Currently, foam dispensing firefighting nozzle systems utilize an attached foam tube, into which the fluid flow is directed. When the user wishes to provide a straight stream of foam, a straight tip is provided. When the user wishes to provide a dispersed pattern of foam, a shaper tube tip is attached. The foam tube is attached at a foam dispensing nozzle outlet using perimeter attaching couplers to hold the tube fixedly with the nozzle.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key factors or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter.
As provided herein, fluid dispensing system and device that allows for quick and easy adjustment between a straight stream and dispersed stream. That is, a use may be able to merely adjust (e.g., rotate) and actuator on the nozzle portion to switch between a straight stream and dispersed stream of foam. Additional attachments can be mitigated, thereby reducing complexity, weight, and equipment failures.
In one implementation, a device or system for dispensing firefighting fluid can comprise a nozzle comprising a nozzle body and an inlet configured to receive a flow of fluid. Further, a nozzle stem can be centrally disposed in the nozzle and fixedly engaged with the nozzle body. Additionally, the device or system can comprise foam tube that may be configured to receive and dispense at least a portion of the flow of fluid from the nozzle. A foam tube coupler can be fixedly engaged with the foam tube, and can be configured to operably couple with the nozzle stem.
To the accomplishment of the foregoing and related ends, the following description and annexed drawings set forth certain illustrative aspects and implementations. These are indicative of but a few of the various ways in which one or more aspects may be employed. Other aspects, advantages and novel features of the disclosure will become apparent from the following detailed description when considered in conjunction with the annexed drawings.
What is disclosed herein may take physical form in certain parts and arrangement of parts, and will be described in detail in this specification and illustrated in the accompanying drawings which form a part hereof and wherein:
The claimed subject matter is now described with reference to the drawings, wherein like reference numerals are generally used to refer to like elements throughout. In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the claimed subject matter. It may be evident, however, that the claimed subject matter may be practiced without these specific details. In other instances, structures and devices may be shown in block diagram form in order to facilitate describing the claimed subject matter.
An apparatus can be devised for use in controlling fluid flow discharge, such as for firefighting operations. For example, different firefighting operations may utilize different types of fluids, depending on the type of fuel, fire, conditions, etc. Sometimes, firefighting operations may switch between different firefighting equipment during the course of a firefighting operation. For example, switching between a foam-based fluids and water-based fluids. Foam-based fluids typically utilize a foam-water solution, into which air is entrained and mixed in a nozzle system, to form a foam fluid discharge from the nozzle system.
A system may be devised that provides for changing the shape of the foam discharge between a straight stream and a cone-shaped or dispersed pattern. The system can comprise a nozzle portion, which is configured to discharge a foam-water mixture in a straight stream or a dispersed (e.g., fog pattern or cone-shaped pattern). A foam tube can be coupled at the outlet end of the nozzle. The foam tube can be configured to receive the straight stream discharge, and to entrain air into the foam-water mixture, resulting a foam-water-air mixture discharge. Further, in the dispersed pattern, the foam-water mixture may be entrained with air using turbine teeth, resulting in a cone-shaped pattern that substantially bypasses the foam tube.
In one implementation, the nozzle stem 108 can be fixedly coupled with the nozzle body 212 utilizing connector vanes (not shown). The connector vanes can be fixedly engaged with an interior wall of the nozzle fluid passage 124 at a first end, and fixedly engaged with the nozzle stem 108 at an opposite end. In this way, the nozzle stem 108 can be disposed centrally in the nozzle passage 124. Further, in one implementation, the one or more nozzle vanes can comprise thin planar strips aligned along the direction of fluid flow. In this way, for example, the vanes may impart less drag and/or turbulence on the fluid during operation.
The nozzle stem 108 can be engaged with a baffle disposed at a distal end of the fluid passage 124. As an example, the baffle can be configured to direct the flow of fluid to perimeter portion of the fluid passage 124, toward the pattern sleeve 110, in an annular pattern. In another implementation, the baffle may be configured to modulate a flow rate, and/or flow pressure, in the nozzle. In this implementation, the baffle may be movable linearly in the nozzle body (e.g., or the discharge tube may be movable with respect to a stationary baffle). As illustrated in
As illustrated in
In one implementation, the exemplary device 100 can comprise a foam tube 102 that is configured to receive and dispense at least a portion of the flow of fluid from the nozzle 106. Further, the exemplary foam nozzle 100 can comprise a foam tube coupler 112 (e.g., connector) that is fixedly engaged with the foam tube 102. In this implementation, the foam tube coupler 112 can be configured to operably couple with the nozzle stem 108. In one implementation, the foam tube coupler 112 can be configured to be selectably, operably coupled with the nozzle stem 108. For example, the nozzle stem 108 and foam tube coupler 112 may comprise a threaded coupling arrangement, such as female thread on the nozzle stem 108 and a male thread on the foam tube coupler 112 (e.g., or vice versa). As another example, the coupling between the nozzle stem 108 and the foam tube coupler 112 can comprise other coupling systems, such as a quick connect, a quarter turn connector, or others that provide for a fixed coupling between the two components.
In this implementation, the centrally disposed nozzle stem 108, when coupled with a centrally disposed foam tube coupler 112 (e.g., connector), can provide for substantially unimpeded straight stream 204 flow of fluid from the nozzle outlet 126 to the foam tube inlet 128. As described above, in one implementation, the configuration of the nozzle 106 can provide for an annular discharge of fluid from the nozzle outlet 126. For example, the fluid flow is directed along the nozzle body 212 to the baffle, which directs the flow of fluid to the discharge tube 214 portion. In this example, when the pattern sleeve 110 is disposed in the extended position 202, the flow of fluid is discharged in a straight stream 128, in an annular pattern. Further, because the nozzle stem 108 and foam tube coupler 112 are disposed centrally, the straight stream 128 flow is directed to the foam tube 102, substantially unimpeded by the engaged nozzle stem 108 and foam tube coupler 112.
Further, in this implementation, the centrally disposed nozzle stem 108, when coupled with a centrally disposed foam tube coupler 112, can provide for substantially unimpeded dispersed stream 304 flow of fluid from the nozzle outlet 126. In one implementation, the exemplary device 100 can comprise a tip gap 116 defined by the nozzle outlet 126 at a proximal end and the foam tube inlet 128 at a distal end, and open at the sides. In this implementation, as illustrated in
In this way, for example, a dispersed or fog pattern stream need not be patterned at the distal end of the foam tube, as is undertaken by existing foam tubes systems. For example, existing foam tube systems typically utilize a set of jaws at the distal end of the foam tube to pattern the stream into a dispersed, flat or flog like pattern. These jaws tend to add extra weight to the end of the system, which can make operation unwieldly, and add to equipment failure, and cost. Without the pattern jaws, for example, the weight of the system is balanced back toward the operator, which allows for ease of use, can mitigate fatigue and stress to the system.
In one implementation, as illustrated in
In one aspect, a difference between the first diameter of straight stream 204 and the second diameter of the tube inlet 128 can define an annular air gap 216 between the straight stream 204 and the perimeter of the tube inlet 128. In one implementation, in this aspect, the air gap 216 can be configured (e.g., sized and/or shaped) to provide for air flow 206 uptake into the foam tube 102 during operation. That is, for example, the straight stream 204 flow of fluid from the nozzle 106 to the foam tube 102 can create a fluid flow that draws air 206 into the tip gap 116, and into the air gap 216 between the straight stream 204 and the perimeter of the tube inlet 128. In this implementation, the air 206 drawn into the foam tube 102 can be entrained into the foam/water mixture in the straight stream 204, for example, resulting in a desired foam/water/air mixture discharge at the tube outlet 120.
In this aspect, in one implementation, the air gap 216 can be configured to provide a desired amount of air entrainment into the foam-water mixture to provide a desired foam-water-air mixture at discharge. That is, for example, a size, shape, flow rate, and/or flow pressure of the straight stream 204 can be adjusted according to a desired use or purpose. Further, the size of the foam tube inlet 128 can be configured to provide a desired air gap 216 that results in the desired foam mixture discharge. That is, for example, differently sized first diameters and second diameters can result in different amounts and qualities of the entrainment and mixture of air into the foam mixture. Sound engineering judgement can be used to identify the desired air flow 206 for a desired purpose and/or result.
In another aspect, as illustrated in
As an example, the turbine component 122 can comprise vanes (e.g., teeth) that are configured to impart spin on the turbine component 122 when subjected to fluid flow. In this way, for example, the flow of the dispersed stream 304 across the turbine vanes can result in the turbine component spinning, which can provide for air entrainment into the dispersed stream 304 of fluid. That is, for example, the spinning turbine component can draw air into the foam-water mixture, resulting in a foam-water-air fluid mixture being discharged in the dispersed stream 304, which substantially bypasses the foam tube 102.
As illustrated in
Additionally, in one implementation, as illustrated in
Returning the
In one implementation, a self-educting foam nozzle can comprise air intake ports that provide for introduction of air into the foam mixture. As an example, the pressure of the water, and/or the foam mixture through the nozzle may provide for a vacuum that draws air into the nozzle at desired air inlets. In this example, the air can be entrained into the foam mixture to create a foam-air-water mixture, which may be discharged from the nozzle outlet 420. In one implementation, the foam-air-water mixture can be directed in a straight stream pattern, and/or a dispersed pattern.
In one implementation, the one or more stream shapers 430a, 430b can be operably coupled to the distal end of the nozzle 406. In this implementation, the one or more stream shapers 430a, 430b can be configured to direct a dispersed stream of fluid into a desired pattern shape. That is, for example, as described above, the dispersed stream can provide a wide fog-like or conically shaped pattern. In this implementation, utilizing the pattern shapers 430a, 430b, the dispersed pattern can be directed into a desired shape, such as a flat or spread pattern, while still bypassing the foam tube 402. It should be noted that a variety of pattern shapers are anticipated, and may be designed to create a desired foam discharge pattern that is useful for a specific situation during operation.
A tube coupler 412 (e.g., nozzle connector) is disposed centrally at the proximal end of the foam chamber 504. The tube coupler 412 can be fixedly engaged in central disposition utilizing one or more tube vanes 514. In one implementation, the tube vanes 514 can be fixedly engaged with a wall of the foam chamber 504 at a first end, and fixedly engaged with the tube coupler 412 at a second end. Further, the tube vanes 514 can be configured to provide a small profile to the flow of fluid through the chamber 504. That is, as illustrated, the vanes 514 can comprise thin, flat, planar members that are disposed longitudinally in a direction of the flow of fluid. Additionally, in one implementation, the one or more vanes 514 can comprise vias disposed through at least a portion of respective vanes 514. For example, the vias may provide for additional mixing or agitation of the fluid-air mixture, and may be able to mitigate pressure differentials between either side of a vane 514.
The tube coupler 412 can be configured to operably engage (e.g., selectably) with a nozzle stem 408 that is fixedly coupled with a nozzle body 512. As described above, the nozzle stem 408 can be centrally disposed in the nozzle body 512, for example, by utilizing nozzle vanes 526 coupled to the nozzle body 512 and the nozzle stem 408. Further, the nozzle stem can be operably coupled with a baffle 508, which may be used to direct the flow of fluid to a pattern sleeve 510 (e.g., and/or may be used to adjust a flow rate or pressure of fluid). As illustrated in the
As illustrated in
In another implementation, the example device 400 may utilize a nozzle without the turbine component 422; or, may utilize a turbine-like component that is stationary. That is, for example, a desired foam mixture for a particular operation may be provided to (e.g., or by) the nozzle 406, which is sufficient for operation, such as in the dispersed pattern mode. As another example, a self-educting nozzle may provide a sufficient foam-air-water mixture for use in a particular operation. That is, for example, as described above, a self-educting nozzle can may be able to generate the appropriate foam mixture using an eduction chamber and air ports. In this example, a turbine component 422 may not be utilized, and/or the turbine teeth or vanes may provide rotation of the turbine component 422.
As illustrated in
As illustrated in
In one aspect, a method of manufacture can be devised for manufacturing a device for dispensing firefighting fluid, such as one or more portions of one or more systems described herein.
At 906, a pattern sleeve can be disposed on the nozzle body. In this implementation, the pattern sleeve can be configured to translate linearly along the nozzle body between a first position and a second position. Further, the pattern sleeve can be configured to direct the fluid in a substantially straight pattern at the outlet end, in the first position. Additionally, the pattern sleeve can be configured to direct the dispensed fluid in a substantially dispersed pattern at the outlet end, in the second position.
At 908, a nozzle connector can be fixedly disposed centrally in a foam tube. The foam tube can be configured to receive the straight stream flow of fluid from the nozzle; and the nozzle connector can be configured to operably couple with the nozzle stem. In one implementation, at 906a, at least a portion of the pattern sleeve can be configured to extend past a discharge tube portion of the nozzle at the outlet in the first position. Further, at 906b, at least a portion of the pattern sleeve can be configured to retract in line with the discharge tube portion of the nozzle at the outlet in the second position, which can result in the flow of fluid to substantially bypass the foam tube. In another implementation, at 908a, a pattern shaper can be disposed at the outlet end of the nozzle, where the pattern shaper configured to shape the dispersed pattern of the flow of fluid.
Having fixedly disposing the nozzle connector centrally in a foam tube, the example method 900 ends at 910.
The word “exemplary” is used herein to mean serving as an example, instance or illustration. Any aspect or design described herein as “exemplary” is not necessarily to be construed as advantageous over other aspects or designs. Rather, use of the word exemplary is intended to present concepts in a concrete fashion. As used in this application, the term “or” is intended to mean an inclusive “or” rather than an exclusive “or.” That is, unless specified otherwise, or clear from context, “X employs A or B” is intended to mean any of the natural inclusive permutations. That is, if X employs A; X employs B; or X employs both A and B, then “X employs A or B” is satisfied under any of the foregoing instances. Further, at least one of A and B and/or the like generally means A or B or both A and B. In addition, the articles “a” and “an” as used in this application and the appended claims may generally be construed to mean “one or more” unless specified otherwise or clear from context to be directed to a singular form.
Although the subject matter has been described in language specific to structural features and/or methodological acts, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims. Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, the appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. Of course, those skilled in the art will recognize many modifications may be made to this configuration without departing from the scope or spirit of the claimed subject matter.
Also, although the disclosure has been shown and described with respect to one or more implementations, equivalent alterations and modifications will occur to others skilled in the art based upon a reading and understanding of this specification and the annexed drawings. The disclosure includes all such modifications and alterations and is limited only by the scope of the following claims. In particular regard to the various functions performed by the above described components (e.g., elements, resources, etc.), the terms used to describe such components are intended to correspond, unless otherwise indicated, to any component which performs the specified function of the described component (e.g., that is functionally equivalent), even though not structurally equivalent to the disclosed structure which performs the function in the herein illustrated exemplary implementations of the disclosure.
In addition, while a particular feature of the disclosure may have been disclosed with respect to only one of several implementations, such feature may be combined with one or more other features of the other implementations as may be desired and advantageous for any given or particular application. Furthermore, to the extent that the terms “includes,” “having,” “has,” “with,” or variants thereof are used in either the detailed description or the claims, such terms are intended to be inclusive in a manner similar to the term “comprising.”
This application claims priority to U.S. Ser. No. 62/149,864, entitled ENHANCED SPRAY PATTERN DEVICE FOR AIR ASPIRATING FIRE FIGHTING FOAM NOZZLES, filed Apr. 20, 2015.
Number | Name | Date | Kind |
---|---|---|---|
3363842 | Burns | Jan 1968 | A |
4944460 | Steingass | Jul 1990 | A |
5012979 | Williams | May 1991 | A |
5113945 | Cable | May 1992 | A |
5335734 | Scott et al. | Aug 1994 | A |
5417371 | Brackett | May 1995 | A |
5575341 | Baker | Nov 1996 | A |
5590719 | McLoughlin | Jan 1997 | A |
5848752 | Kolacz | Dec 1998 | A |
Entry |
---|
PCT International Search Report and Written Opinion from International Application No. PCT/US2016/028409, dated Jul. 29, 2016, 14 pages. |
European Patent Office, Extended European Search Report for 16783750.9, date of search Jan. 29, 2019, Munich, 10 pages. |
Number | Date | Country | |
---|---|---|---|
20160303410 A1 | Oct 2016 | US |
Number | Date | Country | |
---|---|---|---|
62149864 | Apr 2015 | US |