This invention was not made by an agency of the United States Government nor under contract with an agency of the United States Government.
The present invention relates to a valve for quick release of pneumatic pressure in a pneumatic fluid system. It finds particular application with air brakes used in conjunction with heavy or commercial vehicles and will be described with particular reference thereto. The invention may be used in other applications without departing from the spirit and scope of the invention.
Some air brake valves used in the industry today (e.g., in Europe) do not meet release timing requirements of Federal Motor Vehicle Safety Standard (FMVSS) 121, Air Brake Systems. The release timing requirements relate to how quickly the brakes release after the brake pedal is allowed to return to its normal position. In order to use these valves Brake Systems. The release timing requirements relate to how quickly the brakes release after the brake pedal is allowed to return to its normal position. In order to use these valves in the worldwide market, the release timing must be improved to meet the requirements of this market. As shown in
When the actuator 3 for the brake valve is released (e.g., foot lifted from a brake pedal), the air flows from the brake chamber 4 to the actuator 3 through a fixed inlet orifice 1. While the fixed inlet orifice does provide some pressure differential across the exhaust diaphragm, relatively little air, less than 50%, actually is exhausted through the exhaust port, and only slight improvements are realized for the release timing. Moreover, this method restricts the inlet capacity of the valve. Furthermore, this method does not sufficiently improve the release timing to meet the FMVSS 121 requirements.
Patent disclosure DE3938101A1 discusses reducing the vent time of a pressure control valve for improved release timing. In this disclosure a “reflux” valve is placed directly in the inlet flow path, thus restricting the inlet flow. Inclusion of a reflux valve that restricts inlet flow doesn't, however, provide both apply and release timing sufficient to meet, for example the requirements of FMVSS 121. Apply timing relates to how quickly the brakes are applied after pressing the brake pedal. The enhancement for the release timing in disclosure DE3938101A1 degrades the performance of the valve for the apply timing. With the current sizing requirements of the antilock brake system (ABS) valve, it is not capable to meet both apply and release timing of FMVSS 121 using the “reflux” valve design.
The present invention provides a new and improved apparatus and method which addresses the above-referenced problems.
In the accompanying drawings which are incorporated in and constitute a part of the specification, embodiments of the invention are illustrated, which, together with a general description of the invention given above, and the detailed description given below, serve to exemplify the embodiments of this invention.
In order to provide decreased release timing, such as to meet the FMVSS 121 release timing requirements, the delivery air of the air brake system valve is diverted to the exhaust port in order to limit the amount of air returning through the inlet port of the valve. In this manner, the release timing is improved without significantly increasing the apply timing. The feature described below meets the required release timing of FMVSS 121 without significantly restricting the inlet capacity of the valve (see
As used herein, “apply timing” means the time from the first movement of the brake valve actuator (brake pedal) for the brake chamber to reach 60 psi with an initial service reservoir pressure of 100 psi. As used herein, “release timing” means the time from initial brake pedal movement (release) for a set of brake chambers initially at 95 psi to reach psi. Unless otherwise specified, use of the term “or” herein is the inclusive, and not the exclusive, use. See BRYAN A. GARNER, A DICTIONARY OF MODERN LEGAL USAGE 624 (2d Ed. 1995).
The release timing of a brake valve correlates to how quickly the pressure of the pneumatic fluid therein, often air, is released from the brake chamber 4 (see
Generally, the restriction device, herein called a flow diverter, has at least two positions—a first or open position when the pneumatic fluid flows to actuate the brake and a second or closed position when the brake is released. When in the first position, the flow diverter does not significantly restrict fluid flow to actuate the brake. When in the second position, the flow diverter diverts fluid flow to the exhaust by restricting the flow back in the direction of the actuator 3. The flow diverter may divert all or a portion of the fluid to the exhaust. Thus, the flow diverter does not significantly reduce the apply timing, as does a conventional fixed inlet orifice 1.
As shown in
After passing through the passage 48, the air passes into the bore 22. A flow diverter 20, which is described in more detail below, is positioned within the bore 22. The air exits the bore 22 via a passage (not shown) into the delivery cavity 26. Because of the seal created between the delivery cavity 26 and the wall 42 at point 44, the air entering the delivery cavity 26 from the bore 22 does not pass to the exhaust port 46; instead, the air passes from the delivery cavity 26 to a delivery port 56 and then to a brake chamber 60.
As shown in
For example, the surface of restrictor portion 100 may be of any shape suitable for use, including regular or irregular polygons, such as rectangular, pentagonal, hexagonal, octagonal, or dodecahedral polygons. Preferably, the restrictor portion 100 is circular, if the cross-section of the bore 22 is circular. The diameter of the restrictor portion 100 is dimensioned relative to the diameter of the bore 22 such that the restrictor portion 100 provides sufficient resistance to the flow of air to divert a sufficient amount, preferably at least about 50%, of the air in the delivery cavity 26 to the exhaust port 46. The flow diverter 20 also is dimensioned so that there is minimal restriction in the flow of air from supply cavity 24 to delivery cavity 26. The restriction is such that the desired apply timing may still be obtained. Preferably, the flow diverter 20 provides a restriction in the flow in this direction of no more than about 25%. Therefore, one of skill in the art may determine the optimum diameter of the restrictor portion 100 without undue experimentation.
Moreover, while the spacer portion 102 is illustrated with four legs 102a, 102b, 102c, 102d, there may be any number of legs, including three legs, so long as there is sufficient stability to enable the flow diverter 20 to divert the requisite air to the exhaust port 46 without significantly restricting the flow of air from the supply cavity 24 to the delivery cavity 26 when the brake valve 32 is actuated. The number of legs may be chosen without departing from the spirit and scope of the invention.
The shape of the legs 102a, 102b, 102c, 102d is illustrated as rectangular prisms, but any suitable shape is contemplated, such as any suitable regular or irregular polygon, and is within the spirit and scope of the invention. The shape of the legs 102a, 102b, 102c, 102d is to be selected such that there is minimal interference with air flow between the supply cavity 24 and the delivery cavity 26, while providing sufficient support for the restrictor portion 100. For example, the shape of the legs 102a, 102b, 102c, 102d may be selected to have tapering or curved portions to reduce the turbulent flow characteristics of the air and to reduce stress points on the flow diverter 20. In one design, the legs 102a, 102b, 102c, 102d have a triangular cross section. There may also be ribs between the legs or otherwise provided, for example, to provide additional strength for the legs.
The specific dimensions of the restrictor portion 100 and the spacer portion 102 may be selected based on the circumstances and parameters of each particular application without departing from the spirit and scope of the invention. Suitable dimensions may be determined without undue experimentation based on the measurement of the release timing and apply timing of the brake.
Also, the flow diverter 20 may be a spherical ball or a cylindrical slug or other shape dimensioned such that, for example, the pressure of the air in the supply cavity 24 is sufficient to move the ball or slug substantially out of the way of the flow of air from the supply cavity 24 to the delivery cavity 26, but the ball or slug interposes restriction in the flow of air from the delivery cavity 26 to the supply cavity 24. Thus, the flow diverter 20 need not have both a restrictor portion 100 and a spacer portion 102, but may be provided as one portion.
Although the flow diverter 20 has been discussed thus far as restricting flow of air from the supply cavity 24 to the delivery cavity 26, but allowing some flow of air in this direction, the flow diverter 20 may also completely restrict any flow of air from the supply cavity 24 to the delivery cavity 26. There need not be any leak by or flow of air back into the supply cavity 24 around or through the flow diverter 20. For example, a flapper or check valve may be placed in or near the passage 48 that is in an open position when air is flowing from the supply cavity 24 to the delivery cavity 26, but is in a closed position when air is no longer flowing in that direction.
The material from which the flow diverter 20 is made may be any conventional material selected, for example, based on cost, availability, weight, or any other parameter without departing from the spirit and scope of the invention. Preferably, the material is plastic, but metals, such as aluminum, are also suitable. The specific material chosen may affect the restriction of fluid flow because of, for example, weight or surface smoothness, but the appropriate shape and dimensions for the chosen material may be determined without undue experimentation.
As illustrated in
As shown in
Because a restricted amount of air is permitted to escape from the delivery cavity 26 via the bore 22 and, furthermore, because of the reduced pressure at the control side 36 of the exhaust diaphragm 40, the pressure of air in the delivery cavity 26 urges the exhaust diaphragm 40 to become unseated from the wall 42 at the point 44. Consequently, air passes from the delivery cavity 26 to the exhaust port 46 via a channel 62 defined between the exhaust diaphragm 40 and wall 42. More specifically, the higher pressure in the delivery cavity 26 unseats the exhaust diaphragm 40, directing the major portion of the delivery air flow out the exhaust port 46. The combination of low pressure on the control side 36 of the exhaust diaphragm 40 and high pressure on the seat side speeds the opening of the exhaust valve and the release timing of the valve.
As shown in
The flow diverter 20 is a flow-activated device having two positions of operation. During a brake application the flow diverter is moved by the application air to its minimally restricted open position. This allows the ABS valve to meet the FMVSS 121 apply timing requirement. During the brake application release, the flow of delivered air carries the flow diverter 20 to its metering position (see
A valve available from Knorr Bremse with a part number of BR9164 was fitted with a flow restrictor 20 having three legs with substantially triangular cross sections. In this embodiment, the inner diameter of the bore 22 was about 0.490 inches and the outer diameter of the restrictor portion 100 was about 0.481 inches.
While the present invention has been illustrated by the description of embodiments thereof, and while the embodiments have been described in considerable detail, it is not the intention of the applicants to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications will readily appear to those skilled in the art. Therefore, the invention, in its broader aspects, is not limited to the specific details, the representative apparatus, and illustrative examples shown and described. Accordingly, departures may be made from such details without departing from the spirit or scope of the applicants' general inventive concept.
This application is a divisional of the pending U.S. patent application Ser. No. 10/379,956 filed Mar. 5, 2003 now abandoned, which claims priority from Provisional Application 60/431,305, filed Dec. 6, 2002, entitled “Enhanced Exhaust Flow Control Feature,” the entire disclosures of which are hereby incorporated as if fully rewritten herein.
Number | Name | Date | Kind |
---|---|---|---|
4134417 | Horowitz | Jan 1979 | A |
4577910 | Worbois | Mar 1986 | A |
4858638 | Cseri | Aug 1989 | A |
5078455 | Washington | Jan 1992 | A |
5118169 | Moller | Jun 1992 | A |
5425572 | Koelzer et al. | Jun 1995 | A |
5918852 | Otto | Jul 1999 | A |
6206487 | Nakamura et al. | Mar 2001 | B1 |
6267135 | Ho | Jul 2001 | B1 |
6386649 | Ross | May 2002 | B1 |
Number | Date | Country |
---|---|---|
33 40 525 | Nov 1983 | DE |
39 38 101 | May 1991 | DE |
197 44 389 | Apr 1999 | DE |
Number | Date | Country | |
---|---|---|---|
20060096636 A1 | May 2006 | US |
Number | Date | Country | |
---|---|---|---|
60431305 | Dec 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10379956 | Mar 2003 | US |
Child | 11247370 | US |