The present invention is directed to an enhanced geometry receiving element for a downhole tool, such as an enhanced geometry receiving element for a plunger downhole tool used in the oil and gas industry.
Downhole tools commonly used in oil and gas wells require frequent retrieval from the well. Typically, downhole tools are recovered by way of engagement with an upper portion of the downhole tool. The retrieval tool is commonly called a “fishing tool” and the receiving area of the downhole tool is commonly called a “fishneck” or “fishing neck.”
The fishing neck is configured in a standardized geometry to receive typical fishing tools. Most commonly, the fishing neck is configured with an internal lip within an internal diameter of the downhole tool to enable a fishing tool to engage and “catch” the downhole tool, thereby allowing the tool to be fished upwards and retrieved from the well. Such configurations are termed internal fishing neck configurations or conventional “inside grappling” configurations. The associated fishing tool which engages a conventional inside grappling configured downhole tool is termed a “conventional inside grappling fishing tool.” Some fishing necks are configured to allow for retrieval of the downhole tool by engaging with an outer diameter of the downhole tool.
For downhole tools with internal fluid flow and with an internal fishing neck, the fluid flow leaving the tool and passing out from the fishing neck portion results in fluid drag. Such fluid drag slows the descent rate of a downhole tool when the tool is descending into a wellbore, aka when a downhole tool is “on the fall.”
In oil and gas operations, heightened downhole tool descent rates are desirable. For example, when the downhole tool is a wellbore plunger used to remove fluid from a wellbore so as to maintain or resume production, the plunger may repeatedly fall and rise within a wellbore. The ability to quickly descend a plunger into a wellbore, and to reliably retrieve the plunger with a fishing tool, equates to increases in oil and gas production efficiencies.
The disclosure provides several embodiments of an enhanced geometry receiving element, aka a grooved receiving element, for a downhole tool. The enhanced geometry receiving element reduces descent drag of a downhole tool configured with a conventional internal fishing neck, while preserving the ability of conventional inside grappling fishing tools to engage with the internal fishing neck of the downhole tool.
The embodiments are applicable to any wellbore downhole tool configured with an internal fishing neck, to include interior flow through plungers used for artificial lift of well fluids. For a more detailed description of interior flow through plungers see, e.g., U.S. Pat. Nos. 7,395,865 and 7,793,728 to Bender; U.S. Pat. No. 8,869,902 to Smith et al; and U.S. Pat. Nos. 8,464,798 and 8,627,892 to Nadkrynechny, each of which are incorporated by reference in entirety for all purposes.
An enhanced geometry receiving element for a downhole tool, such as an enhanced geometry receiving element for a plunger downhole tool used in the oil and gas industry, is disclosed. In one embodiment, the enhanced geometry receiving element includes a set of axial grooves disposed in the interior of a fishing neck portion of a bypass plunger.
The benefits of a downhole tool with an enhanced geometry receiving element, such as a grooved or notched receiving element adapted to fit with a fishing neck of an interior flow through plunger, include increased fall speed while maintaining the ability to engage with a conventional fishing tool, such as a conventional inside grappling fishing tool. An “interior flow through plunger” means any plunger in which fluid passes through at least some of an interior cavity of a plunger and including, for example, the set of plungers of
A downhole tool with enhanced geometry may be, without limitation, fitted to plungers which operate in conditions in which the travel time to the bottom of the wellbore is critical to production. The downhole tool with enhanced geometry reduces the time to the bottom of the wellbore by reducing drag and allowing fluid, e.g. hydrocarbons, gases and/or liquids, to bypass the plunger with less interference, thus increasing the relative speed of the plunger through the wellbore.
In one embodiment, a grooved receiving device forming a portion of a downhole tool is disclosed, the device comprising: a cylindrical body having an interior surface defining a cavity, the cylindrical body forming an upper portion of the downhole tool, the interior surface having a first diameter and comprising a plurality of axial grooves; wherein: the cavity is configured to pass a fluid received from an interior of the downhole tool; and each of the plurality of axial grooves extend radially into the interior surface to define a second diameter, the second diameter greater than the first diameter.
In one aspect, the grooved receiving device is configured to receive a conventional inside grappling fishing tool. In another aspect, the downhole tool is an interior flow through plunger tool configured for use in a hydrocarbon wellbore. In another aspect, a width of each of the axial grooves is no more than 0.75 inch. In another aspect, the axial grooves are concentric about a longitudinal centerline of the cylindrical body. In another aspect, each of the axial grooves extend axially into the interior surface to a first length. In another aspect, the second diameter is constant along the first length. In another aspect, the second diameter is variable along the first length. In another aspect, the plurality of axial grooves are rifled axial grooves. In another aspect, the plurality of axial grooves are two or more axial grooves. In another aspect, the first diameter defines a nominal inner diameter cross-sectional area of the upper portion of the downhole tool; the plurality of axial grooves extending radially into the interior surface define an enhanced geometry inner diameter cross-sectional area of the upper portion of the downhole tool; and the ratio of the grooved cross-sectional area to the nominal cross-sectional area is between 1.01 and 1.40. In another aspect, the first diameter defines a nominal perimeter of the upper portion of the downhole tool; the plurality of axial grooves extending radially into the interior surface define a grooved perimeter of the upper portion of the downhole tool; and the ratio of the grooved perimeter to the nominal perimeter is between 1.01 and 1.5.
In another embodiment, a grooved receiving device forming a portion of a downhole tool is disclosed, the device comprising: an interior surface defining a cavity of the grooved receiving device, the interior surface comprising a plurality of axial grooves and the cavity having a nominal first diameter, the interior surface coupled to a downhole tool interior surface; wherein: the cavity is configured to pass a fluid received from an interior cavity of the downhole tool; and each of the plurality of axial groves extend from the nominal first diameter to a second diameter, the second diameter greater than the nominal first diameter.
In one aspect, the downhole tool device is an interior flow through plunger. In another aspect, each of the set of axial grooves extend radially to a first length and are concentric about a longitudinal centerline of the downhole tool. In another aspect, the device forms a fishing neck adapted to receive a conventional inside grappling fishing tool. In another aspect, the plurality of axial grooves are three or more axial grooves. In another aspect, a width of each of the axial grooves varies along a longitudinal centerline of the downhole tool.
In yet another embodiment, a method of descending and retrieving a grooved fishing neck downhole tool within a tubular string of a wellbore is disclosed, the method comprising: positioning the grooved fishing neck downhole tool within the tubular string, the grooved fishing neck downhole tool comprising: a cylindrical body adapted to fit within the tubular string and having a body interior surface defining a cavity of a first diameter, the cavity adapted to pass a fluid from the cavity and out an upper portion of the cylindrical body; and a set of axial grooves disposed on the body interior surface at the upper portion, each of the set of axial grooves extending radially to a first depth and defining a second diameter; descending the grooved fishing neck downhole tool within the tubular string to a fixed location, wherein fluid passes through the set of axial grooves; lowering a conventional inside grappling fishing tool toward the grooved fishing neck downhole tool; engaging the conventional inside grappling fishing tool with at least a portion of the grooved fishing neck downhole tool adjacent the set of axial grooves; and pulling the conventional inside grappling fishing tool up the tubular string so as to retrieve the grooved fishing neck downhole tool.
In one aspect, the grooved fishing neck downhole tool is a grooved fishing neck internal flow through plunger.
The phrases “at least one”, “one or more”, and “and/or” are open-ended expressions that are both conjunctive and disjunctive in operation. For example, each of the expressions “at least one of A, B and C”, “at least one of A, B, or C”, “one or more of A, B, and C”, “one or more of A, B, or C” and “A, B, and/or C” means A alone, B alone, C alone, A and B together, A and C together, B and C together, or A, B and C together.
The term “a” or “an” entity refers to one or more of that entity. As such, the terms “a” (or “an”), “one or more” and “at least one” can be used interchangeably herein. It is also to be noted that the terms “comprising”, “including”, and “having” can be used interchangeably.
The term “means” as used herein shall be given its broadest possible interpretation in accordance with 35 U.S.C., Section 112, Paragraph 6. Accordingly, a claim incorporating the term “means” shall cover all structures, materials, or acts set forth herein, and all of the equivalents thereof. Further, the structures, materials or acts and the equivalents thereof shall include all those described in the summary, brief description of the drawings, detailed description, abstract, and claims themselves.
The preceding is a simplified summary of the disclosure to provide an understanding of some aspects of the disclosure. This summary is neither an extensive nor exhaustive overview of the disclosure and its various aspects, embodiments, and/or configurations. It is intended neither to identify key or critical elements of the disclosure nor to delineate the scope of the disclosure but to present selected concepts of the disclosure in a simplified form as an introduction to the more detailed description presented below. As will be appreciated, other aspects, embodiments, and/or configurations of the disclosure are possible utilizing, alone or in combination, one or more of the features set forth above or described in detail below. Also, while the disclosure is presented in terms of exemplary embodiments, it should be appreciated that individual aspects of the disclosure can be separately claimed.
The disclosure will be readily understood by the following detailed description in conjunction with the accompanying drawings, wherein like reference numerals designate like elements. The elements of the drawings are not necessarily to scale relative to each other. Identical reference numerals have been used, where possible, to designate identical features that are common to the figures.
It should be understood that the proportions and dimensions (either relative or absolute) of the various features and elements (and collections and groupings thereof) and the boundaries, separations, and positional relationships presented there between, are provided in the accompanying figures merely to facilitate an understanding of the various embodiments described herein and, accordingly, may not necessarily be presented or illustrated to scale (unless so stated on any particular drawing), and are not intended to indicate any preference or requirement for an illustrated embodiment to the exclusion of embodiments described with reference thereto.
Embodiments of an enhanced geometry receiving element forming a portion of a downhole tool are disclosed. The enhanced geometry receiving element may also be referred to as a grooved receiving element or a grooved receiving device. The downhole tool may be used in oil and gas operations. In one embodiment, the downhole tool is a bypass plunger.
Generally, the enhanced geometry receiving element comprises a set of grooves in an upper portion of a downhole tool. The set of grooves are disposed in the internal fishing neck region of the downhole tool and allow improved outflow of plunger fluid while maintaining the ability of the fishing neck to receive conventional fishing tools, such as a conventional inside grappling fishing tool.
The term “groove” means a channel or cut of a defined length and width that penetrates an otherwise smooth surface to a particular depth, such as a channel cut along an interior surface of a cylindrical body along an axial length of the cylindrical body. A groove may or may not be of uniform depth, may or may not be of uniform width, and/or may or may not be of uniform length. A groove may or may not be formed in one principal direction of a surface; for example, a groove may be formed along an axial length of a cylindrical body, or may be formed along both an axial length or direction of a cylindrical body and a radial length or direction of a cylindrical body.
The term “port” means the same as the term “groove.”
Various embodiments of an enhanced geometry receiving element and method of use will now be described with respect to
The downhole tool 40 traverses the interior annulus or cavity formed by the production tubing 20. More specifically, the downhole tool 40 descends or falls from the surface downwards into the wellbore toward the production zone (from up to down in
As the conventional bypass plunger 40 descends within a wellbore in the direction of descent arrow 60, fluid within the tubular string enters the tool at second or lower portion 44 of plunger 40, passes through hollow interior 43 of plunger 40, and exits at first or upper portion 42 of plunger 40. The upper portion 42 of plunger comprises fishing neck portion 45. The fishing neck portion of plunger 40 comprises a lip portion 46 that extends radially into the interior 43 of the plunger 40.
The internal fishing neck 45 on a plunger is designed for downhole retrieval. If a plunger becomes stuck in the tubing string, e.g. becomes lodged at the tubing string bottom (i.e. there is not enough velocity to push the tool to surface), a separate retrieval tool (male) will interlock with the plunger's internal fishing neck (female), and the plunger will be pulled and thus removed from the well. This removal may be done through wire lining or pulling rods.
The internal fishing neck may be used on any plunger type but is most frequently used on plungers where fluid flows through the inner portions of the plunger. This type of plunger may go by the name of Continuous run, Ball-and-sleeve, dart style plungers, and bypass plungers. As the fluid goes past this feature, the increase of drag may be noticeable in several ways, as discussed below.
As interior edge flow 63 passes within the interior 43 of plunger, the flow encounters the lip portion 46, resulting in a flow interruption that generates drag of the plunger 40. Stated another way, the interior edge flow 63 within the bypass plunger that impacts the lip portion 46 creates a flow discontinuity or flow disruption that interrupts otherwise upwardly smooth flow (such as that of the interior center flow 61) that in turn generates fluid drag on the plunger 40. In some situations, the flow discontinuity results in turbulence of otherwise smooth fluid flow within the interior 43 of the plunger 40. In some configurations of downhole tools configured with conventional fishing neck interiors, the flow discontinuity results in a fluid flow discontinuity or non-laminar flow at or around the lip portion 46 of the fishing neck 45 of otherwise smooth fluid flow within the interior 43 of the plunger 40, in turn inducing additional drag on the plunger 40 and thereby retarding the descent speed of the plunger 40. In some configurations of downhole tools configured with conventional fishing neck interiors, the interior edge flow 63 results in compression of the fluid at or adjacent or near the lip portion 46, which in turn induces additional drag on the plunger 40 and thereby retards or slows the descent speed of the plunger 40.
Generally, as briefly discussed above, a fishing neck of a downhole tool, such as a bypass plunger downhole tool, configured with a set of axial groves on the interior portion of the fishing neck mitigates or removes flow discontinuity or flow disruption along the interior edge of the fishing neck, thereby limiting if not eliminating the induced drag generated by the lip portion of a fishing neck and thus increasing the descent speed of the downhole tool.
Bypass plunger 300 comprises a lower portion 344, an upper portion 342, and an interior portion 343. The bypass plunger 300 has a maximum outer diameter 360. The interior portion 343 is configured to allow fluid to pass axially within interior portion 343 from upper portion 342 to lower portion 344, and vice versa. The upper portion 342 comprises fishing neck 345.
The fishing neck 345 comprises a set of axial grooves 390. The axial grooves 345 mitigate or reduce or eliminate disruption to fluid flowing within the plunger and passing from the lower portion 344 to the upper portion 342 from within the interior 343.
Each of the axial grooves 390 are disposed on an interior of the fishing neck 345 and extend radially into the interior surface of the fishing neck 345. Furthermore, each of the axial grooves 390 extend into an interior surface of the upper portion 342 of the plunger 300. Each of the axial grooves 390 has a groove profile 350, a groove width 351, a groove depth 352, and a groove area 353. The groove depth 352 is defined by half of the difference between maximum fish neck diameter 362 and the inner fishing neck diameter 361. (Note that in some embodiments, the groove depth 352 is other than one-half the afore-mentioned distance, meaning the groove depth 352 is other than half of the difference between maximum fish neck diameter 362 and the inner fishing neck diameter 361. Stated another way, in some embodiments, the groove depth 352 is more than half of the difference between maximum fish neck diameter 362 and the inner fishing neck diameter 361, and in some embodiments, the groove depth 352 is less than half of the difference between maximum fish neck diameter 362 and the inner fishing neck diameter 361. Also, in some embodiments, the groove diameter varies with axial length along the fishing neck, and/or varies among the set of grooves that form the enhanced geometry receiving element.) The configuration of axial grooves 390 of
Using these parameters, the area of the new flow through area, termed the “enhanced geometry inner diameter cross-sectional area,” is:
A=(Ga×Q)+C
Also, groove depth is defined as:
Gd=(Fm−Fi)/2
In one embodiment:
Gw≤0.75 inch
With reference to
In one embodiment, Gw is below 0.90 inch. In a more preferred embodiment, Gw is below 0.85 inch. In a most preferred embodiment, Gw is below 0.80 inch.
In one embodiment, Gw is between 0.3 inch and 1.0 inch. In a more preferred embodiment, Gw is between 0.4 inch and 0.9 inch. In a most preferred embodiment, Gw is between 0.4 inch and 0.8 inch.
Note that by using the enhanced geometry inner diameter cross-sectional area A relative to the nominal inner diameter cross-sectional area C as a description of the configuration of the set of grooves, any arrangement of grooves (e.g. in number or in shape) that yields that same nominal area C should produce the same or similar performance in plunger fall rate. For example, for a plunger of Fi=1.070 inch and Fm=1.230 inch, a C=0.899 inch2 results; in one embodiment, A=1.006 inch2 and thus a ratio A/C of 1.12 may be calculated. In one embodiment, the ratio A/C is about 1.12. In one embodiment, the ratio A/C is between 1.0 and 1.3. In a more preferred embodiment, the ratio A/C is between 1.05 and 1.25. In a most preferred embodiment, the ratio A/C is between 1.10 and 1.15.
In one embodiment, the ratio A/C is between 1.01 and 1.40. In another embodiment, the ratio A/C is between 1.02 and 1.5.
As provided above with regards to
In the embodiment of
Each of the axial grooves 390 extend an axial distance within the interior of the fishing neck 345. In some embodiments, one or more of the axial grooves extend substantially the entire length of the fishing neck 390. In some embodiments, one or more of the axial grooves extend along a portion of the entire length of the fishing neck 390. In some embodiments, a subset of the axial grooves extends along a portion of the entire length of the fishing neck 390, and another subset of the axial grooves extend along a portion of the entire length of the fishing neck 390. In one embodiment, one or more of the axial grooves 390 are not concentric about a longitudinal centerline of the plunger. In some embodiments, the set of axial grooves are of different groove profiles; for example, every other groove may be of a first groove width and the remaining grooves may be of a second groove width.
The interior fluid flow, during plunger descent, within a conventional bypass plunger with a conventional fishing neck (such as depicted in
In simulation and/or testing of the fluid flow of a conventional bypass plunger with a conventional fishing neck during wellbore descent and a bypass plunger with an enhanced geometry receiving element during wellbore descent, flow differences in the upper plunger portion are apparent. For common flow conditions (e.g. flow rates, flow pressures, etc.) and geometries (e.g. interior plunger diameters, exterior tubular string diameter, etc.), with the only difference being the presence of the enhanced geometry receiving element, the plunger fitted with the enhanced geometry receiving element (e.g.
For a conventional bypass plunger with a conventional fishing neck (such as depicted in
In contrast, a plunger fitted with the enhanced geometry receiving element (e.g.
Also mentioned above, note that other geometries of groove profiles are possible other than those depicted in
The enhanced geometry receiving element may be adapted or configured to operate with any downhole tool that comprises an internal fishing neck (aka an inside grappling fishing neck). For example, the enhanced geometry receiving element may be adapted or configured to operate with any bypass plunger.
The set of
Simulation and/or testing results have generated comparisons between an increase in cross sectional area at an interior lip of a fishing neck with an increase in plunger fall rate. It should be noted that there is an upper limit to the amount of increase in fishing neck area at the interior lip if the fishing neck is required to engage a conventional inside grappling fishing tool.
Each of the above described embodiments of the enhanced geometry receiving element, as adapted for or fitted to a conventional interior fishing neck of a downhole tool such as a bypass plunger, result in an increase in plunger fall rate due to a reduction in interior flow disruption at or near the interior fishing neck region. Embodiments of the enhanced geometry receiving element may be described with respect to the cross-sectional groove profile (e.g. shape, number of grooves, etc.). An alternate and complementary way to describe the enhanced geometry receiving element would be to describe the relative amount of “cut-out” or removal of the lip portion that makes up the catch or ledge portion of the fishing neck, given that the lip portion is the portion of the fishing neck that causes the flow disruption and the associated increased plunger drag and decrease in plunder descent speed. Such a removal of a portion of the disruptive lip portion translates to an increase in cross-sectional flow area.
Furthermore, an additional or alternative way to characterize the set of axial grooves is by the change in perimeter of the nominal flow through area C. For example, the nominal perimeter Pnom of the flow through area C is the circumference of the circle (where circumference is calculated as π times circle diameter) that defines the area C. If each groove has a groove profile Gp, an outer perimeter S, and groove width Gw 351, then each groove provides an increase in the perimeter of the flow through area of approximately (S−Gw). Thus, in the configuration of
Note that the ratio of Pnew to Pnom may be used to define embodiments that produce the same or similar performance in plunger fall rate. For example, for a plunger of Fm=1.230 inch and Fi=1.070 inch, a Pnom=3.362 inch; in one embodiment, Pnew=4.004 inch and thus a ratio Pnew/Pnom of 1.190 may be calculated. In one embodiment, the ratio Pnew/Pnom is about 1.190.
In one embodiment, the ratio Pnew/Pnom is between 1.0 and 1.3. In a more preferred embodiment, the ratio Pnew/Pnom is between 1.06 and 1.26. In a most preferred embodiment, the ratio A/C is between 1.10 and 1.20.
In one embodiment, the ratio Pnew/Pnom is between 1.01 and 1.5.
As with all of the embodiments in the disclosure, features or elements of any embodiment may be combined with other embodiments. For example, the rifled port embodiment of
Note that in some embodiments, the axial distance of one or more of the grooves is substantially the entire distance between the interior fishing neck lip and the end of the plunger. In some embodiments, the axial distance of one or more of the grooves is less than the entire distance between the interior fishing neck lip and the end of the plunger.
The flowchart or process diagram of
After starting at step 1204, the method 1200 proceeds to step 1208 wherein a grooved fishing neck bypass plunger is positioned in a tubular string of a wellbore. The grooved fishing neck bypass plunger is of the type descried above and is configured to engage a conventional inside grappling fishing tool at an upper end of the bypass plunger. After completing step 1208, the method 1200 proceeds to step 1212.
At step 1212, the grooved fishing neck bypass plunger is allowed to descend or to fall downward into the wellbore or toward the producing end of the tubular string. During the descent, at least some fluid contained in the tubular string enters a lower end of the grooved fishing neck bypass plunger, passes through an interior of the grooved fishing neck bypass plunger, passes over a grooved interior neck portion of the grooved fishing neck bypass plunger, and exits from the upper end of the grooved fishing neck bypass plunger. After completing step 1212, the method 1200 proceeds to step 1216.
At step 1216, the grooved fishing neck bypass plunger is stopped or is generally stationary within the tubular string, such as stopped at or near the bottom of the tubular string or is generally identified as in need of retrieval from a location within the tubular string. After completing step 1216, the method 1200 proceeds to step 1220.
At step 1220, a conventional inside grappling fishing tool or interior fitting fishing tool is descended into the tubular string toward the grooved fishing neck bypass plunger. After completing step 1220, the method 1200 proceeds to step 1224.
At step 1224, the conventional inside grappling fishing tool engages the grooved fishing neck bypass plunger at or adjacent the grooved fishing neck portion of the grooved fishing neck plunger. The conventional inside grappling fishing tool fits within the grooved fishing neck portion of the grooved fishing neck plunger so as to allow the conventional inside grappling fishing tool to impart an upward force to the grooved fishing neck bypass plunger. After completing step 1224, the method 1200 proceeds to step 1228.
At step 1228, the conventional inside grappling fishing tool pulls the grooved fishing neck bypass plunger away from the producing zone and toward the surface, so as to retrieve the grooved fishing neck bypass plunger. After completing step 1228, the method 1200 ends at step 1232.
In some embodiments, the grooves of the grooved fishing neck portion are milled where the center axis on geometry is parallel to the centerline axis (the ID/OD) of the plunger.
In a one embodiment, the grooves of the grooved fishing neck interior flow through plunger realize an increase in fall speed of at least 50% increase in fall speed relative to the same bypass plunger without grooves in the fishing neck, while maintaining the ability for the bypass plunger to be retrieved using conventional inside grappling fishing tools. In another embodiment, the grooves of the grooved fishing neck interior flow through plunger realize at least an increase in fall speed of at least 5%. In another embodiment, the grooves of the grooved fishing neck interior flow through plunger realize at least an increase in fall speed of at least 10%. In one embodiment, the grooves of the grooved fishing neck interior flow through plunger realize an increase in fall speed between 0.1% and 50%.
In some embodiments, the grooved fishing neck is configured to engage with any commercially available interior fishing tool, such as any interior fishing tools known to those skilled in the art or defined by standards or trade groups, such as the American Petroleum Institute, to include, without limitation, interior fishing tools other than conventional inside grappling fishing tools.
This application is a nonprovisional patent application of and claims the benefit of U.S. Provisional Patent Application No. 62/801,034, filed Feb. 4, 2019 and titled “Enhanced Geometry Receiving Element for a Downhole Tool” the disclosure of which is hereby incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1457139 | Bell | May 1923 | A |
2806534 | Potts | Sep 1957 | A |
3768562 | Baker | Oct 1973 | A |
4184504 | Carmichael | Jan 1980 | A |
5427504 | Dinning | Jun 1995 | A |
5470118 | Burton | Nov 1995 | A |
5549163 | Sieber | Aug 1996 | A |
5580114 | Palmer | Dec 1996 | A |
5941311 | Newton | Aug 1999 | A |
6148923 | Casey | Nov 2000 | A |
6554580 | Mayfield | Apr 2003 | B1 |
7021382 | Angman | Apr 2006 | B2 |
7096951 | Cox | Aug 2006 | B2 |
7121335 | Townsend | Oct 2006 | B2 |
7314080 | Giacomino | Jan 2008 | B2 |
7395865 | Bender | Jul 2008 | B2 |
7431079 | Chavez | Oct 2008 | B1 |
7793728 | Bender | Sep 2010 | B2 |
8365826 | Braddick | Feb 2013 | B2 |
8464798 | Nadkrynechny | Jun 2013 | B2 |
8627892 | Nadkrynechny | Jan 2014 | B2 |
8869902 | Smith | Oct 2014 | B2 |
9068443 | Jefferies | Jun 2015 | B2 |
9109424 | Jefferies | Aug 2015 | B2 |
D767737 | Kuykendall | Sep 2016 | S |
9624764 | Fleckenstein | Apr 2017 | B2 |
9670757 | Wessel | Jun 2017 | B2 |
9677395 | Affre De Saint Rome | Jun 2017 | B2 |
9915133 | Boyd | Mar 2018 | B2 |
10060235 | Damiano | Aug 2018 | B2 |
10215004 | Wilkinson | Feb 2019 | B2 |
10550674 | Boyd | Feb 2020 | B2 |
10669824 | Boyd | Jun 2020 | B2 |
20030155117 | Gray | Aug 2003 | A1 |
20050056416 | Gray | Mar 2005 | A1 |
20170107802 | Kuykendall | Apr 2017 | A1 |
20170247989 | Casey | Aug 2017 | A1 |
20170268318 | Roycroft | Sep 2017 | A1 |
20200088003 | Wardley | Mar 2020 | A1 |
Number | Date | Country | |
---|---|---|---|
20200248521 A1 | Aug 2020 | US |
Number | Date | Country | |
---|---|---|---|
62801034 | Feb 2019 | US |