an available transmission medium, such as an internet that already provides for inter-communication between millions of homes, offices and other facilities. Use of a particular internet may reduce the number of signal formats that must be recognized and dealt with, and it may be possible to optimize the audio signal processing for the limited number of (or one) formats in which the audio signals are received.
What is needed is a procedure for packaging, delivery, reception, storage and playback of audio files in a format that (1) allows for potential transmission of the audio files at transfer rates many times higher than the normal audio playback rates, (2) allows receipt and storage of the audio files in compressed formats that can store several hours of normal audio programming in a playback medium of modest size, (3) allows transmission of audio files to the user at times and manners that are convenient for both the sender and the recipient, and (4) allows the user to conveniently transport the stored audio files, for playback at a time chosen by the user.
Preferably, the procedure should be adjustable to receive and process the audio (or text data) files using a signal processing procedure that is optimizable or optimized for the format, or limited number of formats, in which the audio (or text data) files are delivered to audio playback apparatus.
The invention meets these needs by providing a portable digital audio playback module for digital audio file receipt and storage, D/A conversion and playback. The audio programming material (“audio data files” herein) are digitized and optionally compressed before transfer over a hardwired or wireless communication internetwork channel to the storage/playback module, using any suitable compression algorithm. The module is capable of receiving and recording compressed, digitized audio programming at a transfer rate that may be faster than the normal audible playback rate so that, for example, ten hours of playback material may be transferred in a time interval of between less than ten minutes and a few hours, optionally using transfer procedures and times that do not interfere with the user's normal workday. The rate of data transfer depends upon the communications link used and will depend upon the internet delivery rate vis-a-vis the playback rate. These communications links include POTS (plain old telephone service) lines, ISDN lines, cable television links, satellite broadcast links and other similar links that are suitable for internet communication. The audio data files are received by a user having a personal computer (notebook, laptop, desktop, etc.), modem, and docking station, and the audio data files are preferably processed and downloaded to a portable (e.g., handheld) storage and playback unit (“SPU”) at the docking station. Once an audio data file is received by the user, this file can be decompressed and converted to analog format (optional) for playback at a normal rate by the user. The audio data files are received by the user and stored digitally on a non-volatile medium in an SPU, or in a personal computer (“PC”) used to make an internet connection. The PC may also be used to play back or display the programming.
Alternatively, the PC or the SPU receives a text data file from the internetwork channel and either passes this file through a text-to-speech conversion process to convert this file to an audio data file, before the audio data file is received or stored or played back, or stores the file as a text file and converts this file to speech on the fly. Alternatively, the received data file can be processed and played back at the PC, rather than being downloaded to, and played back at, the SPU; most PCs have an audio sound system.
In contrast to a conventional digital audio storage system, such as Digital Audio Tape (DAT), the invention uses a different storage medium, provides random access search capability, rather than linear search capability, and optionally receives and stores information in a compressed format that uses a chosen data compression algorithm. In contrast to a writeable audio storage device, such as the Sony recordable mini-CD, the invention uses an SPU for download and playback and optionally may have intentionally limited audio bandwidth; stereo full fidelity is not needed for this programming.
The invention combines the remote data access capability resident in a personal computer, the portability of an SPU, and a set of tailored, streamlined control functions to simplify and automate a seamless process for selecting, receiving, storing and/or playing back audio data files, at times and places chosen by the user, with easily implemented control functions; and with a user interface that allows downloading of the compressed and digitized audio data files in a variety of formats. Storage for subsequent playback occurs first in the PC used to make an internet connection, but the files may be transferred automatically under software control, using a docking station, to the SPU.
An audio program distribution system 10 includes an internetwork server 11 that is connected to an internetwork channel 31, such as the well known Internet or an intra-net serving a smaller group of users. The server 11 is connected to a plurality of data sources, including an audio data file library 13, a text data file library 15, E-mail files 17 and other data files 19, and to a customer database 21 that contains relevant information on subscribers who use the distribution system 10. The server 11 also receives commands, data and other information from a user entry module 23, which may be a keyboard, light pen or other data/command entry device or may be an electric terminal that communicates with a user terminal that may be nearby or remotely located. The server 11 also receives commands and other data for a control I/O module 25.
The audio data file library 13 and text data file library 15 may be implemented in any known digital storage technology, for example as a plurality of digital storage media, such as hard drives. Audio data material may be deposited in the library 13 from a variety of audio data sources using a variety of data communications media and formats from a plurality of locations, for example via modem transfer from a distributor, such as the Wall Street Journal. Sources for text data material are similarly voluminous. The audio data files and text data files are preferably digitized and optionally compressed and encrypted, using selected compression and encryption algorithms and formats, before such files are deposited in the data file's libraries 13 and/or 15.
An analog audio intended for the internetwork channel 31 is passed through an audio conditioning module 27 (optional) for digitization, optional compression and/or optional encryption and is then passed through a first modem 28 to a first internetwork service provider (“ISP”; optional) 29 before being received by the internetwork channel 31. The internetwork channel 31 may be connected to, and receive data from, other data sources 33 as well. The data file(s) requested by a user are then received by a second ISP 41 (optional), by a second modem 43, by a telephone network 45 and by a third modem 47, before being received by a personal computer (“PC”) or other computer-based module 51 utilized by a user.
One important anticipated use of the invention is to provide or implement an audio subscription service, using an internetwork channel to deliver selected audio or text data files that can be downloaded and stored for present or subsequent playback. For example, an audio program, created for radio or television, could be digitized and stored in an audio data file library for subsequent download and playback. Alternatively, selected portions of a daily newspaper, such as the Wall Street Journal or the New York Times, may be scanned in and digitized as an audio version, that is then delivered to the library. Used in this manner, the system 10 may provide daily delivery of a program in audio format that allows a subscriber to listen to the audio material without interruption by commercial breaks or other unwanted communications, that is not truncated to fit into a tight broadcast schedule, and that does not require dedication of the user's sense of sight, touch or other faculties, except for hearing. The user can, optionally, listen to the playback and simultaneously perform other tasks. During data transmission or downloading, audio program files can be transferred from the server 11 to the PC 51 at rates 2-100 times as large as the normal rates (—6-32 kilobits/sec) for real time playback of an audio data file, depending upon the present number of internetwork users.
The data file transmission channel is preferably an internetwork channel 31 capable of connecting hundreds, thousands or even millions of computer sites, including many sources of audio data files. The internetwork channel may, for example, be the World Wide Web that is part of the well known. worldwide Internet. This Internet uses TCP/IP (transmission control protocol/internet protocol) or PPP (point-to-point protocol) in access to a website on the Internet. However, any other internet channel or intra-net channel, possibly using a different, but known, protocol, can also be used to gain access to an audio file database, to transmit selections based on on-line menus, and to receive and download and automatically store audio data files corresponding to those selections.
The internetwork channel 31 of the audio data delivery system 10 may be chosen to take advantage of any of several existing data delivery infrastructures for an internetwork. The delivery system 10 is well suited for use with data transmission means, such as plain old telephone service (POTS) or ISDN. Compression of the audio data files may be implemented by use of the G.722 or Dolby AC-2 or AC-3 compression schemes or by other suitable audio compression schemes. Alternatively, the audio data files may be delivered and received using the Ricochet wireless modem offered by Metricom (Los Gatos, Calif.).
The Ricochet system uses a wireless modem with RS-232 serial format and can transfer information at rates up to 128 kbits/sec, using a specially designed, wireless LAN Access Modem. The present modem rate limit is 28.8 kbits/sec. A dynamic address, which can change with each new session, is assigned to a Ricochet user. The Ricochet system acts as a network service provider with its own user pool and with connections to the Internet. Ricochet divides the 902-928 MHz unlicensed band into 162 channels, each 160 kHz wide, for operation. Maximum connect time per subscriber is 100 hours per month and 4 hours per individual session. A Ricochet modem should be within 450 meters (about 0.3 miles) peer-to-peer (another Ricochet modem) or within about 1600 meters of a Ricochet pickup node (located, for example, on selected telephone poles in many communities). E-mail service is available, using POP3 protocol. E-mail file attachments up to 5 Mbytes in size (total message length) can be transferred using Ricochet. San Francisco, Los Angeles, Seattle, Washington, D.C., major airports and many universities and large corporations are now covered by the Ricochet network, with other communities to be added in the coming years. A high speed network service will be added in 1999.
In practice of the invention, information is loaded into the PC or SPU through a modem 31, stored, and thereafter played back at a real time rate. The compression algorithms used in the herein-described system are similar (or may be identical) to those developed by the Motion Picture Experts Group, referred to as MPEG-1 and MPEG-2. Other known compression algorithms include G.722, pioneered by AT&T. These compression techniques provide specific algorithms in which audio is digitized and then compressed a great deal. Maximum compression achieved to date that maintains adequate quality programming is about 6-6.5 kilobits/sec. Typical compressed but high-quality audio data rates lie somewhere between 16 and 32 kilobits per second.
The internetwork channel 31 routes the selected audio and/or text data file(s) to the-microprocessor 51 using any suitable communication means, as discussed above.
Communications protocols for implementing this service are available and well known in the art. Two examples are point-to-point protocol (PPP) and transmission control protocol/internet protocol (TCP/IP), used for communications on the Internet. The data transmission control process is well understood and is available in software as part of the products offered by Netscape, NetCom, America OnLine and Compuserve, among others. Terminal emulators, such as a microphone and PC phone are available and well known to users of personal computers (PCs). The expansion of Internet activity has led to widespread development of many such communications packages for use on PCs. By design, the transmission protocol used in the transmission and/or downloading channel 29 is matched by a similar protocol that resides in the subscriber's PC. Matching of these two protocols allows connection to a Website source for audio data files.
The data files are received at the PC 51 and buffered by a first communications terminal 53 and by a buffer and data interface 54 (optional) before receipt by a microprocessor 55 and are preferably stored in a hard drive 57 associated with the microprocessor 55. The PC 51 optionally includes a floppy drive and includes ROM 61, RAM 63, a data command entry module 65 for user communication with the PC, an audio/visual display module 67 and a source of electrical power 69. The data interface 54 may be configured to recognize only one or a few digital formats, such as those that would be presented by a connection to the Internet. Alternatively, the data interface 54 may be a universal data interface that recognizes any of a large number of digital formats that are used with various information packages (packets, frames, cells, etc.). A universal data interface is discussed in U.S. Ser. No. 08/643,963; this discussion is incorporated by reference herein.
Optionally, the microprocessor 55 is connected to, or includes, an audio processing module 73 and a loudspeaker or other audibly perceptible audio data file display 75. A text data file that arrives at the PC 51 must be converted to an audio data file before playback over the loudspeaker. If the data file is already in audio format, the audio processing module 73 and loudspeaker 75 may receive the converted audio data file (via a D/A converter) directly from the microprocessor 55, as shown. Optionally, software resident in the microprocessor 55 provides E-mail file interrogation and/or text-to-speech conversion for a received file.
An E-mail file will usually include a routing sub-message, appended as a header at the beginning (or as a trailer at the end) of the file, that specifies the route followed by the audio message in moving from the audio message source (the person or machine that left the message in E-mail form) to the intended recipient's telephone answering machine or service. These routing headers include specification of each bridge, router, gateway, etc. passed through by the E-mail message and can be quite long. In some instances, the length of a routing header can be many times the length of the useful part of the message. A routing header that requires 16 lines or more of text to print out is not unusual. The E-mail interrogation process examines the routing header, and any other header information that is specified by the user, is stripped from the message so that only the portion of the E-mail message that is of interest to the user is recorded in the computer hard drive 57 or on the storage and playback unit 81, discussed in the following.
The PC also includes a second communications module 77, connected to the hard drive 57 and to a docking station 79 that receives a portable, preferably handheld, storage and playback unit (“SPU”) 81. The SPU 81 receives a download of one or more selected audio and/or text data files from the PC, for storage and present or subsequent playback of the selection(s). The audio and/or text data files are downloaded and stored on the SPU 81, preferably on a PCMCIA card with flash memory (referred to collectively as an “SPU” for convenience here). The characteristics of a PCMCIA card are discussed below.
An SPU 81 is inserted into the SPU docking station 79, and audio and/or text data files, selected from commands to the host PC, are transferred, in compressed or decompressed format, with or without encryption, onto the SPU for present or future playback. The SPU 81 is carried by the user until the user has an opportunity to play back part or all of the audio and/or text data files on the SPU.
In one embodiment, the SPU 81, shown in more detail in
If the downloaded data file is in text format, the data file is first passed through a text-to-speech conversion process (optional), which is preferably implemented in software. The converted data file, now in audio format, is passed through an audio processing module 101 to a loudspeaker or other audibly perceptible display 103 for playback. If the data file received at the SPU 81 is already in audio format, the text-to-speech conversion process is not needed, and the audio data file is converted from digital to analog format and passed directly to the audio processing module 101 and loudspeaker 103 for playback. The SPU 81 can be carried around in the hand, pocket or other receptacle until the user has an opportunity to play back one or more selections that have been downloaded to and stored in the SPU.
In a second format, the selected data file is in text format, and the file is passed through without further digitization and is optionally compressed and/or encrypted for transmission to the user's PC as a text format file. The received file is passed through a text-to-speech conversion process and is processed and played back by the user as an audio format file.
In a third format, the selected data file is available as a visual text file and is scanned, passed through optical character recognition (“OCR”) processing and digitized in a first processing step. This produces a text data file. The selected file is optionally compressed and/or encrypted for transmission to the user's PC as a text format file. The received file is passed through a text-to-speech conversion process and is processed and played back by the user as an audio format file.
In a fourth format, the selected data file is in text format, and the file is digitized and passed through a text-to-speech conversion process in a first processing step. The data file is then optionally compressed and/or encrypted for transmission to the user's PC as an audio format file. The received file is processed and played back by the user as an audio format file.
In a fifth format, the selected data file is available as a visual text file and is scanned, passed through optical character recognition (“OCR”) processing, digitized and passed through a text-to-speech conversion process in a first processing step. The selected file is optionally compressed and/or encrypted for transmission to the user's PC as an audio format file. The received file is processed and played back by the user as an audio format file.
One embodiment of the SPU 81 and its memory unit 82 is a PCMCIA-type format card, with flash memory included in the PCMCIA card. The PCMCIA card, in its present design, is a 68-pin module, with plug-in being provided by pin-and-socket connectors, with the pins being arranged in two rows of 34 pins each. The card operates with a memory-only interface or with an input/output interface. In a memory-only configuration, the pin assignments include j ground pins (1_j—4), k Vcc pins (1_k—2), data bit pins 0-15, address bit pins 0-25, m card enable pins (1_m—2), an output enable pin, a write enable pin, a card detect pin, a card reset pin, n programming supply voltage pins (1_n—3), and 7 special purpose pin assignments, including ready/busy pin, write protect pin, register select pin, supply voltage detect pins, write protect pin and reserved pins. In an input/output configuration, the special purpose pins become interrupt request, I/O port bit count (16-bit; yes/no), input port acknowledge, register select, I/O enable audio digital waveform, card status changed, I/O read and I/O write.
An Execute-In-Place option allows a computer connected to the card to execute programs directly from instructions and/or data provided on the card.
The card uses 3.3 volts or 5 volts supply for Vcc and provides 64 Mbytes of memory address space (SRAM, MaskPROM, OTPROM, EPROM, EEPROM or Flash Memory), with retrieval time of 100, 150, 200, 250 or 600 nsec. I/O registers for the PCMCIA card have either 8 bits or 16 bits width. The card thickness may be either 3.3 mm or 5 mm or 10 mm. Card length and width are approximately 85.6 mm and 54 mm, respectively.
The card has five layers of operation standardization. The lowest layer is physical and specifies electrical and card interface characteristics. The second layer, basic compatibility, specifies minimum memory size, minimum memory speed, data structures used, etc., optionally including specification of the Card Information Structure. The third layer, data recording format, specifies how card data are physically organized on the card (blocked vs. unblocked, with or without check sum included, etc.), analogous to format specifications of a floppy disk. The fourth layer, data organization, specifies how data are logically organized on the card, including the operating system used, whether the Execute-In-Place option is used, whether flash file memory is used, and application-specific information. The fifth layer specifies standards that are specific to a particular operating environment. Only compliance with the first two layers is required currently.
A Web page can be designed and implemented to allow a user to interact with the audio data file system and to download selections from an audio library. Design and implementation of a Web page is discussed, from different points of view, by Brian Pfaffenberger, Publish It On The Web, Academic Press, New York, Second Edition, 1997, by Roger C. Parker, Guide To Web Content And Design, MIS Press, Henry Holt & Co., New York, 1997, and by Andrew Sather et al in Creating Killer Interactive Web Sites, Adjacency, 1997. Design of an interactive server is discussed in detail by Stephen Walther in Active Server Pages Unleashed, Sams.net Publishing, Indianapolis, 1998, pp. 470-475 and elsewhere, and by Richard Wagner et al in Java Script Unleashed, Sams.net Publishing, Indianapolis, Second edition, 1997, pp. 338-359 and elsewhere.
This application is a continuation of prior application Ser. No. 10/374,310, filed Feb. 25, 2003 now abandoned, which is a continuation of prior application Ser. No. 09/613,025, filed Jul. 10, 2000, now U.S. Pat. No. 6,549,942, which is a continuation of prior application Ser. No. 09/124,584, filed Jul. 29, 1998, now abandoned, which is a continuation-in-part of Ser. No. 08/643,963, filed May 7, 1996, now U.S. Pat. No. 5,841,979, which is a continuation-in-part of Ser. No. 08/450,818, filed May 25, 1995, now U.S. Pat. No. 5,914,941
Number | Name | Date | Kind |
---|---|---|---|
3781479 | Swoboda | Dec 1973 | A |
4287568 | Lester | Sep 1981 | A |
4455651 | Baran | Jun 1984 | A |
4499568 | Gremillet | Feb 1985 | A |
4503421 | Hareyama et al. | Mar 1985 | A |
4567512 | Abraham | Jan 1986 | A |
4590516 | Abraham | May 1986 | A |
4639225 | Washizuka | Jan 1987 | A |
4667088 | Kramer et al. | May 1987 | A |
4725977 | Izumi et al. | Feb 1988 | A |
4734764 | Pocock et al. | Mar 1988 | A |
4761684 | Clark et al. | Aug 1988 | A |
4788675 | Jones et al. | Nov 1988 | A |
4800365 | White et al. | Jan 1989 | A |
4827508 | Shear | May 1989 | A |
4829372 | McCalley et al. | May 1989 | A |
4890320 | Monslow et al. | Dec 1989 | A |
4905094 | Pocock et al. | Feb 1990 | A |
4914586 | Swinehart et al. | Apr 1990 | A |
4995078 | Monslow et al. | Feb 1991 | A |
5025412 | Dalrymple et al. | Jun 1991 | A |
5045327 | Tarlow et al. | Sep 1991 | A |
5065258 | Warren et al. | Nov 1991 | A |
5089885 | Clark | Feb 1992 | A |
5099422 | Foresman et al. | Mar 1992 | A |
5119188 | McCalley et al. | Jun 1992 | A |
5131020 | Liebesny et al. | Jul 1992 | A |
5132992 | Yurt et al. | Jul 1992 | A |
5164839 | Lang | Nov 1992 | A |
5172413 | Bradley et al. | Dec 1992 | A |
5181107 | Rhoades | Jan 1993 | A |
5191410 | McCalley et al. | Mar 1993 | A |
5208665 | McCalley et al. | May 1993 | A |
5212683 | Van Heusden et al. | May 1993 | A |
5222120 | McLeod et al. | Jun 1993 | A |
5233333 | Borsuk | Aug 1993 | A |
5239540 | Rovira et al. | Aug 1993 | A |
5247347 | Litteral et al. | Sep 1993 | A |
5253275 | Yurt et al. | Oct 1993 | A |
5253341 | Rozmanith et al. | Oct 1993 | A |
5262875 | Mincer et al. | Nov 1993 | A |
5264958 | Johnson | Nov 1993 | A |
5265252 | Rawson et al. | Nov 1993 | A |
5327486 | Wolff et al. | Jul 1994 | A |
5339413 | Koval et al. | Aug 1994 | A |
5351276 | Doll, Jr. et al. | Sep 1994 | A |
5359698 | Goldberg et al. | Oct 1994 | A |
5367330 | Haave et al. | Nov 1994 | A |
5371736 | Evan | Dec 1994 | A |
5386493 | Degen et al. | Jan 1995 | A |
5406558 | Rovira et al. | Apr 1995 | A |
5420690 | Koishi | May 1995 | A |
5440334 | Walters et al. | Aug 1995 | A |
5440336 | Buhro et al. | Aug 1995 | A |
5452180 | Register et al. | Sep 1995 | A |
5455466 | Parks et al. | Oct 1995 | A |
5457785 | Kikinis et al. | Oct 1995 | A |
5477511 | Englehardt | Dec 1995 | A |
5485460 | Schrier et al. | Jan 1996 | A |
5491609 | Dankman et al. | Feb 1996 | A |
5491774 | Norris et al. | Feb 1996 | A |
5522089 | Kikinis et al. | May 1996 | A |
5524051 | Ryan | Jun 1996 | A |
5530235 | Stefik et al. | Jun 1996 | A |
5539658 | McCullough | Jul 1996 | A |
5541638 | Story | Jul 1996 | A |
D373121 | DeIuliis et al. | Aug 1996 | S |
5548510 | Ebert et al. | Aug 1996 | A |
5550863 | Yurt et al. | Aug 1996 | A |
5557541 | Schulhof et al. | Sep 1996 | A |
5572441 | Boie | Nov 1996 | A |
5572442 | Schulhof et al. | Nov 1996 | A |
5579489 | Dornier et al. | Nov 1996 | A |
5590195 | Ryan | Dec 1996 | A |
5619499 | Nakabayashi | Apr 1997 | A |
5625829 | Gephardt et al. | Apr 1997 | A |
5629867 | Goldman | May 1997 | A |
5629980 | Stefik et al. | May 1997 | A |
5631693 | Wunderlich et al. | May 1997 | A |
5632020 | Gephardt et al. | May 1997 | A |
5633891 | Rebec et al. | May 1997 | A |
5634012 | Stefik et al. | May 1997 | A |
5634015 | Chang et al. | May 1997 | A |
5636276 | Brugger | Jun 1997 | A |
5636726 | Nield | Jun 1997 | A |
5638443 | Stefik et al. | Jun 1997 | A |
5640444 | O'Sullivan | Jun 1997 | A |
5644790 | Li et al. | Jul 1997 | A |
5663901 | Wallace et al. | Sep 1997 | A |
5670730 | Grewe et al. | Sep 1997 | A |
5680551 | Martino | Oct 1997 | A |
5689641 | Ludwig et al. | Nov 1997 | A |
5715403 | Stefik | Feb 1998 | A |
5745551 | Strauch et al. | Apr 1998 | A |
5748585 | Tsukamoto et al. | May 1998 | A |
5761485 | Munyan | Jun 1998 | A |
5790423 | Lau et al. | Aug 1998 | A |
5790935 | Payton | Aug 1998 | A |
5793980 | Glaser et al. | Aug 1998 | A |
5799068 | Kikinis et al. | Aug 1998 | A |
5808224 | Kato | Sep 1998 | A |
5812870 | Kikinis et al. | Sep 1998 | A |
5835732 | Kikinis et al. | Nov 1998 | A |
5841979 | Schulhof et al. | Nov 1998 | A |
5845281 | Benson et al. | Dec 1998 | A |
5870710 | Ozawa et al. | Feb 1999 | A |
5875448 | Boys et al. | Feb 1999 | A |
5892900 | Ginter et al. | Apr 1999 | A |
5914706 | Kono | Jun 1999 | A |
5914941 | Janky | Jun 1999 | A |
5920861 | Hall et al. | Jul 1999 | A |
5926624 | Katz et al. | Jul 1999 | A |
5933498 | Schneck et al. | Aug 1999 | A |
5940504 | Griswold | Aug 1999 | A |
5943422 | Van Wie et al. | Aug 1999 | A |
5969283 | Looney et al. | Oct 1999 | A |
5982891 | Ginter et al. | Nov 1999 | A |
6002720 | Yurt et al. | Dec 1999 | A |
6035336 | Lu et al. | Mar 2000 | A |
6038199 | Pawlowski et al. | Mar 2000 | A |
6038595 | Ortony | Mar 2000 | A |
6055566 | Kikinis | Apr 2000 | A |
6112181 | Shear et al. | Aug 2000 | A |
6129449 | McCain et al. | Oct 2000 | A |
6157721 | Shear et al. | Dec 2000 | A |
6185683 | Ginter et al. | Feb 2001 | B1 |
6233684 | Stefik et al. | May 2001 | B1 |
6236971 | Stefik et al. | May 2001 | B1 |
6301513 | Divon et al. | Oct 2001 | B1 |
6356287 | Ruberry et al. | Mar 2002 | B1 |
6385596 | Wiser et al. | May 2002 | B1 |
6389541 | Patterson | May 2002 | B1 |
6405049 | Herrod et al. | Jun 2002 | B2 |
6453281 | Walters et al. | Sep 2002 | B1 |
6549942 | Janky et al. | Apr 2003 | B1 |
6563769 | Van Der Meulen | May 2003 | B1 |
6629000 | Moon et al. | Sep 2003 | B1 |
6636577 | Clarke et al. | Oct 2003 | B1 |
6639577 | Eberhard | Oct 2003 | B2 |
20020111825 | Martin et al. | Aug 2002 | A1 |
20020111912 | Hunter et al. | Aug 2002 | A1 |
20020112171 | Ginter et al. | Aug 2002 | A1 |
Number | Date | Country |
---|---|---|
0 467 208 | Jan 1992 | EP |
62 29000 | Feb 1987 | JP |
1-185900 | Jul 1989 | JP |
05-143618 | Nov 1993 | JP |
06-301392 | Oct 1994 | JP |
H6-301392 | Oct 1994 | JP |
Entry |
---|
Webopedia, “Palm-top computer” definition, Apr. 2006. |
D. Deloddera et al., “Interactive Video on Demand,” I.E.E.E. Communications Magazine, May 1994, pp. 82-88. |
J.R. Jones, “Baseband and Passband Transport Systems for Interactive Video Services,” I.E.E.E. Communications Magazine, May 1994, pp. 90-101. |
Chang, Yee-Hsiang et al., “An Open Systems Approach to Video on Demand”, IEEE Communications Magazine, May 1994, pp. 68-79. |
J. Careless, “Surfing Among the Stars”, Via Satellite, Dec. 1995, pp. 30-31. |
Crutcher, “The Networked Video Jukebox,” IEEE Transactions on Circuits and Systems for Video TEchnology, vol. 4 (1994). |
Musmann, “The ISO audio coding standard,” GLOBECOM '90, IEEE Global Telecommunications Conference and Exhibition, vol. 1 (1990). |
Webopedia, “Palm-Top Computer” Definition, Apr. 2006,; http://www.webopedia.com/. |
Audible Website, http://www.audible.com/audible/welcome.html, accessed Jan. 18, 1998. |
Defendant Apple Inc.'s Second Supplemental Objections and Responses to Plaintiff's Second Set of Interrogatories, Apr. 15, 2011. |
Appendix 28 [from Apple]. |
Defendants HTC Corporation and HTC America, Inc.'s Invalidity Contentions and Production of Documents Pursuant to Patent Rules 3-3 and 3-4(b), Jul. 1, 2011. |
Exhibit H-1 [from HTC], Jul. 1, 2011. |
Exhibit H-2 [from HTC], Jul. 1, 2011. |
Exhibit H-3 [from HTC], Jul. 1, 2011. |
Exhibit H-4 [from HTC], Jul. 1, 2011. |
Exhibit H-5 [from HTC], Jul. 1, 2011. |
Exhibit H-6 [from HTC], Jul. 1, 2011. |
Apple's 3rd Suppl. Responses to 2nd Set of Interrogatories (Appendix 28) [from Apple] Sep. 9, 2011. pp. 1-74. |
Apple Inc.'s Fourth Supplemental Objections and Responses to Plaintiff's Second Set of Interrogatories, Oct. 31, 2011, pp. 1-324. |
The Audible Player Listener's Guide, 1997, 29 pages. |
The Audio Highway Listen Up Player, Popular Mechanics, 1997, 2 pages. |
Audio Highway's Press Release, 1996, 2 pages. |
“The Captive Audience Network” Popular Science, Feb., 1995, 1 page. |
Endo, Kaoru and Kishi, Takayuki, “Electronic Book in 3.5″ Floppy Disk” THAM 19.6; IEEE, 1994; pp. 316-317. |
Document 461, Memorandum Opinion, Case No. 1:10-cv-00258-SLR-MPT, Nov. 8, 2012, pp. 1-103 (MMI v. Apple, D. Del), which construes claim terms in related patent 6,549,942. |
Document 462, Order, Case No. 1:10-cv-00258-SLR-MPT, Nov. 8, 2012, pp. 1-2 (MMI v. Apple, D. Del), which is related to Document 461, supra. |
“The Technical Development of Internet Email” by Craig Partridge, IEEE Annals of the History of Computing (Berlin: IEEE Computer Society) 30 (2): (published 2006 or later) pp. 1-40. |
“America Online Announces Creation of Musicspace,” PR Newswire, Jun. 7, 1995, 2 pages. |
“America Online Launches First Localized Interactive Home Shopping Service for Supermarket and Drug Store Retailers,” PR Newswire, Oct. 31, 1994, 2 pages. |
“Apple Computer: Newton Timeline,” PR Newswire, Jul. 30, 1993, 2 pages. |
“Apple Unveils New Newton Technology; Previews The Industry's First PDA Device,” PR Newswire, May 29, 1992, 3 pages. |
“Audio Highway Enters Strategic Alliance with Sycom Technologies and KIA,” PR Newswire, Sep. 30, 1996, 2 pages. |
“Audio Highway Honored by Consumer Electronics Show With Innovations '97 Award,” PR Newswire, Jan. 9, 1997, 2 pages. |
“Audio Highway Is New Name of Information Highway Media Corp.,” PR Newswire, Jun. 6, 1996, 1 page. |
“Audio Highway Launches Personalized News and Information Service; New Web Site Containing Thousands of Entertaining, Informative and Useful Audio Selections is Now Open,” PR Newswire, Aug. 7, 1997, 2 pages. |
“Audio Highway Patents to Give ‘Complete Protection’ to Audio Programming Server and Client,” PR Newswire, Jul. 15, 1996, 1 page. |
“Audio Highway Unveils New Technology at Internet Showcase '98,” PR Newswire, Jan. 29, 1998, 5 pages. |
“Aural Hygiene: Cleanse Your Mind of Standard Radio Fare,” Autoweek, Nov. 14, 1994, 1 page. |
“CompuServe Adds More Value to Its Basic Services,” PR Newswire, Jun 29, 1993, 2 pages. |
“Device Costs $299, But Content Is Free,” Advertising Age, Oct. 7, 1996, 1 page. |
“Digital Voice Recording Technology Comes of Age!; With New PC Audio Link, ‘Voice Notes’ From Sycom's ‘Total Recall’ Digital Recorder Can Be Downloaded to PC,” Business Wire, Jun. 13, 1996, 3 pages. |
“Finding it on the Internet” by Paul Gilster, John Wiley & Sons, Inc., 1994, 10 pages. |
“First Newton—The MessagePad—Hits the Market,” PR Newswire, Jul. 30, 1993, 4 pages. |
“Gadgets, Gizmos & Gossip,” Fort Worth Star-Telegram, Feb. 3, 1997, 2 pages. |
“Geffen Records, CompuServe and Aerosmith Make History With First Song Available Exclusively Via Information Highway,” PR Newswire, Jun. 15, 1994, 2 pages. |
“Listen Up and Download: Company Offers Audio for Your Car Via the Internet,” Autoweek, Sep. 23, 1996, 2 pages. |
“New Psion Series 3A Models Launched With Up to 2 MB of RAM,” PR Newswire, Mar. 16, 1995, 2 pages. |
“Norris Flashback Recorder: A Glimpse of Digital Future,” Billboard, Mar. 26, 1994, 1 page. |
“NTN Communications Signs Agreement With America Online to Provide Interactive Sports and Trivia Games,” Business Wire, Jan. 4, 1995, 2 pages. |
“Palm Computing to Introduce Pen-Based PDA,” Info World, Jan. 15, 1996, 2 pages. |
“Patent Allowed for Audio Highway's Audio Programming Apparatus,” PR Newswire, Jul. 15, 1996, 1 page. |
“Palm Pilot 1000 Retrospective,”Ryan Kairer, http://www.palminfocenter.com/news/8493/pilot-1000-Retrospective, 3 pages. |
“Private Lives: Audiobooks; Abridged vs. Unabridged: The Tale of the Tapes,” Los Angeles Times, Apr. 30, 1995, 3 pages. |
“Psion Fans Lament Loss of PDA,” The Birmingham Post, Jul. 24, 2001, 2 pages. |
“PsiWin—Enhancing PC Connectivity,” PR Newswire, Jul. 5, 1995, 2 pages. |
“Silicon Valley Start-Up to Create New On-Ramp to the Information Superhighway With Its Listen-Up Audio System and Audio-On-Demand Subscription Service,” Business Wire, Sep. 19, 1994, 2 pages. |
“Sophisticated New Organizers Feature Docking Station Connectivity, 128K & 64K Memories and Large, Easy-To-Read Displays,” PR Newswire, Apr. 18, 1995, 3 pages. |
“Symbol PPT-4600,” Pen Computing, Issue #6, Aug./Sep. 1995, 2 pages. |
“Symbol Technologies PPT 4600 Rugged Pen Computer Selected by American Freightways for Logistics Operations; Unique Customer Service solution First in LTL Industry,” Business Wire, Oct. 18, 1995, 1 page. |
“Testdrive Founder/CEO Resigns to Form New Info Highway Company,” Business Wire, Jun. 29, 1994, 2 pages. |
“Distributed Thinking; The Pilot Helps Keep Both Your Sets of Data on Course Toward Synchronization,” Info World, Jan. 29, 1996, 2 pages. |
“The Silicon Audio, An Audio-Data Compression and Storage System With a Semiconductor Memory Card,” by Sugiyama et al., IEEE Transactions on Consumer Electronics, vol. 41, Feb. 1995, 9 pages. |
“U.S. Robotics Launches Breakthrough Pocket-Size Connected Organizer for PC Users; New Pilot Connected Organizer Includes Comprehensive PIM Software With Built-In, One-Touch PC Connectivity, and Instant Response for $299,” Business Wire, Jan. 29, 1996, 4 pages. |
“Understanding Computers: Today and Tomorrow” by Charles S. Parker, The Dryden Press, 1996, 13 pages. |
“Visions of Our Digital Future New, More Powerful Gadgets Aim to Obliterate Boredom and Make Your Life Easier,” San Jose Mercury News , Jan. 19, 1997, 4 pages. |
“Web Audio, Commercials to Be Packaged for Mobile Listeners,” Internet World, Mar. 17, 1997. |
“Personal Digital Assistant; You Can Take It With You,” Info World, May 13, 1996, 3 pages. |
“Norris Communications CEO Bob Root Joins Vice President Al Gore in American Airlines Technology Audio Program,” PR Newswire Mar. 15, 1996, 2 pages. |
Audible Inc. S-1, Apr. 26, 1999, 97 pages. |
Connecting a Newton PDA to your Macintosh, 1995, 2 pages. |
Symbol CRD4600 Cradle Quick Reference Guide, Oct. 1998, 31 pages. |
“The List” Nov. 1992 http://bbslist.textfiles.com/BBSLISTS/199211thelist.txt, 56 pages. |
“Psion Organiser” Wikipedia http://en.wikipedia.org/wiki/Psion—Organiser, printed Jan. 11, 2012, 4 pages. |
Eudora Historical Backgrounder http://www.eudora.com/presskit/backgrounder.html, printed Dec. 21, 2011, 2 pages. |
“Amazon to Pay $300 Million for Newark-based Audible,” Abby Gruen/The Star-Ledger, nj.com, Jan. 31, 2008 http://www.nj.com/business/index.ssf/2008/01/amazon to—pay—300—million—for.html, 2 pages. |
“Creative Nomad Zen Xtra 60 GB,” Bill Machrone, PCMAG.com; Jul. 13, 2004 http://www.pcmag.com/article2/0,2817,1623017,00.asp, 1 page. |
“Sony Announces “Memory Stick Walkman,”” Sony Press Release Sep. 22, 1999 http://www.sony.net/SonyInfo/News/Press—Archive/19 9909/99-072A/index.html, 2 pages. |
Newton MessagePad Handbook, 1993, 118 pages. |
Press Release: “Audio Highway Announces the Listen Up Player—A New Device that Delivers Personalized Audio Content to Information-Hungry, On-the-Go Consumers” Audio Highway Press Release, Sep. 23, 1996, 2 pages. |
Newton Connection Kit for Windows User's Guide, 1994, 95 pages. |
Newton Connection Utilities User Manual for the Macintosh Operating System, 1997, 117 pages. |
Newton Connection Utilities User Manual for Windows, 1997, 108 pages. |
Newton Press User's Guide, 1995, 103 pages. |
Newton Programmer's Guide, 1996, 942 pages. |
“Listen to This” Popular Mechanics, Jan. 1997, 2 pages. |
Newton Programmer's Reference, 1996, 1390 pages. |
Newton Utilities User Manual, 1995, 33 pages. |
Norris Communications Corp, Annual Report, Year Ending Mar. 31, 1996, 99 pages. |
Palm Pilot Handbook, 1997, 202 pages. |
“Tapeless Note Taker,” Popular Science, Jul. 1993, 2 pages. |
PPT 4600 Product Reference Guide, Aug. 1996, 162 pages. |
PPT 4600 Software Development Kit and Getting Started for DOS & Windows, Mar. 1996, 12 pages. |
PPT 4600 Software Development Kit and Getting Started for DOS, Mar. 1996, 12 pages. |
RFC114—“A File Transfer Protocol,” A. Bhushan, MIT Project, Apr. 16, 1971, 18 pages. |
RFC1341—MIME:“Mechanisms for Specifying and Describing the Format of Internet Message Bodies,” Bornestein, Freed, Jun. 1992, 84 pages. |
RFC1521—MIME:“Mechanisms for Specifying and Describing the Format of Internet Message Bodies,” Bornestein, Freed, Sep. 1993, 72 pages. |
RFC1524—“A User Agent Configuration Mechanism for Multimedia Mail Format Information,” Borenstein, Sep. 1993, 11 pages. |
“Audible Inc. Announces Equity Investment by Compaq Computers Corporation, Hambrecht & Quist LLC,” Business Wire Mar. 30, 1998, 46 pages. |
Symbol Series 4600 Quick Reference Guide, Mar. 1996, 28 pages. |
“ATRAC: Adaptive Transform Acoustic Coding for MiniDisc,” Tsutsui, Suszuki, et al, Audio Engineering Society Convention San Francisco, Oct. 1-4, 1992, http://www.minidisc.org/aes—atrac.html, 13 pages. |
“Internet Showcase '98 Awards The People's Choice Award to Five Hot Products; Attendees at David Coursey's second annual executive conference honor General Magic, Homestead, Aeneid, Apple and Audio Highway,” PR Newswire, Jan. 30, 1998, 2 pages. |
“The Father of the MP3 Player Industry”, http://www.nathansehulhof.com/ Jan. 12, 2012, 1 page. |
Screen Shot of Sony Walkman® MP3 & MP4 Players from: http://www.sony.co.uk/hub/walkman-mp3-players, 2 pages. |
“For busy listeners: download and run,” by Steve Behrens, Current, Aug. 25, 1997, 5 pages. |
“Smart Money is on Wayne company's sound idea,” The Star-Ledger, Oct. 27, 1997, 4 pages. |
“Harmonic Convergence,” Wired, Issue 7.08, Aug. 1999, www.wired.com/wired/archiev/7.08/di—timeline.html, 8 page. |
Declaration of Scott A. Brenneman, Sep. 20, 2012, 2 pages. |
U.S. Appl. No. 60/066,748, Dwyer, et al., Nov. 21, 1997, 149 pages, cited by Defendant Apple in a litigation relating to related U.S. Patent No. 6,549,942. |
Document 193, Provisional Opinion and Order, Case No. 2:10-CV-112-JRG, (HTC) p. 1-13, Aug. 24, 2012. |
Number | Date | Country | |
---|---|---|---|
20060271646 A1 | Nov 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10374310 | Feb 2003 | US |
Child | 11431695 | US | |
Parent | 09613025 | Jul 2000 | US |
Child | 10374310 | US | |
Parent | 09124584 | Jul 1998 | US |
Child | 09613025 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 08643963 | May 1996 | US |
Child | 09124584 | US | |
Parent | 08450818 | May 1995 | US |
Child | 08643963 | US |