This application is directed to transducer arrays (i.e., arrays of electrode elements) used to treat cancer with tumor-treating electric fields (“TTFields therapy”). More particularly, it is directed to transducer arrays with enhanced flexibility to facilitate their use in treating, for example, thoracic or abdominal cancers.
In general, TTFields therapy is a cancer therapy that uses electric fields tuned to specific frequencies to disrupt cell division, thereby inhibiting tumor growth and causing affected cancer cells to die. With TTFields therapy, transducers arrays are placed on opposite sides of the body, with intimate contact between the electrodes and the patient's skin, and an AC voltage is applied between opposing arrays at a predetermined frequency to generate the required electric fields. TTFields therapy typically continues for many months or even years, during which time the transducer arrays are replaced every 5-10 days.
In practice, the transducer arrays are provided and applied to the body as a unitary or self-contained unit, with the electrode elements arrayed throughout the self-contained unit. The array of electrode elements is affixed to the body, typically using an overlying patch with an adhesive backing to cover the unit and hold it against the patient's skin.
Known configurations of such transducer arrays have been developed in connection with treating Glioblastoma, in which case the transducer arrays are attached to the head. Because the skull is substantially rigid and immobile, good adhesion and lasting attachment of the transducer arrays to the skin can be obtained until such time that the transducer arrays require replacement.
On the other hand, the thoracic and abdominal regions of the body are far more mobile than the skull is, due to general movement of the body and respiration. This substantially increased degree of movement can cause the transducer arrays not to adhere to thoracic and abdominal regions with the degree of intimacy of contact and/or duration of contact that may be desired. Higher levels of perspiration from these areas also make it more challenging to achieve good long-term, intimate adhesion of the transducer arrays to the skin.
One aspect of the invention is directed to a first electrode apparatus configured for affixation to a patient's skin. The first apparatus comprises a flex circuit having a trunk region that extends in a longitudinal direction and a plurality of branches that extend laterally from the trunk region, each of the branches having a free distal end and a proximal end that is connected to the trunk region, with a plurality of branches extending on at least one lateral side of the trunk region, the flex circuit having an inner skin-facing side and an outer side. The first apparatus also comprises a plurality of electrode elements disposed on the inner side of the flex circuit along the branches of the flex circuit, each of the electrode elements having a conductive plate that is connected to the flex circuit in an electrically conducting manner, and a dielectric layer positioned to face the skin of the patient. The first apparatus also comprises a top, covering layer disposed on the outer side of the flex circuit, the covering layer being sized to cover the branches of the flex circuit and to overlap spaces between the branches, the covering layer having adhesive on a skin-facing side thereof by means of which the covering layer can be adhered to the patient's skin through the spaces between the branches. The covering layer is slotted to define a plurality of fingers overlying the branches of the flex circuit so that the fingers of the covering layer can move independently of each other as branches of the flex circuit flex independently of each other.
Some embodiments of the first apparatus further comprise a plurality of conductive hydrogel discs, wherein each of the conductive hydrogel discs is attached to a skin-facing side of a respective electrode element. Some of these embodiments further comprise a plurality of gel barriers, wherein each of the gel barriers surrounds a respective one of the hydrogel discs.
Some embodiments of the first apparatus further comprise a foam layer disposed on the inner side of the flex circuit, wherein the foam layer is configured to cover at least a portion of the trunk region of the flex circuit and at least a portion of the branches of the flex circuit, and leave the electrode elements uncovered. Some of these embodiments further comprise a skin-level adhesive layer disposed on a skin-facing side of the foam layer. In some of these embodiments, the skin-level adhesive layer has a configuration that follows the configuration of the flex circuit, with branches and trunk portions of the skin-level adhesive layer being wider than corresponding portions of the flex circuit so as to overlap spaces between the branches of the flex circuit.
In some embodiments of the first apparatus, more electrode elements are attached to branches of the flex circuit that are closer to the longitudinal center of the trunk than are attached to branches of the flex circuit that are closer to the longitudinal ends of the trunk. In some embodiments of the first apparatus, the trunk shifts back and forth in the lateral direction as it extends in the longitudinal direction. In some embodiments of the first apparatus, the trunk extends in the longitudinal direction in a straight manner.
Some embodiments of the first apparatus further comprise a skin-level adhesive layer disposed on the inner side of the flex circuit. In some of these embodiments, the skin-level adhesive layer has a configuration that follows the flex circuit, with branches and trunk portions of the skin-level adhesive layer being wider than corresponding portions of the flex circuit so as to overlap spaces between the branches of the flex circuit.
Some embodiments of the first apparatus further comprise a skin-level adhesive layer disposed on the inner side of the flex circuit, wherein the skin-level adhesive layer is attached directly to the inner side of the flex circuit.
In some embodiments of the first apparatus, the flex circuit has a plurality of branches extending on each lateral side of the trunk region. In some embodiments of the first apparatus, the flex circuit is configured so that no more than three paths emanate from any intersection on the flex circuit. In some embodiments of the first apparatus, the flex circuit is configured so that four paths emanate from only a single intersection on the flex circuit, and no more than three paths emanate from any other intersection on the flex circuit. In some embodiments of the first apparatus, the flex circuit is configured so that all segments of the flex circuit are straight.
Some embodiments of the first apparatus further comprise an electrical cable that terminates on the flex circuit, and segments of the flex circuit near the distal end of each branch are thinner than at least some of the segments of the flex circuit that are adjacent to the electrical cable.
Another aspect of the invention is directed to a second electrode apparatus configured for affixation to a patient's skin. The second apparatus comprises a flex circuit having a trunk region that extends in a longitudinal direction and a plurality of branches that extend laterally from the trunk region, each of the branches having a free distal end and a proximal end that is connected to the trunk region, with a plurality of branches extending on at least one lateral side of the trunk region, the flex circuit having an inner skin-facing side and an outer side. The second apparatus also comprises a plurality of electrode elements disposed on the inner side of the flex circuit along the branches of the flex circuit, each of the electrode elements having a conductive plate that is connected to the flex circuit in an electrically conducting manner, and a dielectric layer positioned to face the skin of the patient. The second apparatus also comprises a foam layer disposed on the inner side of the flex circuit, wherein the foam layer is configured to cover at least a portion of the trunk region of the flex circuit and at least a portion of the branches of the flex circuit, and leave the electrode elements uncovered. The second apparatus also comprises a skin-level adhesive layer disposed on a skin-facing side of the foam layer. The second apparatus also comprises a top, covering layer disposed on the outer side of the flex circuit, the covering layer being sized to cover the branches of the flex circuit and to overlap spaces between the branches, the covering layer having adhesive on a skin-facing side thereof by means of which the covering layer can be adhered to the patient's skin through the spaces between the branches.
Some embodiments of the second apparatus further comprise a plurality of conductive hydrogel discs, wherein each of the conductive hydrogel discs is attached to a skin-facing side of a respective electrode element. Some of these embodiments further comprise a plurality of gel barriers, wherein each of the gel barriers surrounds a respective one of the hydrogel discs.
In some embodiments of the second apparatus, more electrode elements are attached to branches of the flex circuit that are closer to the longitudinal center of the trunk than are attached to branches of the flex circuit that are closer to the longitudinal ends of the trunk.
In some embodiments of the second apparatus, the trunk shifts back and forth in the lateral direction as it extends in the longitudinal direction.
In some embodiments of the second apparatus, the trunk extends in the longitudinal direction in a straight manner.
In some embodiments of the second apparatus, the covering layer is slotted to define a plurality of fingers overlying the branches of the flex circuit so that the fingers of the covering layer can move independently of each other as branches of the flex circuit flex independently of each other. In some embodiments of the second apparatus, the flex circuit has a plurality of branches extending on each lateral side of the trunk region. In some embodiments of the second apparatus, the foam layer is configured to cover the entire surface of the flex circuit, except for regions where the electrode elements are positioned.
Various embodiments are described in detail below with reference to the accompanying drawings, wherein like reference numerals represent like elements.
One of the components that defines the configuration of the transducer array 100 is the flex circuit 102 (
The flex circuit 102 includes a number of mounting pads 104 arranged along the rows 106a-106e.
A number of electrode elements 110 (
A corresponding number of stiffeners 112 (
In some embodiments, each of the electrode elements 110 has a corresponding disc of conductive hydrogel 114 (
Additionally, a ring-shaped hydrogel barrier 116 (
To increase patient comfort, the transducer array 100 may optionally include a conformal foam layer 122 (
The conformal foam layer 122 may be made, e.g., from polyethylene foam such as MED 5696R available from Vancive Medical Technologies. The conformal foam layer 122 may be affixed to the flex circuit 102 using a suitable adhesive (e.g., WetStick™ synthetic rubber adhesive, also available from Vancive Medical Technologies). The foam layer 122 advantageously protects the patient from potentially sharp edges of the conductive traces on the flex circuit 102. This is particularly important in the context of flexible transducer arrays because flexing the transducer arrays can cause the flat conductive traces to twist, which can cause the potentially sharp edges of those conductive traces to tilt down towards the patient's skin. Notably, interposing the foam layer 122 between the conductive traces of the flex circuit 102 and the patient's skin protects the patient from cuts and/or pain that might be caused by those potentially sharp edges.
The transducer array 100 also includes a skin-level layer of adhesive 118 disposed beneath the foam layer 122, as shown in
The skin-level layer of adhesive 118 may be made from a polyester/rayon-blend, spunlace non-woven tape material such as 3M® 9917, which is 30 micrometers thick. The tape may be double-coated with acrylate adhesive, to provide a peel strength on the skin-facing side (e.g., 23 lbf/inch) and a higher peel strength (e.g., 27 lbf/inch) on the opposite, outer side. The material is preferably hypoallergenic, highly conformable, and breathable; with a high moisture vapor transmission rate; and it is preferably gamma sterilization-compatible. To prevent excessive sweating and moisture from being trapped under the transducer array 100, the overall surface area of the skin-level layer of adhesive 118 may be minimized, e.g., by making it just slightly wider than the corresponding portions of the flex circuit 102 and the foam layer 122.
Note that in embodiments where a conformal foam layer 122 is omitted, the layer of adhesive 118 would be connected directly to the flex circuit 102 with no intervening components disposed therebetween. Alternatively, in those embodiments where the conformal foam layer 122 is provided, the layer of adhesive 118 would be connected indirectly to the flex circuit 102, with a foam layer 122 disposed therebetween.
A top, covering adhesive-backed layer 126 (
The covering adhesive-backed layer 126 may be made from 3M® 9916, which is a 100% polyester, spunlace non-woven tape. This material is single-coated with acrylate adhesive on the skin-facing side, which adheres the covering adhesive-backed layer 126 to the outer surface of the flex circuit 102, and it has a thickness of 40 micrometers. The covering adhesive-backed layer 126 is preferably hypoallergenic, highly conformable, breathable, and gamma sterilization-compatible.
Notably and advantageously, two separate factors contribute to the adhesion of the entire transducer array 100 to the patient's skin. The first factor is the portions of the lower surface of the top adhesive layer 126 that contact the skin through the spaces between the branches of the flex circuit 102 and beyond the perimeter of the flex circuit 102. The second factor is the layer of adhesive 118 disposed between the foam layer 122 and the person's skin (or, between the flex circuit 102 and the person's skin in those embodiments that do not include the foam layer 122). The inclusion of these two separate adhesive components provides significantly improve adhesion of the transducer array 100 to the patient's skin. This feature of the transducer array 100 enhances the degree of adhesion of the transducer array 100 to the patient's skin around the electrode elements, resulting in prolonged and better skin/electrode contact as compared to configurations in which the only adhesion was provided by an adhesive-backed patch overlying the entire transducer array.
In some embodiments, the covering adhesive-backed layer 126 includes a central aperture 135 and a slit 132 extending from the innermost end 129 of one of the slots 128—in particular, the innermost slit-end that is closest to the central aperture 135. The central aperture 135 permits an electrical cable 134 (shown in
Once the transducer array 100 has been properly attached to the patient's skin with the covering adhesive-backed layer 126 securing it in place, the central aperture 135 may be covered, for protection, with a top adhesive-backed slot-cover 136 (
In some preferred embodiments, the entire assembly of components described above is protected, prior to use on a patient, with a two-part release liner 140 (
In the
In both the
In some embodiments (including but not limited to the
In alternative embodiments (e.g., the
In some preferred embodiments, including the
In some preferred embodiments, including the
While the present invention has been disclosed with reference to certain embodiments, numerous modifications, alterations, and changes to the described embodiments are possible without departing from the sphere and scope of the present invention, as defined in the appended claims. Accordingly, it is intended that the present invention not be limited to the described embodiments, but that it has the full scope defined by the language of the following claims, and equivalents thereof.
This Application claims the benefit of U.S. Provisional Application 62/772,867, filed Nov. 29, 2018, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
6868289 | Palti | Mar 2005 | B2 |
7016725 | Palti | Mar 2006 | B2 |
7089054 | Palti | Aug 2006 | B2 |
7136699 | Palti | Nov 2006 | B2 |
7146210 | Palti | Dec 2006 | B2 |
7333852 | Palti | Feb 2008 | B2 |
7467011 | Palti | Dec 2008 | B2 |
7519420 | Palti | Apr 2009 | B2 |
7565205 | Palti | Jul 2009 | B2 |
7565206 | Palti | Jul 2009 | B2 |
7599745 | Palti | Oct 2009 | B2 |
7599746 | Palti | Oct 2009 | B2 |
7706890 | Palti | Apr 2010 | B2 |
7715921 | Palti | May 2010 | B2 |
7805201 | Palti | Sep 2010 | B2 |
7890183 | Palti et al. | Feb 2011 | B2 |
7912540 | Palti | Mar 2011 | B2 |
7917227 | Palti | Mar 2011 | B2 |
8019414 | Palti | Sep 2011 | B2 |
8027738 | Palti | Sep 2011 | B2 |
8170684 | Palti | May 2012 | B2 |
8175698 | Palti et al. | May 2012 | B2 |
8229555 | Palti | Jul 2012 | B2 |
RE43618 | Palti | Aug 2012 | E |
8244345 | Palti | Aug 2012 | B2 |
8406870 | Palti | Mar 2013 | B2 |
8447395 | Palti et al. | May 2013 | B2 |
8447396 | Palti et al. | May 2013 | B2 |
8465533 | Palti | Jun 2013 | B2 |
8706261 | Palti | Apr 2014 | B2 |
8715203 | Palti | May 2014 | B2 |
8718756 | Palti | May 2014 | B2 |
8764675 | Palti | Jul 2014 | B2 |
9023090 | Palti | May 2015 | B2 |
9023091 | Palti | May 2015 | B2 |
9039674 | Palti et al. | May 2015 | B2 |
9056203 | Palti et al. | Jun 2015 | B2 |
9440068 | Palti et al. | Sep 2016 | B2 |
9655669 | Palti et al. | May 2017 | B2 |
9731108 | Mathew | Aug 2017 | B2 |
9750934 | Palti et al. | Sep 2017 | B2 |
9910453 | Wasserman et al. | Mar 2018 | B2 |
10188851 | Wenger et al. | Jan 2019 | B2 |
10441776 | Kirson et al. | Oct 2019 | B2 |
20060167499 | Palti | Jul 2006 | A1 |
20070239213 | Palti | Oct 2007 | A1 |
20100204560 | Salahieh et al. | Aug 2010 | A1 |
20120283726 | Palti | Nov 2012 | A1 |
20160346530 | Jeffery | Dec 2016 | A1 |
20170120041 | Wenger et al. | May 2017 | A1 |
20170215939 | Palti et al. | Aug 2017 | A1 |
20170281934 | Giladi et al. | Oct 2017 | A1 |
20170354816 | Huelman | Dec 2017 | A1 |
20180001075 | Kirson et al. | Jan 2018 | A1 |
20180008708 | Giladi et al. | Jan 2018 | A1 |
20180050200 | Wasserman et al. | Feb 2018 | A1 |
20180160933 | Urman et al. | Jun 2018 | A1 |
20180202991 | Giladi et al. | Jul 2018 | A1 |
20190117956 | Wenger et al. | Apr 2019 | A1 |
20190307781 | Krex et al. | Oct 2019 | A1 |
20190308016 | Wenger et al. | Oct 2019 | A1 |
20200001069 | Kirson et al. | Jan 2020 | A1 |
20200009376 | Chang et al. | Jan 2020 | A1 |
20200009377 | Chang et al. | Jan 2020 | A1 |
20200016067 | Gotlib et al. | Jan 2020 | A1 |
20200016399 | Kaynan et al. | Jan 2020 | A1 |
20200023179 | Bomzon et al. | Jan 2020 | A1 |
20200061360 | Hagemann et al. | Feb 2020 | A1 |
20200061361 | Hagemann et al. | Feb 2020 | A1 |
20200069937 | Naveh et al. | Mar 2020 | A1 |
20200078582 | Alon et al. | Mar 2020 | A1 |
Number | Date | Country |
---|---|---|
2016014264 | Jan 2016 | WO |
Entry |
---|
International Search Report and Written Opinion issued in application No. PCT/IB2019/060259 dated Feb. 28, 2020. |
Number | Date | Country | |
---|---|---|---|
20200171297 A1 | Jun 2020 | US |
Number | Date | Country | |
---|---|---|---|
62772867 | Nov 2018 | US |