ENHANCED IMMUNE CELL RECEPTOR SEQUENCING METHODS

Information

  • Patent Application
  • 20200002766
  • Publication Number
    20200002766
  • Date Filed
    January 30, 2018
    6 years ago
  • Date Published
    January 02, 2020
    5 years ago
Abstract
Disclosed are methods for sequencing immune cell receptor repertoires from immune cell populations, and kits containing primer mixtures for the sequencing of immune cell receptor repertoires.
Description
FIELD

The disclosure relates to methods, systems and kits for sequencing immune cell receptor repertoires from immune cells, such as T-cells or B-cells.


BACKGROUND

Immune cell repertoires, such as B- or T-cell repertoires, consists of millions of lymphocytes, each expressing a different protein complex that enables specific recognition of a single antigen. CD4 and CD8 positive T-cells express so-called T-cell receptors (TCRs). These heterodimeric receptors recognize antigen-derived peptides displayed by major histocompatibility complex (MHC) molecules on the surface of antigen presenting cells, as described in Rudolph M G, Stanfield R L, Wilson I A. How TCRs bind MHCs, peptides, and coreceptors. Annu Rev Immunol. 2006; 24:419-66. TCRs are composed of two subunits, most commonly of one α and one β chain. A less common type of TCR contains one γ and one δ chain.


Alpha (a) chains consists of a (variable) V, a joining (J) and a constant (C) region, while beta (β) chains contain an additional diversity (D) region between the V and the J region (see FIG. 1), as described in Starr T K, Jameson S C, Hogquist K A. Positive and negative selection of T cells. Annu Rev Immunol. 2003; 21:139-76. Each of these TCR regions is encoded in several pieces, so-called gene segments, which are spatially segregated in the germline. In humans, the TCR α gene locus contains 54 different V gene segments, and 61 J gene segments. The human TCR β chain locus comprises 65 V, 2 D and 14 J segments. The great structural diversity of TCRs is achieved by somatic recombination of these TCR gene segments during lymphocyte development in the thymus. During this process, several gene segments of each region type are randomly selected and joined to form a rearranged TCR locus. Additional junctional diversity is created by the addition or removal of nucleotides at the sites of recombination, as described in Krangel M S. Mechanics of T cell receptor gene rearrangement. Curr Opin Immunol. 2009 April; 21(2):133-9. The process of V(D)J joining plays a critical role in shaping the third hypervariable loops (also called complementary determining regions, CDR3s) of the TCR α and β chains. These regions bind antigens and are essential for providing the high specificity of antigen recognition that TCRs exhibit.


Similarly to the TCR αβ, TCR gamma (γ) and delta (δ) segments undergo V(D)J rearrangement during thymus development. Both loci are recombined in the double negative (DN) stage of T-cell development. Differentiation towards γδ or αβ lineage relies on the ability of the cell to produce functional γδ or αβ TCR. The δ locus is embedded within the α locus. Dδ, Jδ and Cδ segments are located in between the V and the J segment of the α locus. The Vδ segments are the same as the Vα segments but only a fraction of the Vα segments are used for the TCR δ chain.


Overall, V(D)J recombination is able to generate millions of different TCR sequences and plays a critical role in an organism's ability to eliminate infections or transformed cells. Not surprisingly, TCR repertoires affect a wide range of diseases, including malignancy, autoimmune disorders and infectious diseases. TCR sequencing has been instrumental for our understanding of how the TCR repertoire evolves during infection or following treatment (e.g. after hematopoietic stem cell transplantation, chronical viral infection, immunotherapy). Further, the identification of TCRs on tumor-infiltrating lymphocytes and other T-cells that target cancer-specific epitopes has not only furthered our knowledge of malignant disease, but has also led to novel therapies for cancer such as adoptive T-cell transfer or cancer vaccines.


Due to the large diversity of sequences, determining TCR repertoires has been challenging in praxis. In the last couple of years, next generation sequencing (NGS) has opened up new opportunities to comprehensively assess the extreme diversity of TCR repertoires, as described in Genolet R, Stevenson B J, Farinelli L, Osteras M, Luescher I F. Highly diverse TCRα chain repertoire of pre-immune CD8+ T cells reveals new insights in gene recombination. EMBO J. 2012 Apr. 4; 31(7):1666-78; Robins H S, Campregher P V, Srivastava S K, Wacher A, Turtle C J, Kahsai O, Riddell S R, Warren E H, Carlson C S. Comprehensive assessment of T-cell receptor beta-chain diversity in alpha beta T cells. Blood. 2009 Nov. 5; 114(19):4099-107; Linnemann C, Heemskerk B, Kvistborg P, Kluin R J, Bolotin D A, Chen X, Bresser K, Nieuwland M, Schotte R, Michels S, Gomez-Eerland R, Jahn L, Hombrink P, Legrand N, Shu C J, Mamedov I Z, Velds A, Blank C U, Haanen J B, Turchaninova M A, Kerkhoven R M, Spits H, Hadrup S R, Heemskerk M H, Blankenstein T, Chudakov D M, Bendle G M, Schumacher T N. High-throughput identification of antigen-specific TCRs by TCR gene capture. Nat Med. 2013 November; 19(11):1534-41; Turchaninova M A, Britanova O V, Bolotin D A, Shugay M, Putintseva E V, Staroverov D B, Sharonov G, Shcherbo D, Zvyagin I V, Mamedov I Z, Linnemann C, Schumacher T N, Chudakov D M. Pairing of T-cell receptor chains via emulsion PCR. Eur J Immunol. 2013 September; 43(9):2507-15.


Since most current TCR sequencing techniques require enrichment of TCR genes for sequencing, the majority of methods include an amplification step, in which the nucleic acids encoding the individual TCRs are amplified. Therefore, one of the challenges of the TCR sequencing relates to the ability of the technology to maintain the proportion of each TCR during the amplification. Thus, the ways in which TCR libraries are prepared have a strong impact on the quality and the reliability of the obtained sequencing results and on the conclusions than can be drawn from the data. Several approaches have been used to amplify and sequence TCR repertoires in the past, each method with its own set of issues.


One frequently employed method for TCR sequencing is based on a multiplex PCR step, in which all the primers for the V and the J segments are mixed together to amplify all the possible V(D)J rearrangements/combinations, as described in Robins H S, Campregher P V, Srivastava S K, Wacher A, Turtle C J, Kahsai O, Riddell S R, Warren E H, Carlson C S. Comprehensive assessment of T-cell receptor beta-chain diversity in alpha beta T cells. Blood. 2009 Nov. 5; 114(19):4099-107. The main drawback of this technology is that the amplification is not quantitative: Because the efficiency of each primer pair varies, some TCR sequences are preferentially represented in the library.


Another TCR sequencing method uses a process called “DNA gene capture” to isolate TCR encoding DNA fragments, as described in Linnemann C, Heemskerk B, Kvistborg P, Kluin R J, Bolotin D A, Chen X, Bresser K, Nieuwland M, Schotte R, Michels S, Gomez-Eerland R, Jahn L, Hombrink P, Legrand N, Shu C J, Mamedov I Z, Velds A, Blank C U, Haanen J B, Turchaninova M A, Kerkhoven R M, Spits H, Hadrup S R, Heemskerk M H, Blankenstein T, Chudakov D M, Bendle G M, Schumacher T N. High-throughput identification of antigen-specific TCRs by TCR gene capture. Nat Med. 2013 November; 19(11):1534-41. However, since this method uses DNA rather than RNA, this method will also isolate V and J segments that have not yet undergone somatic rearrangement. As a consequence, many of the obtained sequencing data are uninformative for TCR gene identification as they do not contain the V(D)J region of rearranged TCR gene locus. Furthermore, using DNA instead of RNA for the TCR gene analysis may overestimate the diversity of the TCR repertoire as only one of the two β chains is expressed by the T-cells while the other gene is silenced (allelic exclusion).


A third method of TCR amplification is based on the 5′-Race PCR technology (SMARTer® Human TCR a/b Profiling Kit, Takara-Clontech). In this method, a nucleic acid adapter is added to the 5′-end of the cDNA during the reverse transcription step. As a result, TCR products can be subsequently amplified with a single primer pair, with one primer binding to the adapter at the 5′-end of the cDNA and the second primer binding to the constant region near the 3′-end of the cDNA. One of the disadvantages of this technique is that the amplification step will generate PCR fragments ranging between 500 and 600 bp. As the length of the V segment exceeds 400 bp it is actually not possible to sequence the V(D)J junction starting from the 5′end using Illumina® sequencing technology, which can generate sequencing reads of up to 300 bp only. Sequencing of the V/J junction is thus usually performed from the constant region, crossing the J segment, the CDR3 region and part of the V segment. However, sequencing errors increase with the length of the sequencing read, and are thus most frequently introduced in the V segments—the region most challenging to correctly assign due to the high homology between different V segments. Consequently, sequencing starting from the constant region may lead to a reduction in the number of V segments that can be identified unambiguously. While this caveat can be avoided by paired-end sequencing, such modification of the protocol will significantly increase the duration and cost associated with this method.


SUMMARY

With each of the current methods exhibiting significant shortcomings, there is thus a considerable need for a TCR sequencing technology that provides TCR repertoire data with high sensitivity and reliability.


Disclosed herein are methods and kits for sequencing of T-cell receptor repertoires and other immune cell repertoires, such as B-cell repertoires, with high sensitivity and reliability. In one embodiment, the methods include the steps of (1) providing RNA from T-cells, (2) transcribing RNA into complimentary RNA (cRNA), (3) reverse transcribing the cRNA into cDNA while introducing a common adapter to the 5′ end of the cDNA products, (4) amplifying the cDNA using a single primer pair, (5) further amplifying with PCR products with a single primer pair which introduces adapters for next generation sequencing, wherein the first primer binds to the common adapter region, and wherein the second primer binds to the constant region of the TCR gene, and (6) sequencing the PCR products. In one embodiment, the methods include the steps of (1) providing RNA from T-cells, (2) reverse transcribing the RNA into cDNA, (3) generating second strand cDNA while introducing a common adapter to the 5′ end of the cDNA products, (4) amplifying the cDNA using a single primer pair, (5) further amplifying with PCR products with a single primer pair which introduces adapters for next generation sequencing, wherein the first primer binds to the common adapter region, and wherein the second primer binds to the constant region of the TCR gene, and (6) sequencing the PCR products. These embodiments are also called SEQTR method (Sequencing T-cell Receptors). Also provided are kits containing primer mixtures for the sequencing of T-cell receptor repertoires. Similar methods and kits for sequencing of B-cell receptor repertoires are provided.


According to one aspect, methods for sequencing immune cell receptor genes are provided. The methods include (1) providing RNA from immune cells; 2)(a) optionally transcribing the RNA into complementary RNA (cRNA), followed by reverse transcribing the cRNA into complementary DNA (cDNA) using one or more primers that comprise a first adapter sequence, wherein each 5′ end of the cDNA produced by reverse transcription contains the first adapter sequence; (2)(b) if step (2)(a) is not performed, reverse transcribing the RNA into complementary DNA (cDNA), followed by transcribing the cDNA into second strand cDNA using one or more primers that comprise a first adapter sequence, wherein each 5′ end of the cDNA produced by transcribing the cDNA into second strand cDNA contains the first adapter sequence; (3) amplifying the cDNA to produce a first amplification product using a first primer pair comprising a first primer that hybridizes to the first adapter sequence and a second primer that hybridizes to a constant region of immune cell receptor gene; (4) amplifying the first amplification product to produce a second amplification product using a second primer pair, in which (i) a first primer of the second primer pair binds to the adapter sequence at the 5′ end of the second amplification product, (ii) the second primer of the second primer pair binds to the constant region of immune cell receptor gene in the second amplification product, and (iii) the first and second primers comprise adapter sequences for sequencing; and (5) sequencing the second amplification product.


In some embodiments, the reverse transcription step results in PCR products ranging from 150-600 bp. In some embodiments, the immune cell receptor genes are T-cell receptor (TCR) genes or B-cell receptor (BCR) genes.


In some embodiments, the one or more primers used for reverse transcription (step (2)(a)) or second strand cDNA synthesis (step (2)(b)) hybridize to TCR α chain V segments. In some embodiments, the one or more primers used for reverse transcription (step (2)(a)) or second strand cDNA synthesis (step (2)(b)) comprise one or more of SEQ ID NOs: 1-50 or SEQ ID NOs: 261-310.


In some embodiments, the one or more primers used for reverse transcription (step (2)(a)) or second strand cDNA synthesis (step (2)(b)) hybridize to TCR β chain V segments. In some embodiments, the one or more primers used for reverse transcription (step (2)(a)) or second strand cDNA synthesis (step (2)(b)) comprise one or more of SEQ ID NOs: 51-100 or SEQ ID NOs: 311-360.


In some embodiments, the one or more primers used for reverse transcription (step (2)(a)) or second strand cDNA synthesis (step (2)(b)) hybridize to TCR γ chain V segments.


In some embodiments, the one or more primers used for reverse transcription (step (2)(a)) or second strand cDNA synthesis (step (2)(b)) hybridize to TCR δ chain V segments.


In some embodiments, the one or more primers used for reverse transcription (step (2)(a)) or second strand cDNA synthesis (step (2)(b)) hybridize to BCR heavy chain V segments.


In some embodiments, the one or more primers used for reverse transcription (step (2)(a)) or second strand cDNA synthesis (step (2)(b)) hybridize to BCR light chain V segments.


In some embodiments, the one or more primers used for reverse transcription (step (2)(a)) or second strand cDNA synthesis (step (2)(b)) contain a nucleotide barcode sequence. In some embodiments, the nucleotide barcode comprises 6 to 20 nucleotides. In some embodiments, the nucleotide barcode consists of 9 nucleotides. In some embodiments, the nucleotide barcode consists of the sequence NNNNTNNNN, NNNNANNNN or HHHHHNNNN.


In some embodiments, the first adapter sequence of the one or more primers used for the reverse transcription (step (2)(a)) or second strand cDNA synthesis (step (2)(b)) comprises a T7 adapter or an Illumina® adapter.


In some embodiments, the immune cells are T-cells and wherein the second primer of the first pair of primers hybridizes to the constant region of a TCR gene.


In some embodiments, the immune cells are B-cells and wherein the second primer of the first pair of primers hybridizes to the constant region of a BCR gene.


In some embodiments, the sequencing is next generation sequencing.


In some embodiments, the RNA from the immune cells is obtained by mixing immune cells with carrier cells before RNA extraction.


In some embodiments, the immune cells are tumor-infiltrating lymphocytes.


In some embodiments, the immune cells are CD4 or CD8 positive T-cells.


In some embodiments, the immune cells are purified from peripheral blood mononuclear cells (PBMC) before RNA extraction.


In some embodiments, the immune cells are part of a mixture of PBMC.


In some embodiments, the immune cells are derived from a mammal. In some embodiments, the mammal is a human or a mouse.


According to another aspect, kits for sequencing of T-cell receptors are provided. The kits include at least one primer which comprises a TCR α chain V segment portion of any one of SEQ ID NOs: 1-50 or SEQ ID NOs: 261-310 and a barcode sequence. In some embodiments, the kits include at least one primer including any one of SEQ ID NOs: 1-50 or SEQ ID NOs: 261-310.


According to another aspect, kits for sequencing of T-cell receptors are provided. The kits include at least one primer which comprises a TCR β chain V segment portion of any one of SEQ ID NOs: 51-100 or SEQ ID NOs: 311-360 and a barcode sequence. In some embodiments, the kits include at least one primer comprising any one of SEQ ID NOs: 51-100 or SEQ ID NOs: 311-360.


These and other features, aspects, and advantages of the present invention will become better understood with regard to the following description, appended claims and accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows the arrangement of (variable) V, diversity (D), joining (J) and constant (C) regions in the α and β chains of T-cell receptors. Figure taken from Murphy, K., Travers, P., Walport, M., & Janeway, C. (2012). Janeway's immunobiology. New York: Garland Science.



FIG. 2 is an illustration of three different TCR sequencing techniques that have been employed in the past.



FIG. 3 provides an overview of the SEQTR method, using TCR α chains as an example. Each bar represents a TCR α chain gene. In RNA and cRNA molecules, the order of the segments is, left to right: V segments, J segments, and the constant region. Barcode regions are added in cDNA molecule to the left of V segments; and T7 adapter regions are added to the left of the barcodes (also indicated by T7 primer amplification in PCR1 and PCR2 steps). Illumina® sequencing adapters are added in the PCR2 step to the 5′ and 3′ ends of the molecules, as shown in the last set of molecules.



FIG. 4 illustrates the sensitivity of the SEQTR method. 10{circumflex over ( )}6, 10{circumflex over ( )}5, 10{circumflex over ( )}4, 10{circumflex over ( )}3 or 0 CD8 positive T-cells, respectively, were mixed with 5×10{circumflex over ( )}4 3T3 cells. The RNA was extracted and subjected to transcription, reverse transcription and one round of amplification (steps 2-4, see Detailed Description). The resulting PCR products were separated on an agarose gels and visualized with ethidium bromide.



FIG. 5 illustrates the specificity of the SEQTR method. 10{circumflex over ( )}6, 10{circumflex over ( )}5, 10{circumflex over ( )}4, 10{circumflex over ( )}3 or 0 CD8 positive T-cells, respectively, were mixed with 5×10{circumflex over ( )}4 3T3 cells. The RNA was extracted and subjected to the SEQTR method. The percentages of sequencing reads that were or were not, respectively, associated with actual TCR genes are indicated.



FIG. 6 illustrates the unambiguous identification of TCR genes as a feature of the SEQTR method. 5×10{circumflex over ( )}4 3T3 cells were mixed with 10{circumflex over ( )}6, 10{circumflex over ( )}5, 10{circumflex over ( )}4, 10{circumflex over ( )}3 or 0 CD8 positive T-cells, respectively. The RNA of each mixture was isolated and subjected to the SEQTR method. Reads that were not associated with TCR genes were removed from the data set. For the remaining reads, the percentages of reads that could or could not, respectively, be unambiguously assigned to specific V or J segments are indicated.



FIG. 7 illustrates the linearity of the SEQTR method. A fixed amount of DNA encoding a known TCR sequence was diluted at different concentrations into a DNA mixture representing a naïve CD8 T-cell repertoire. TCR repertoires of the individual mixtures were sequenced using the SEQTR method. The observed frequency of the known TCR sequence in the entire repertoire was plotted against the respective TCR gene dilution.



FIG. 8 illustrates the reproducibility of the SEQTR method. TCR repertoires were sequenced using the SEQTR method from one biological sample in two independent technical replicates. The frequencies for each V-J rearrangement/combination in TCR β chains were determined and compared between the two replicates. Each sphere represents a single V-J rearrangement with the size of a sphere indicating the relative frequency of the specific V-J recombination. Grey spheres represent rearrangements for which the relative frequencies detected in the two replicates differed by less than two-fold. Black spheres represent rearrangements for which the relative frequencies detected in the two replicates differed by more than two-fold.



FIGS. 9A-9C illustrates the diversity of three different TCR repertoire sequencing data set using the SEQTR method. FIG. 9A CD8 positive T-cells were isolated from peripheral blood mononuclear cells (PBMC), FIG. 9B additionally purified using tetramers conjugated with neo-epitope TEDYMIHII (SEQ ID NO:236) or FIG. 9C additionally purified using tetramer conjugated with neo-epitope (same as in FIG. 9B) and subsequently expanded in vitro. The TCR repertoires of the respective samples were sequenced using the SEQTR method and the relative frequencies of all observed V/J rearrangements/combinations plotted.



FIGS. 10A-10C illustrate the overlap of TCRs identified using a single cell cloning method and TCRs identified using the SEQTR method. FIG. 10A: T-cells were isolated from PBMC and subjected to an additional round of purification using tetramers conjugated with neo-epitope TEDYMIHII (SEQ ID NO: 236). The resulting cell population was then sorted by fluorescence-activated cell sorting (FACS). Half of the sorted cells were subjected to the SEQTR method to sequence the TCR repertoire. For the other half of cells, individual T-cell clones were isolated and expanded in vitro (single cell cloning). Once the clones were established, the TCR genes of each T-cell clones were amplified and sequenced using classical Sanger sequencing. FIG. 10B: The table shows all six TCRs identified using the single cell cloning method. The sequences correspond to SEQ ID NOs: 237 through 242 from top to bottom, respectively. FIG. 10C: The table shows the eight most frequent TCRs identified using the SEQTR method. The sequences correspond to SEQ ID NOs: 243 through 250 from top to bottom, respectively.



FIG. 11 illustrates the number of reads for different samples obtained using the TCR sequencing service “immunoSEQ®” offered by Adaptive Biotechnology. The requested number of reads per sample was 200,000 reads. The number on the x axis represent analysis of samples from 16 different patients. Columns, left to right, for each sample represent number of reads from: the tumor; the stroma (tissue surrounding the tumor); epitope specific TIL (Tumor Infiltrating Lymphocyte) stained with tetramer and sorted by FACS from the tumor sample (TET); and tetramer sorted TIL from a piece of the tumor that has been engrafted in a mice (mTET).



FIG. 12 illustrates the amplification of TCR genes from T-cells that are part of a PBMC mixture (upper panel) or from isolated, CD4 positive T-cells (lower panel), using steps 2 to 4 of the SEQTR method.





DETAILED DESCRIPTION

In light of the shortcomings of existing techniques to sequence TCRs, it was determined that a TCR sequencing technology providing the most reliable TCR repertoire data includes the following features:

    • 1) The amplification of TCR genes is linear and does not employ multiplex PCR, therefore avoiding artificial overrepresentation of certain TCR sequences.
    • 2) The method is based on RNA and not DNA, thus only providing data for TCR sequences that have undergone rearrangement and that are actually expressed in T-cells.
    • 3) TCR genes are sequenced from the 5′ end, providing high quality sequencing data and therefore maximizing reliable and unambiguous identification of the highly homologous V segments.
    • 4) Sequencing data include the highly variable CDR3 region, therefore facilitating unambiguous identification of TCR sequences.


The disclosed methods, systems and kits fulfill all these criteria. These same features are of use in sequencing receptors from other immune cells, such as B-cells.


In some embodiments, the immune cell receptor sequencing methods comprise the following steps:

    • (1) Providing total RNA (RNA) as the starting material;
    • (2)(a) Transcribing the RNA into complimentary RNA (cRNA) followed by reverse transcribing the cRNA into cDNA, using primers that introduce a common adapter to the 5′ end of the cDNA products;
    • (2)(b) If step (2)(a) is not performed, reverse transcribing the RNA into complementary DNA (cDNA), followed by transcribing the cDNA into second strand cDNA using one or more primers that comprise a first adapter sequence, wherein each 5′ end of the cDNA produced by transcribing the cDNA into second strand cDNA contains the first adapter sequence;
    • (3) Amplifying the cDNA products using a single primer pair;
    • (4) Amplifying the PCR products of step 4 using a single primer pair, in which:
      • i. the primers introduce adapters for next generation sequencing, and
      • ii. the first primer binds to the common adapter region at the 5′ end of the PCR products, and
      • iii. the second primer binds to a region of the PCR products that constitutes the constant region of the TCR to be sequenced; and
    • (5) Sequencing the PCR products generated in step 4.


Genetic Information to be Sequenced

The genetic information to be sequenced is immune cell receptor genes. In the some embodiments of the invention, the genetic information to be sequenced comprises T-cell receptors genes. In some embodiments, the TCR genes that are sequenced encode TCR α chains or TCR β chains. In other embodiments, TCR genes that are sequenced encode TCR δ chains or TCR γ chains.


In other embodiments of the invention, the genetic information to be sequenced comprises B-cell receptor (BCR) genes.


Starting Material (Step 1)

RNA is isolated from immune cells and used to generate complimentary RNA (cRNA) by in vitro transcription. This is in contrast to existing TCR sequencing techniques that use DNA or complementary DNA (cDNA) as their genetic starting material.


In some embodiments, the immune cells from which RNA is obtained are isolated from peripheral blood mononuclear cells before RNA extraction. The immune cells are, in some embodiments, T-cells or B-cells.


In some embodiments, T-cells from which RNA is obtained express CD4 or CD8.


Generation of cRNA Through Transcription (Step (2)(a))


Complementary RNA (cRNA) is generated by in vitro transcription. Any method for performing in vitro transcription known to those skilled in molecular biology can be used. In some embodiments, the in vitro transcription in step 2 is performed using commercially available kits, such as the AMBION™ kits available from Thermo Fisher Scientific.


Reverse Transcription (Step (2)(a))


Reverse transcription of the cRNA is performed to generate complementary DNA (cDNA). Methods known to persons skilled in molecular biology are used to reverse transcribe cRNA to cDNA. Typically, such methods include hybridization of a primer to the 3′ end of the cRNA molecule and production of DNA starting at the hybridized primer using a reverse transcriptase enzyme and appropriate nucleotides, salts and buffers.


The choice of primers used in the reverse transcription reaction is important for the ability to differentiate between homologous, yet distinct, immune cell receptor sequences with high degrees of certainty and allows shortening of the V segments from the 5′ end, generating PCR products with a size of 250-300 bp. Such a size range of PCR products is optimal for next generation sequencing.


In some embodiments, the primers used for the reverse transcription are designed to bind within the V segments of the TCR genes (see FIG. 3). For example, the reverse transcription primers are designed to bind close enough to the V(D)J junction so that the resulting sequencing data cover the CDR3 of the V segment and the J segment, but far enough from the V(D)J junction to still allow differentiation between different V regions.


In some embodiments of the invention, a set of preferred primers is used (see, e.g., the sequences in Table 2 and Table 4, and Table 8 and Table 9). Due to the high degree of homology between different V segments, some of the primers described in Table 2 and Table 4 (and Table 8 and Table 9) bind to more than one V segment (see Table 3 and Table 5; the binding sites in their respective V segments for primers SEQ ID NOs: 1-100 and SEQ ID NOs: 261-360 are indicated in Table 15 and Table 16). However, the design of the primers presented in Table 2 and Table 4 (likewise Table 8 and Table 9) still allows the unambiguous assignment/identification of the respective V segments based on differences between the V segments downstream of the primer-binding site. In an alternative embodiment of the invention, only a subset of the preferred primers SEQ ID NOs: 1-100 and SEQ ID NOs: 261-360 may be used for the reverse transcription.


In yet another embodiment of the invention, primer sets may be used that bind to different regions in the V segments when compared to the primers having SEQ ID NOs: 1-100 and SEQ ID NOs: 261-360. For instance, the binding site of one or more primers may be moved towards the CDR3 region of the TCR gene. Due to the high degree of homology between V segments, the further the primer binding site is moved in the direction of the CDR3 region of the TCR gene, the larger the likelihood that the resulting sequencing data are consistent with the presence of more than one V segment. While, in these cases, the respective V segments cannot be assigned or identified unambiguously, the number of V/J segments possibly present in the sample can often be narrowed down to a small subset. Depending on the application, such limited information can already be of value to the experimenter.


In another embodiment of the invention, the binding site of one or more primers may be moved towards the 5′ end of the V segment as compared to the binding sites of primers SEQ ID NOs: 1-100 and SEQ ID NOs: 261-360. Many next generation sequencing technologies generate sequencing reads that are 150 bp long. Therefore, the further the primer binding site is moved towards the 5′ end of the V segment, the larger is the probability that the respective J segment (which can be found at the 3′ end of the resulting sequencing read) cannot be identified unambiguously. However, this problem can be circumvented by using alternative sequencing technologies that generate reads >150 bp.


In some embodiments, the primers used in step (2)(a) additionally contain a unique bar code. Such barcoding of each RNA molecule before the amplification can be used to correct the obtained sequencing results for PCR and sequencing errors.


In some embodiments, the primers for this reverse transcription step introduce a common T7 adapter at the 5′ end of the resulting PCR products. However, alternative adapter sequences are possible, including, but not limited to Illumina® adapters and sequences presented in Table 1.









TABLE 1







Examples for alternative nucleotide adapters that can be used


instead of a T7 adapter sequence









SEQ




ID NO
Primer name
Primer sequence (5′ to 3′)





251
Original Eberwine
AAACGACGGCCAGTGAATTGTAATACGACTCACTATAGGCGCT



T7






252
Affymetrix T7
GGCCAGTGAATTGTAATACGACTCACTATAGGGAGGCGGT





253
Invitrogen T7
TAATACGACTCACTATAGGGAGGCGGT





254
Ambion T7
GGTAATACGACTCACTATAGGGAGAAGAGT





255
Agilent T7
AATTAATACGACTCACTATAGGGAGAT










Reverse Transcription (Step (2)(b))


Reverse transcription of the RNA is performed to generate complementary DNA (cDNA). Methods known to persons skilled in molecular biology are used to reverse transcribe RNA to cDNA. Typically, such methods include hybridization of a primer to the 3′ end of the RNA molecule and production of DNA starting at the hybridized primer using a reverse transcriptase enzyme and appropriate nucleotides, salts and buffers.


Transcribing the cDNA into Second Strand cDNA (Step (2)(b))


Following generation of cDNA, second strand cDNA is synthesized using methods known to persons skilled in molecular biology. Typically, such methods include hybridization of a primer to the 3′ end of the cDNA molecule and production of second strand cDNA starting at the hybridized primer using a polymerase enzyme and appropriate nucleotides, salts and buffers.


The choice of primers used in the second strand synthesis reaction is step (2)(b) is as described above for reverse transcription in step (2)(a). The choice of primers is important for the ability to differentiate between homologous, yet distinct, immune cell receptor sequences with high degrees of certainty and allows shortening of the V segments from the 5′ end, generating PCR products with a size of 250-300 bp. Such a size range of PCR products is optimal for next generation sequencing.


Amplification (Step 3)

Amplification of the cDNA is performed by any of the well-known amplification reactions, such as polymerase chain reaction (PCR). Methods known to persons skilled in the molecular biology art are used to amplify the cDNA or a portion thereof (e.g., as depicted in FIG. 3). Typically, such methods include hybridization of a pair of primers to the cDNA molecule and amplification of the DNA sequence between the hybridized primers using a polymerase enzyme and appropriate nucleotides, salts and buffers.


In some embodiments, the first primer of a primer pair used in an amplification step binds to the common adapter region of the cDNA products produced in step 3 and the second primer of the primer pair binds to a region of the cDNA products that constitutes the constant region of the TCR to be sequenced (see FIG. 3).


Of note, not all reverse primers designed to target the constant region of the TCR gene perform equally well in this reaction. For example, the primers listed in Table 7 all failed to provide good amplification with the selected T7 5′ adapter. Therefore, in certain embodiments, the primers listed in are Table 6 used in this amplification step.


Amplification (Step 4)

A second amplification step is performed to add additional sequences to the amplified molecules, such as sequences that are useful in downstream DNA sequencing reactions. In some embodiments of the present invention, the primers used in this step add appropriate adapters for Illumina® sequencing.


Sequencing (Step 5)

Various suitable sequencing methods described herein or known in the art are used to obtain sequence information from the amplified sequences from the nucleic acid molecules within a sample. For example, sequencing methodologies that can be used in the methods disclosed herein include: classic Sanger sequencing, massively parallel sequencing, next generation sequencing, polony sequencing, 454 pyrosequencing, Illumina® sequencing, Solexa® sequencing, SOLiD™ sequencing, ion semiconductor sequencing, DNA nanoball sequencing, heliscope single molecule sequencing, single molecule real time sequencing, nanopore DNA sequencing, tunneling currents DNA sequencing, sequencing by hybridization, sequencing with mass spectrometry, microfluidic Sanger sequencing, microscopy-based sequencing, RNA polymerase sequencing, in vitro virus high-throughput sequencing, Maxam-Gilbert sequencing, single-end sequencing, paired-end sequencing, deep sequencing, and/or ultra-deep sequencing.


Definitions

As disclosed herein, a number of ranges of values are provided. It is understood that each intervening value, to the tenth of the unit of the lower limit, unless the context clearly dictates otherwise, between the upper and lower limits of that range is also specifically disclosed. Each smaller range between any stated value or intervening value in a stated range and any other stated or intervening value in that stated range is encompassed within the invention. The upper and lower limits of these smaller ranges may independently be included or excluded in the range, and each range where either, neither, or both limits are included in the smaller ranges is also encompassed within the invention, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the invention.


As used herein, a “primer” is a nucleic acid molecule that hybridizes with a complementary (including partially complementary) polynucleotide strand. Primers can be DNA molecules, RNA molecules, or DNA or RNA analogs. DNA or RNA analogs can be synthesized from nucleotide analogs.


Examples
Example 1: Exemplary Protocol for the SEQTR Method Using T7 and TrueSeq Adapters

TCR α and β chain genes were sequenced in two independent reactions.


1) Starting Material and RNA Extraction

    • To obtain sufficient amounts of RNA in the extraction, a minimum of 500,000 T-cells were used as starting material. Alternatively, and especially in instances where fewer T-cells were available, T-cells were mixed with 50,000 mouse 3T3 cells that served as carrier. T-cell RNA was extracted using the RNeasy® Micro Kit from Qiagen Inc. according the manufacturer's instruction with the following modification: Elution was performed with 20 μl of water preheated to 50° C. RNA quality and quantity was verified using a fragment analyzer.


2) cRNA Synthesis by In Vitro Transcription (IVT):

    • In vitro transcription of isolated RNA was performed using the MessageAmp™ II aRNA Amplification Kit from Ambion® (Thermo Fisher Scientific), which contains enzymes, buffers and nucleotides required to perform the first and second strand cDNA and the in vitro transcription. The kit also provides all columns and reagents needed for the cDNA and cRNA purifications. RNA amplification was performed according to the manufacturer's instructions with the following modifications: 1) Between 0.5 and 1 μg of total RNA as was used as starting material. 2) The IVT was performed in a final volume of 40 μl, and incubated at 37° C. for 16 h. Purified cRNA was quantified by absorbance using a NanoDrop™ spectrophotometer (Thermo Fisher Scientific).


3) cDNA Synthesis by Reverse Transcription:

    • The reverse transcription of the cRNA was performed with the SuperScript® III from Invitrogen (Thermo Fisher Scientific). The kit provides the enzyme, the buffer and the dithiothreitol (DTT) needed for the reaction. Deoxynucleotides (dNTPs) and RNAsin® Ribonuclease inhibitor were purchased from Promega. The sequences for the primers used for the reverse transcription can be found in Table 2 (primers for sequencing TCR α chain genes) and Table 4 (primers for sequencing TCR (3 chain genes).
    • 500 ng of cRNA were used as starting material for the reverse transcription. cRNA was mixed with 1 μl hTRAV or hTRBV primers mix (2 μM each) and 1 μl dNTP (25 mM) in a final volume of 13 μl. The mix was first incubated at 70° C. for 10 min, then at 50° C. for 30 s. 4 μl 5× buffer, 1 μl DTT (100 mM), 1 μl SuperScript III and 1 μl RNAsin® were added to the mix. The samples were subsequently incubated for at 55° C. 1 h and then at 85° C. for 5 min. After the cDNA synthesis, 1 μg DNase-free RNase (Roche) was added to the cDNA and incubated at 37° C. for 30 min to remove the cRNA.


4) TCR Gene Amplification:

    • TCR gene amplification was performed using a Phusion® High-Fidelity DNA polymerase (New England Biolabs) under the following conditions:
    • PCR mix: 1 μl cDNA from step 3, 1 μl dNTPs (25 mM), 1 μl primer mix (10 μM each, see Table 5), 5 μl 5× buffer and 0.2 μl Phusion® enzyme in a total volume of 25 μl.
    • PCR conditions:
      • 94° C. for 5 min
      • 20 to 30 cycles of
        • 98° C. for 10 s
        • 55° C. for 30 s
        • 72° C. for 30 s
      • 72° C. for 2 min
    • PCR products were purified either from agarose gels (using a Qiaquick Gel Extraction Kit from Qiagen) or using an ExoSAP-IT® PCR Product Cleanup Kit (Affymetrix) according to the manufacturer's instructions.


5) Addition of Next Generation Sequencing Adapters:

    • Illumina® sequencing adapters were added by PCR using a Phusion® High-Fidelity DNA polymerase (New England Biolabs). One third of the purified PCR product obtained in step 4 was mixed with 0.5 μl dNTPs (25 mM), 1 μl primer mix (10 μM each, see Table 8), 5 μl 5× buffer and 0.2 μl Phusion® enzyme in a total volume of 25
    • PCR conditions:
      • 94° C. for 5 min
      • perform 12 cycles of:
        • 98° C. for 10 s
        • 55° C. for 30 s
        • 72° C. for 30 s
      • 72° C. for 2 min


6) TCR Library Purification:

    • 10 μl of the PCR product from step 5 were purified using an ExoSAP-IT® PCR Product Cleanup Kit (Affymetrix) or Ampure XP beads (Beckman Coulter) according to the manufacturer's instruction. Samples could then directly be used for Illumina® sequencing.









TABLE 2







Preferred primer sequences for amplification of TCR α chain V segments. N can be


any nucleotide. The sequences for primers presented in this table consist of


three parts (listed from 5′ to 3′): T7 adapter, barcode and TCR α chain V segment.











SEQ

Sequence
Sequence



ID
Primer
T7 adapter portion 
barcode portion
Sequence TCR α chain V segment


NO
name
of the primer
of the primer
portion of the primer





 1
hTRAV1-1
TGTAATACGACTCACTATAG
NNNNTNNNN
CTTCTACAGGAGCTCCAGATGAAAG





 2
hTRAV1-2
TGTAATACGACTCACTATAG
NNNNTNNNN
CTTTTGAAGGAGCTCCAGATGAAAG





 3
hTRAV2
TGTAATACGACTCACTATAG
NNNNTNNNN
TGCTCATCCTCCAGGTGCGGGA





 4
hTRAV3
TGTAATACGACTCACTATAG
NNNNTNNNN
GAAGAAACCATCTGCCCTTGTGA





 5
hTRAV4
TGTAATACGACTCACTATAG
NNNNTNNNN
CCTGCCCCGGGTTTCCCTGAGCGAC





 6
hTRAV5
TGTAATACGACTCACTATAG
NNNNTNNNN
TCTCTGCGCATTGCAGACACCCA





 7
hTRAV6
TGTAATACGACTCACTATAG
NNNNTNNNN
TTGTTTCATATCACAGCCTCCCA





 8
hTRAV7
TGTAATACGACTCACTATAG
NNNNTNNNN
GCTTGTACATTACAGCCGTGCA





 9
hTRAV8-1/8-3
TGTAATACGACTCACTATAG
NNNNTNNNN
ATCTGAGGAAACCCTCTGTGCA





10
hTRAV8-2/8-4
TGTAATACGACTCACTATAG
NNNNTNNNN
ACCTGACGAAACCCTCAGCCCAT





11
hTRAV8-5
TGTAATACGACTCACTATAG
NNNNTNNNN
CCTATGCCTGTCTTTACTTTAATC





12
hTRAV8-6
TGTAATACGACTCACTATAG
NNNNTNNNN
CTTGAGGAAACCCTCAGTCCATAT





13
hTRAV8-7
TGTAATACGACTCACTATAG
NNNNTNNNN
GAAACCATCAACCCATGTGAGTGA





14
hTRAV9-1
TGTAATACGACTCACTATAG
NNNNTNNNN
ACTTGGAGAAAGACTCAGTTCAA





15
hTRAV9-2
TGTAATACGACTCACTATAG
NNNNTNNNN
ACTTGGAGAAAGGCTCAGTTCAA





16
hTRAV10
TGTAATACGACTCACTATAG
NNNNTNNNN
CTGCACATCACAGCCTCCCA





17
hTRAV11
TGTAATACGACTCACTATAG
NNNNTNNNN
GTTTGGAATATCGCAGCCTCTCAT





18
hTRAV12-1
TGTAATACGACTCACTATAG
NNNNTNNNN
CCCTGCTCATCAGAGACTCCAAG





19
hTRAV12-2
TGTAATACGACTCACTATAG
NNNNTNNNN
CTCTGCTCATCAGAGACTCCCAG





20
hTRAV12-3
TGTAATACGACTCACTATAG
NNNNTNNNN
CCTTGTTCATCAGAGACTCACAG





21
hTRAV13-1
TGTAATACGACTCACTATAG
NNNNTNNNN
TCCCTGCACATCACAGAGACCCAA





22
hTRAV13-2
TGTAATACGACTCACTATAG
NNNNTNNNN
TCTCTGCAAATTGCAGCTACTCAA





23
hTRAV14
TGTAATACGACTCACTATAG
NNNNTNNNN
TTGTCATCTCCGCTTCACAACTGG





24
hTRAV15
TGTAATACGACTCACTATAG
NNNNTNNNN
GTTTTGAATATGCTGGTCTCTCAT





25
hTRAV16
TGTAATACGACTCACTATAG
NNNNTNNNN
CCTGAAGAAACCATTTGCTCAAGA





26
hTRAV17
TGTAATACGACTCACTATAG
NNNNTNNNN
TCCTTGTTGATCACGGCTTCCCGG





27
hTRAV18
TGTAATACGACTCACTATAG
NNNNTNNNN
ACCTGGAGAAGCCCTCGGTGCA





28
hTRAV19
TGTAATACGACTCACTATAG
NNNNTNNNN
CACCATCACAGCCTCACAAGTCGT





29
hTRAV20
TGTAATACGACTCACTATAG
NNNNTNNNN
TTTCTGCACATCACAGCCCCTA





30
hTRAV21
TGTAATACGACTCACTATAG
NNNNTNNNN
CTTTATACATTGCAGCTTCTCAGCC





31
hTRAV22
TGTAATACGACTCACTATAG
NNNNTNNNN
GTACATTTCCTCTTCCCAGACCAC





32
hTRAV23
TGTAATACGACTCACTATAG
NNNNTNNNN
CATTGCATATCATGGATTCCCAGC





33
hTRAV24
TGTAATACGACTCACTATAG
NNNNTNNNN
GCTATTTGTACATCAAAGGATCCC





34
hTRAV25
TGTAATACGACTCACTATAG
NNNNTNNNN
CAGCTCCCTGCACATCACAGCCA





35
hTRAV26-1
TGTAATACGACTCACTATAG
NNNNTNNNN
TTGATCCTGCCCCACGCTACGCTGA





36
hTRAV26-2
TGTAATACGACTCACTATAG
NNNNTNNNN
TTGATCCTGCACCGTGCTACCTTGA





37
hTRAV27
TGTAATACGACTCACTATAG
NNNNTNNNN
GTTCTCTCCACATCACTGCAGCC





38
hTRAV28
TGTAATACGACTCACTATAG
NNNNTNNNN
GCCACCTATACATCAGATTCCCA





39
hTRAV29
TGTAATACGACTCACTATAG
NNNNTNNNN
TCTCTGCACATTGTGCCCTCCCA





40
hTRAV30
TGTAATACGACTCACTATAG
NNNNTNNNN
CCCTGTACCTTACGGCCTCCCAGCT





41
hTRAV31
TGTAATACGACTCACTATAG
NNNNTNNNN
CTTATCATATCATCATCACAGCCA





42
hTRAV32
TGTAATACGACTCACTATAG
NNNNTNNNN
TCCCTGCATATTACAGCCACCCAA





43
hTRAV33
TGTAATACGACTCACTATAG
NNNNTNNNN
ACCTCACCATCAATTCCTTAAAAC





44
hTRAV34
TGTAATACGACTCACTATAG
NNNNTNNNN
TCCCTGCATATCACAGCCTCCCAG





45
hTRAV35
TGTAATACGACTCACTATAG
NNNNTNNNN
CTTCCTGAATATCTCAGCATCCAT





46
hTRAV36
TGTAATACGACTCACTATAG
NNNNTNNNN
TCCTGAACATCACAGCCACCCAG





47
hTRAV37
TGTAATACGACTCACTATAG
NNNNTNNNN
TCCCTGCACATACAGGATTCCCAG





48
hTRAV38
TGTAATACGACTCACTATAG
NNNNTNNNN
CAAGATCTCAGACTCACAGCTGG





49
hTRAV39
TGTAATACGACTCACTATAG
NNNNTNNNN
CCGTCTCAGCACCCTCCACATCA





50
hTRAV40
TGTAATACGACTCACTATAG
NNNNTNNNN
CCATTGTGAAATATTCAGTCCAGG
















TABLE 3







V segments targeted by each primer used for


the amplification of TCR α chain V segments.









SEQ ID NO
Primer
Targeted V segment(s)












1
hTRAV1-1
hTRAV01-1


2
hTRAV1-2
hTRAV01-2


3
hTRAV2
hTRAV02


4
hTRAV3
hTRAV03


5
hTRAV4
hTRAV04


6
hTRAV5
hTRAV05


7
hTRAV6
hTRAV06


8
hTRAV7
hTRAV07


9
hTRAV8-1/8-3
hTRAV08-1, hTRAV08-3


10
hTRAV8-2/8-4
hTRAV08-2, hTRAV08-4


11
hTRAV8-5
hTRAV08-5


12
hTRAV8-6
hTRAV08-6


13
hTRAV8-7
hTRAV08-7


14
hTRAV9-1
hTRAV09-1


15
hTRAV9-2
hTRAV09-2


16
hTRAV10
hTRAV10, hTRAV41


17
hTRAV11
hTRAV11


18
hTRAV12-1
hTRAV12-1


19
hTRAV12-2
hTRAV12-2


20
hTRAV12-3
hTRAV12-3


21
hTRAV13-1
hTRAV13-1


22
hTRAV13-2
hTRAV13-2


23
hTRAV14
hTRAV14


24
hTRAV15
hTRAV15


25
hTRAV16
hTRAV16


26
hTRAV17
hTRAV17


27
hTRAV18
hTRAV18


28
hTRAV19
hTRAV19


29
hTRAV20
hTRAV20


30
hTRAV21
hTRAV21


31
hTRAV22
hTRAV22


32
hTRAV23
hTRAV23


33
hTRAV24
hTRAV24


34
hTRAV25
hTRAV25


35
hTRAV26-1
hTRAV26-1


36
hTRAV26-2
hTRAV26-2


37
hTRAV27
hTRAV27


38
hTRAV28
hTRAV28


39
hTRAV29
hTRAV29


40
hTRAV30
hTRAV30


41
hTRAV31
hTRAV31


42
hTRAV32
hTRAV32


43
hTRAV33
hTRAV33


44
hTRAV34
hTRAV34


45
hTRAV35
hTRAV35


46
hTRAV36
hTRAV36


47
hTRAV37
hTRAV37


48
hTRAV38
hTRAV38-1, hTRAV38-2


49
hTRAV39
hTRAV39


50
hTRAV40
hTRAV40
















TABLE 4







Preferred primer sequences for amplification of TCR β chain V segments. N can be


any nucleotide. The sequences for primers presented in this table consist of three


parts (listed from 5′ to 3′): T7 adapter, barcode and TCR β chain V segment.











SEQ

Sequence
Sequence



ID
Primer
T7 adapter portion 
barcode portion
Sequence TCR β chain V segment


NO
name
of the primer
of the primer
portion of the primer





 51
hTRBV1
TGTAATACGACTCACTATAG
NNNNANNNN
GTGGTCGCACTGCAGCAAGAAGA





 52
hTRBV2
TGTAATACGACTCACTATAG
NNNNANNNN
GATCCGGTCCACAAAGCTGGAGGA





 53
hTRBV3-1
TGTAATACGACTCACTATAG
NNNNANNNN
CATCAATTCCCTGGAGCTTGGTGA





 54
hTRBV4-1
TGTAATACGACTCACTATAG
NNNNANNNN
TTCACCTACACGCCCTGCAGCCAG





 55
hTRBV4-2
TGTAATACGACTCACTATAG
NNNNANNNN
TTCACCTACACACCCTGCAGCCAG





 56
hTRBV5-1
TGTAATACGACTCACTATAG
NNNNANNNN
GAATGTGAGCACCTTGGAGCTGG





 57
hTRBV5-2
TGTAATACGACTCACTATAG
NNNNANNNN
TACTGAGTCAAACACGGAGCTAGG





 58
hTRBV5-3
TGTAATACGACTCACTATAG
NNNNANNNN
GCTCTGAGATGAATGTGAGTGCCT





 59
hTRBV5-4
TGTAATACGACTCACTATAG
NNNNANNNN
CTGAGCTGAATGTGAACGCCTT





 60
hTRBV6-1
TGTAATACGACTCACTATAG
NNNNANNNN
GAGTTCTCGCTCAGGCTGGAGT





 61
hTRBV6-2
TGTAATACGACTCACTATAG
NNNNANNNN
CTGGGGTTGGAGTCGGCTGCTC





 62
hTRBV6-4
TGTAATACGACTCACTATAG
NNNNANNNN
CCCCTCACGTTGGCGTCTGCTG





 63
hTRBV6-5
TGTAATACGACTCACTATAG
NNNNANNNN
TCCCGCTCAGGCTGCTGTCGGC





 64
hTRBV6-6
TGTAATACGACTCACTATAG
NNNNANNNN
GATTTCCCGCTCAGGCTGGAGT





 65
hTRBV6-7
TGTAATACGACTCACTATAG
NNNNANNNN
TCCCCCTCAAGCTGGAGTCAGCT





 66
hTRBV6-8
TGTAATACGACTCACTATAG
NNNNANNNN
TCCCACTCAGGCTGGTGTCGGC





 67
hTRBV7-1
TGTAATACGACTCACTATAG
NNNNANNNN
CTCTGAAGTTCCAGCGCACACA





 68
hTRBV7-2
TGTAATACGACTCACTATAG
NNNNANNNN
GATCCAGCGCACACAGCAGGAG





 69
hTRBV7-3
TGTAATACGACTCACTATAG
NNNNANNNN
ACTCTGAAGATCCAGCGCACAGA





 70
hTRBV7-5
TGTAATACGACTCACTATAG
NNNNANNNN
AGATCCAGCGCACAGAGCAAGG





 71
hTRBV7-6
TGTAATACGACTCACTATAG
NNNNANNNN
CAGCGCACAGAGCAGCGGGACT





 72
hTRBV7-9
TGTAATACGACTCACTATAG
NNNNANNNN
GAGATCCAGCGCACAGAGCAGG





 73
hTRBV8-1
TGTAATACGACTCACTATAG
NNNNANNNN
CCCTCAACCCTGGAGTCTACTA





 74
hTRBV8-2
TGTAATACGACTCACTATAG
NNNNANNNN
TCCCCAATCCTGGCATCCACCA





 75
hTRBV9
TGTAATACGACTCACTATAG
NNNNANNNN
CTAAACCTGAGCTCTCTGGAGCT





 76
hTRBV10-1
TGTAATACGACTCACTATAG
NNNNANNNN
CCCTCACTCTGGAGTCTGCTGC





 77
hTRBV10-2
TGTAATACGACTCACTATAG
NNNNANNNN
CCCTCACTCTGGAGTCAGCTAC





 78
hTRBV10-3
TGTAATACGACTCACTATAG
NNNNANNNN
TCCTCACTCTGGAGTCCGCTAC





 79
hTRBV11-1
TGTAATACGACTCACTATAG
NNNNANNNN
CCACTCTCAAGATCCAGCCTGCA





 80
hTRBV12-1
TGTAATACGACTCACTATAG
NNNNANNNN
GAGGATCCAGCCCATGGAACCCA





 81
hTRBV12-2
TGTAATACGACTCACTATAG
NNNNANNNN
CTGAAGATCCAGCCTGCAGAGC





 82
hTRBV12-3
TGTAATACGACTCACTATAG
NNNNANNNN
CAGCCCTCAGAACCCAGGGACT





 83
hTRBV13
TGTAATACGACTCACTATAG
NNNNANNNN
GAGCTCCTTGGAGCTGGGGGACT





 84
hTRBV14
TGTAATACGACTCACTATAG
NNNNANNNN
GGTGCAGCCTGCAGAACTGGAG





 85
hTRBV15
TGTAATACGACTCACTATAG
NNNNANNNN
GACATCCGCTCACCAGGCCTGG





 86
hTRBV16
TGTAATACGACTCACTATAG
NNNNANNNN
TGAGATCCAGGCTACGAAGCTT





 87
hTRBV17
TGTAATACGACTCACTATAG
NNNNANNNN
GAAGATCCATCCCGCAGAGCCG





 88
hTRBV18
TGTAATACGACTCACTATAG
NNNNANNNN
GGATCCAGCAGGTAGTGCGAGG





 89
hTRBV19
TGTAATACGACTCACTATAG
NNNNANNNN
CACTGTGACATCGGCCCAAAAG





 90
hTRBV20
TGTAATACGACTCACTATAG
NNNNANNNN
CTGACAGTGACCAGTGCCCATC





 91
hTRBV21
TGTAATACGACTCACTATAG
NNNNANNNN
GAGATCCAGTCCACGGAGTCAG





 92
hTRBV22
TGTAATACGACTCACTATAG
NNNNANNNN
GTGAAGTTGGCCCACACCAGCCA





 93
hTRBV23
TGTAATACGACTCACTATAG
NNNNANNNN
CCTGGCAATCCTGTCCTCAGAA





 94
hTRBV24
TGTAATACGACTCACTATAG
NNNNANNNN
GAGTCTGCCATCCCCAACCAGA





 95
hTRBV25
TGTAATACGACTCACTATAG
NNNNANNNN
GGAGTCTGCCAGGCCCTCACA





 96
hTRBV26
TGTAATACGACTCACTATAG
NNNNANNNN
GAAGTCTGCCAGCACCAACCAG





 97
hTRBV27
TGTAATACGACTCACTATAG
NNNNANNNN
GGAGTCGCCCAGCCCCAACCAG





 98
hTRBV28
TGTAATACGACTCACTATAG
NNNNANNNN
GGAGTCCGCCAGCACCAACCAG





 99
hTRBV29
TGTAATACGACTCACTATAG
NNNNANNNN
GTGAGCAACATGAGCCCTGAAGA





100
hTRBV30
TGTAATACGACTCACTATAG
NNNNANNNN
GAGTTCTAAGAAGCTCCTTCTCA
















TABLE 5







V segments targeted by each primer used for


the amplification of TCR β chain V segments.










TCR b chain V



SEQ ID NO
segment name
Targeted V segment(s)












51
hTRBV1
hTRBV01


52
hTRBV2
hTRBV02


53
hTRBV3-1
hTRBV03-1, hTRBV03-2


54
hTRBV4-1
hTRBV04-1


55
hTRBV4-2
hTRBV04-2, hTRBV04-3


56
hTRBV5-1
hTRBV05-1


57
hTRBV5-2
hTRBV05-2


58
hTRBV5-3
hTRBV05-3


59
hTRBV5-4
hTRBV05-4, hTRBV05-5, hTRBV05-6,




hTRBV05-7, hTRBV05-8


60
hTRBV6-1
hTRBV06-1


61
hTRBV6-2
hTRBV06-2, hTRBV06-3


62
hTRBV6-4
hTRBV06-4


63
hTRBV6-5
hTRBV06-5


64
hTRBV6-6
hTRBV06-6, hTRBV06-9


65
hTRBV6-7
hTRBV06-7


66
hTRBV6-8
hTRBV06-8


67
hTRBV7-1
hTRBV07-1


68
hTRBV7-2
hTRBV07-2, hTRBV07-8


69
hTRBV7-3
hTRBV07-3, hTRBV07-4


70
hTRBV7-5
hTRBV07-5


71
hTRBV7-6
hTRBV07-6, hTRBV07-7


72
hTRBV7-9
hTRBV07-9


73
hTRBV8-1
hTRBV08-1


74
hTRBV8-2
hTRBV08-2


75
hTRBV9
hTRBV09


76
hTRBV10-1
hTRBV10-1


77
hTRBV10-2
hTRBV10-2


78
hTRBV10-3
hTRBV10-3


79
hTRBV11-1
hTRBV11-1, hTRBV11-2, hTRBV11-3


80
hTRBV12-1
hTRBV12-1


81
hTRBV12-2
hTRBV12-2


82
hTRBV12-3
hTRBV12-3, hTRBV12-4, hTRBV12-5


83
hTRBV13
hTRBV13


84
hTRBV14
hTRBV14


85
hTRBV15
hTRBV15


86
hTRBV16
hTRBV16


87
hTRBV17
hTRBV17


88
hTRBV18
hTRBV18


89
hTRBV19
hTRBV19


90
hTRBV20
hTRBV20


91
hTRBV21
hTRBV21


92
hTRBV22
hTRBV22


93
hTRBV23
hTRBV23


94
hTRBV24
hTRBV24


95
hTRBV25
hTRBV25


96
hTRBV26
hTRBV26


97
hTRBV27
hTRBV27


98
hTRBV28
hTRBV28


99
hTRBV29
hTRBV29


100
hTRBV30
hTRBV30
















TABLE 6







Primers for TCR gene amplification. Primer pair for sequencing of TCR


α genes: SEQ ID NO 101 and 102. Primer pair for sequencing of TCR 


β genes: SEQ ID NO 101 and 103.









SEQ




ID












NO
Primer name
Primer sequence
TCR chain





101
Forward primer T7 TRAV/TRBV
TGTAATACGACTCACTATAG
α and β





102
Reverse primer PCR 1 TRAV
GGCCACAGCACTGTTGCTCTTGAAG
α





103
Reverse primer PCR 1 TRABV
CCACTGTGCACCTCCTTCCCATTC
β
















TABLE 7







Reverse primers for TCR gene amplification that


did not result in successful amplification of


PCR products.









SEQ




ID




NO
Primer sequence
TCR chain





104
TCGACCAGCTTGACATCACAGG
α





105
CAGATTTGTTGCTCCAGGCCACAG
α





106
TCTGTGATATACACATCAGAATC
α





107
GAATCAAAATCGGTGAATAGGCAG
α





108
GGCAGACAGACTTGTCACTGGATT
α





109
TAGGACACCGAGGTAAAGCCAC
β





110
CTGGGTGACGGGTTTGGCCCTAT
β





111
TTGACAGCGGAAGTGGTTGC
β





112
GGCTGCTCAGGCAGTATCTGGAGTC
β





113
GCCAGGCACACCAGTGTGGCCTTTT
β
















TABLE 8







Primers for addition of Next Generation Sequencing adapters. The primer portion


corresponding to the Illumina ® adapters (forward and reverse) is underlined in


forward and reverse primers shown below. Primer pair for sequencing of TCR α


genes: SEQ ID NOS: 114 and 115. Primer pair for sequencing of TCR β genes:


 SEQ ID NOS: 114 and 116.










SEQ





ID


TCR


NO
Primer name
Primer sequence
chain





114
Forward primer

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCT

α and β



Illumina_T7

CTTCCGATCTTGTAATACGACTCACTATAG





TRAV/TRBV







115
Reverse primer

CAAGCAGAAGACGGCATACGAGATGCCTAAGTGACTGGAGTTCAGAC

α



PCR 2 TRAC

GTGTGCTCTTCCGATCCTCAGCTGGTACACGGCAGGGTCA







116
Reverse primer

CAAGCAGAAGACGGCATACGAGATGCCTAAGTGACTGGAGTTCAGAC

β



PCR 2 TRBC

GTGTGCTCTTCCGATCAAACACAGCGACCTCGGGTGGGAAC










Example 2: Exemplary Protocol for the SEQTR Method Using Nextera Adapters

TCR α and β chain genes were sequenced in two independent reactions.


1) Starting Material and RNA Extraction

    • To obtain sufficient amounts of RNA in the extraction, a minimum of 500,000 T-cells were used as starting material. Alternatively, and especially in instances where fewer T-cells were available, T-cells were mixed with 50,000 mouse 3T3 cells that served as carrier. T-cell RNA was extracted using the RNeasy® Micro Kit from Qiagen Inc. according the manufacturer's instruction with the following modification: Elution was performed with 20 μl of water preheated to 50° C. RNA quality and quantity was verified using a fragment analyzer.


2) cRNA Synthesis by In Vitro Transcription (IVT):

    • In vitro transcription of isolated RNA was performed using the MessageAmp™ II aRNA Amplification Kit from Ambion® (Thermo Fisher Scientific), which contains enzymes, buffers and nucleotides required to perform the first and second strand cDNA and the in vitro transcription. The kit also provides all columns and reagents needed for the cDNA and cRNA purifications. RNA amplification was performed according to the manufacturer's instructions with the following modifications:
    • 1) Between 0.5 and 1 μg of total RNA as was used as starting material. 2) The IVT was performed in a final volume of 40 μl, and incubated at 37° C. for 16 h. Purified cRNA was quantified by absorbance using a NanoDrop™ spectrophotometer (Thermo Fisher Scientific).


3) cDNA Synthesis by Reverse Transcription:

    • The reverse transcription of the cRNA was performed with the SuperScript® III from Invitrogen (Thermo Fisher Scientific). The kit provides the enzyme, the buffer and the dithiothreitol (DTT) needed for the reaction. Deoxynucleotides (dNTPs) and RNAsin® Ribonuclease inhibitor were purchased from Promega. The sequences for the primers used for the reverse transcription can be found in Table 9 (primers for sequencing TCR α chain genes) and Table 10 (primers for sequencing TCR β chain genes).
    • 500 ng of cRNA were used as starting material for the reverse transcription. cRNA was mixed with 1 μl hTRAV or hTRBV primers mix (2 μM each) and 1 μl dNTP (25 mM) in a final volume of 13 μl. The mix was first incubated at 70° C. for 10 min, then at 50° C. for 30 s. 4 μl 5× buffer, 1 μl DTT (100 mM), 1 μl SuperScript III and 1 μl RNAsin® were added to the mix. The samples were subsequently incubated for at 55° C. 1 h and then at 85° C. for 5 min. After the cDNA synthesis, 1 μg DNase-free RNase (Roche) was added to the cDNA and incubated at 37° C. for 30 min to remove the cRNA.


4) TCR Gene Amplification:

    • TCR gene amplification was performed using a Phusion® High-Fidelity DNA polymerase (New England Biolabs) under the following conditions:
    • PCR mix: 1 μl cDNA from step 3, 0.4 μl dNTPs (10 mM), 0.4 μl primer mix (20 μM Nextera5′, 10 μM Reverse primer PCR 1 TRAV or 2.5 μM Reverse primer PCR1 TRBV, see Table 11), 2 μl 5× buffer and 0.2 μl Phusion® enzyme in a total volume of 10 μl.
    • PCR conditions:
      • 94° C. for 5 min
      • 20 cycles of
        • 98° C. for 10 s
        • 55° C. for 30 s
        • 72° C. for 30 s
      • 72° C. for 2 min
    • PCR products were purified using 1 μl of ExoSAP-IT® PCR Product Cleanup Kit (Affymetrix) according to the manufacturer's instructions.


5) Addition of Next Generation Sequencing Adapters:

    • Illumina® sequencing adapters were added by PCR using a Phusion® High-Fidelity DNA polymerase (New England Biolabs). The following mix was added to the 11 μl of PCR1: 1 μl dNTPs (10 mM), 1 μl primer mix (1.25 μM each, see Table 12), 3 μl 5× buffer and 0.2 μl Phusion® enzyme and 9.8 μl of H2O.
    • PCR conditions:
      • 94° C. for 5 min
      • perform 25 cycles of:
        • 98° C. for 10 s
        • 55° C. for 30 s
        • 72° C. for 30 s
      • 72° C. for 2 min


6) TCR Library Purification:

    • 10 μl of the PCR product from step 5 were purified using an AMPURE XP beads (Beckman Coulter) according to the manufacturer's instruction. Samples could then directly be used for Illumina® sequencing.









TABLE 9







Preferred primer sequences for amplification of TCR α chain V segments. N can be


any nucleotide. The sequences for primers presented in this table consist of


three parts (listed from 5′ to 3′): T7 adapter, barcode and TCR α chain V segment.











SEQ

Sequence Nextera
Sequence



ID
Primer
adapter portion 
barcode portion
Sequence TCR α chain V segment


NO
name
of the primer
of the primer
portion of the primer





261
hTRAV1-1
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
CTTCTACAGGAGCTCCAGATGAAAG




GTATAAGAGACAG







262
hTRAV1-2
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
CTTTTGAAGGAGCTCCAGATGAAAG




GTATAAGAGACAG







263
hTRAV2
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
TGCTCATCCTCCAGGTGCGGGA




GTATAAGAGACAG







264
hTRAV3
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
GAAGAAACCATCTGCCCTTGTGA




GTATAAGAGACAG







265
hTRAV4
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
CCTGCCCCGGGTTTCCCTGAGCGAC




GTATAAGAGACAG







266
hTRAV5
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
TCTCTGCGCATTGCAGACACCCA




GTATAAGAGACAG







267
hTRAV6
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
TTGTTTCATATCACAGCCTCCCA




GTATAAGAGACAG







268
hTRAV7
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
GCTTGTACATTACAGCCGTGCA




GTATAAGAGACAG







269
hTRAV8-1/8-3
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
ATCTGAGGAAACCCTCTGTGCA




GTATAAGAGACAG







270
hTRAV8-2/8-4
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
ACCTGACGAAACCCTCAGCCCAT




GTATAAGAGACAG







271
hTRAV8-5
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
CCTATGCCTGTCTTTACTTTAATC




GTATAAGAGACAG







272
hTRAV8-6
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
CTTGAGGAAACCCTCAGTCCATAT




GTATAAGAGACAG







273
hTRAV8-7
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
GAAACCATCAACCCATGTGAGTGA




GTATAAGAGACAG







274
hTRAV9-1
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
ACTTGGAGAAAGACTCAGTTCAA




GTATAAGAGACAG







275
hTRAV9-2
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
ACTTGGAGAAAGGCTCAGTTCAA




GTATAAGAGACAG







276
hTRAV10
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
CTGCACATCACAGCCTCCCA




GTATAAGAGACAG







277
hTRAV11
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
GTTTGGAATATCGCAGCCTCTCAT




GTATAAGAGACAG







278
hTRAV12-1
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
CCCTGCTCATCAGAGACTCCAAG




GTATAAGAGACAG







279
hTRAV12-2
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
CTCTGCTCATCAGAGACTCCCAG




GTATAAGAGACAG







280
hTRAV12-3
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
CCTTGTTCATCAGAGACTCACAG




GTATAAGAGACAG







281
hTRAV13-1
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
TCCCTGCACATCACAGAGACCCAA




GTATAAGAGACAG







282
hTRAV13-2
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
TCTCTGCAAATTGCAGCTACTCAA




GTATAAGAGACAG







283
hTRAV14
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
TTGTCATCTCCGCTTCACAACTGG




GTATAAGAGACAG







284
hTRAV15
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
GTTTTGAATATGCTGGTCTCTCAT




GTATAAGAGACAG







285
hTRAV16
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
CCTGAAGAAACCATTTGCTCAAGA




GTATAAGAGACAG







286
hTRAV17
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
TCCTTGTTGATCACGGCTTCCCGG




GTATAAGAGACAG







287
hTRAV18
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
ACCTGGAGAAGCCCTCGGTGCA




GTATAAGAGACAG







288
hTRAV19
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
CACCATCACAGCCTCACAAGTCGT




GTATAAGAGACAG







289
hTRAV20
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
TTTCTGCACATCACAGCCCCTA




GTATAAGAGACAG







290
hTRAV21
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
CTTTATACATTGCAGCTTCTCAGCC




GTATAAGAGACAG







291
hTRAV22
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
GTACATTTCCTCTTCCCAGACCAC




GTATAAGAGACAG







292
hTRAV23
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
CATTGCATATCATGGATTCCCAGC




GTATAAGAGACAG







293
hTRAV24
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
GCTATTTGTACATCAAAGGATCCC




GTATAAGAGACAG







294
hTRAV25
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
CAGCTCCCTGCACATCACAGCCA




GTATAAGAGACAG







295
hTRAV26-1
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
TTGATCCTGCCCCACGCTACGCTGA




GTATAAGAGACAG







296
hTRAV26-2
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
TTGATCCTGCACCGTGCTACCTTGA




GTATAAGAGACAG







297
hTRAV27
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
GTTCTCTCCACATCACTGCAGCC




GTATAAGAGACAG







298
hTRAV28
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
GCCACCTATACATCAGATTCCCA




GTATAAGAGACAG







299
hTRAV29
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
TCTCTGCACATTGTGCCCTCCCA




GTATAAGAGACAG







300
hTRAV30
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
CCCTGTACCTTACGGCCTCCCAGCT




GTATAAGAGACAG







301
hTRAV31
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
CTTATCATATCATCATCACAGCCA




GTATAAGAGACAG







302
hTRAV32
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
TCCCTGCATATTACAGCCACCCAA




GTATAAGAGACAG







303
hTRAV33
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
ACCTCACCATCAATTCCTTAAAAC




GTATAAGAGACAG







304
hTRAV34
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
TCCCTGCATATCACAGCCTCCCAG




GTATAAGAGACAG







305
hTRAV35
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
CTTCCTGAATATCTCAGCATCCAT




GTATAAGAGACAG







306
hTRAV36
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
TCCTGAACATCACAGCCACCCAG




GTATAAGAGACAG







307
hTRAV37
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
TCCCTGCACATACAGGATTCCCAG




GTATAAGAGACAG







308
hTRAV38
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
CAAGATCTCAGACTCACAGCTGG




GTATAAGAGACAG







309
hTRAV39
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
CCGTCTCAGCACCCTCCACATCA




GTATAAGAGACAG







310
hTRAV40
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
CCATTGTGAAATATTCAGTCCAGG




GTATAAGAGACAG
















TABLE 10







Preferred primer sequences for amplification of TCR β chain V segments. N can be


any nucleotide. The sequences for primers presented in this table consist of three


parts (listed from 5′ to 3′): T7 adapter, barcode and TCR β chain V segment.











SEQ

Sequence T7
Sequence



ID
Primer
adapter portion 
barcode portion
Sequence TCR β chain V segment


NO
name
of the primer
of the primer
portion of the primer





311
hTRBV1
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
GTGGTCGCACTGCAGCAAGAAGA




GTATAAGAGACAG







312
hTRBV2
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
GATCCGGTCCACAAAGCTGGAGGA




GTATAAGAGACAG







313
hTRBV3-1
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
CATCAATTCCCTGGAGCTTGGTGA




GTATAAGAGACAG







314
hTRBV4-1
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
TTCACCTACACGCCCTGCAGCCAG




GTATAAGAGACAG







315
hTRBV4-2
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
TTCACCTACACACCCTGCAGCCAG




GTATAAGAGACAG







316
hTRBV5-1
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
GAATGTGAGCACCTTGGAGCTGG




GTATAAGAGACAG







317
hTRBV5-2
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
TACTGAGTCAAACACGGAGCTAGG




GTATAAGAGACAG







318
hTRBV5-3
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
GCTCTGAGATGAATGTGAGTGCCT




GTATAAGAGACAG







319
hTRBV5-4
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
CTGAGCTGAATGTGAACGCCTT




GTATAAGAGACAG







320
hTRBV6-1
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
GAGTTCTCGCTCAGGCTGGAGT




GTATAAGAGACAG







321
hTRBV6-2
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
CTGGGGTTGGAGTCGGCTGCTC




GTATAAGAGACAG







322
hTRBV6-4
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
CCCCTCACGTTGGCGTCTGCTG




GTATAAGAGACAG







323
hTRBV6-5
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
TCCCGCTCAGGCTGCTGTCGGC




GTATAAGAGACAG







324
hTRBV6-6
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
GATTTCCCGCTCAGGCTGGAGT




GTATAAGAGACAG







325
hTRBV6-7
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
TCCCCCTCAAGCTGGAGTCAGCT




GTATAAGAGACAG







326
hTRBV6-8
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
TCCCACTCAGGCTGGTGTCGGC




GTATAAGAGACAG







327
hTRBV7-1
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
CTCTGAAGTTCCAGCGCACACA




GTATAAGAGACAG







328
hTRBV7-2
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
GATCCAGCGCACACAGCAGGAG




GTATAAGAGACAG







329
hTRBV7-3
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
ACTCTGAAGATCCAGCGCACAGA




GTATAAGAGACAG







330
hTRBV7-5
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
AGATCCAGCGCACAGAGCAAGG




GTATAAGAGACAG







331
hTRBV7-6
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
CAGCGCACAGAGCAGCGGGACT




GTATAAGAGACAG







332
hTRBV7-9
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
GAGATCCAGCGCACAGAGCAGG




GTATAAGAGACAG







333
hTRBV8-1
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
CCCTCAACCCTGGAGTCTACTA




GTATAAGAGACAG







334
hTRBV8-2
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
TCCCCAATCCTGGCATCCACCA




GTATAAGAGACAG







335
hTRBV9
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
CTAAACCTGAGCTCTCTGGAGCT




GTATAAGAGACAG







336
hTRBV10-1
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
CCCTCACTCTGGAGTCTGCTGC




GTATAAGAGACAG







337
hTRBV10-2
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
CCCTCACTCTGGAGTCAGCTAC




GTATAAGAGACAG







338
hTRBV10-3
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
TCCTCACTCTGGAGTCCGCTAC




GTATAAGAGACAG







339
hTRBV11-1
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
CCACTCTCAAGATCCAGCCTGCA




GTATAAGAGACAG







340
hTRBV12-1
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
GAGGATCCAGCCCATGGAACCCA




GTATAAGAGACAG







341
hTRBV12-2
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
CTGAAGATCCAGCCTGCAGAGC




GTATAAGAGACAG







342
hTRBV12-3
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
CAGCCCTCAGAACCCAGGGACT




GTATAAGAGACAG







343
hTRBV13
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
GAGCTCCTTGGAGCTGGGGGACT




GTATAAGAGACAG







344
hTRBV14
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
GGTGCAGCCTGCAGAACTGGAG




GTATAAGAGACAG







345
hTRBV15
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
GACATCCGCTCACCAGGCCTGG




GTATAAGAGACAG







346
hTRBV16
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
TGAGATCCAGGCTACGAAGCTT




GTATAAGAGACAG







347
hTRBV17
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
GAAGATCCATCCCGCAGAGCCG




GTATAAGAGACAG







348
hTRBV18
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
GGATCCAGCAGGTAGTGCGAGG




GTATAAGAGACAG







349
hTRBV19
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
CACTGTGACATCGGCCCAAAAG




GTATAAGAGACAG







350
hTRBV20
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
CTGACAGTGACCAGTGCCCATC




GTATAAGAGACAG







351
hTRBV21
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
GAGATCCAGTCCACGGAGTCAG




GTATAAGAGACAG







352
hTRBV22
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
GTGAAGTTGGCCCACACCAGCCA




GTATAAGAGACAG







353
hTRBV23
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
CCTGGCAATCCTGTCCTCAGAA




GTATAAGAGACAG







354
hTRBV24
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
GAGTCTGCCATCCCCAACCAGA




GTATAAGAGACAG







355
hTRBV25
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
GGAGTCTGCCAGGCCCTCACA




GTATAAGAGACAG







356
hTRBV26
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
GAAGTCTGCCAGCACCAACCAG




GTATAAGAGACAG







357
hTRBV27
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
GGAGTCGCCCAGCCCCAACCAG




GTATAAGAGACAG







358
hTRBV28
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
GGAGTCCGCCAGCACCAACCAG




GTATAAGAGACAG







359
hTRBV29
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
GTGAGCAACATGAGCCCTGAAGA




GTATAAGAGACAG







360
hTRBV30
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
GAGTTCTAAGAAGCTCCTTCTCA




GTATAAGAGACAG
















TABLE 11







Primers for TCR gene amplification. Primer pair for sequencing of TCR 


α genes: SEQ ID NOs: 256 and 257. Primer pair for sequencing of TCR β


genes: SEQ ID NOs: 256 and 258. The primer portion corresponding to the 


Illumina ® adapters (forward and reverse) is underlined in reverse


primers shown below.









SEQ




ID












NO
Primer name
Primer sequence
TCR chain





256
Forward primer Nextera 5′
TCGTCGGCAGCGTC
α and β





257
Reverse primer PCR 1 TRAV

GTCTCGTGGGCTCGGAGATGTGTATAA







GAGACAGGAATCAAAATCGGTGAATA

α




GGCAG






258
Reverse primer PCR 1 TRBV

GTCTCGTGGGCTCGGAGATGTGTATAA







GAGACAGGCCAGGCACACCAGTGTGG

β




CCTTTT
















TABLE 12







Primers used to add the full Nextera sequence to both TCRα


and TCRβ.










SEQ





ID


TCR


NO
Primer name
Primer sequence
chain





259
Index Read 1
CAAGCAGAAGACGGCATACGAGAT[i7]GTCTCGTGGGCTC
α and β





260
Index Read 2
AATGATACGGCGACCACCGAGATCTACAC[i5]TCGTCGGCAGCG
α









Example 3: Exemplary Protocol for the SEQTR Method without In Vitro Transcription

TCR α and β chain genes were sequenced in two independent reactions.


1) Starting Material and RNA Extraction

    • To obtain sufficient amounts of RNA in the extraction, a minimum of 500,000 T-cells were used as starting material. Alternatively, and especially in instances where fewer T-cells were available, T-cells were mixed with 50,000 mouse 3T3 cells that served as carrier. T-cell RNA was extracted using the RNeasy® Micro Kit from Qiagen Inc. according the manufacturer's instruction with the following modification: Elution was performed with 20 μl of water preheated to 50° C. RNA quality and quantity was verified using a fragment analyzer.


2) cDNA Synthesis by Reverse Transcription:

    • The reverse transcription of the RNA was performed with the SuperScript® III from Invitrogen (Thermo Fisher Scientific) and oligo d(T). The kit provides the enzyme, the buffer and the dithiothreitol (DTT) needed for the reaction. Deoxynucleotides (dNTPs), oligo d(T) and RNAsin® Ribonuclease inhibitor were purchased from Promega.
    • 500 ng of RNA were used as starting material for the reverse transcription. RNA was mixed with 1 μl of oligo d(T) and 1 μl dNTP (25 mM) in a final volume of 13 μl. The mix was first incubated at 70° C. for 10 min, then at 50° C. for 30 s. 4 μl 5× buffer, 1 μl DTT (100 mM), 1 μl SuperScript III and 1 μl RNAsin® were added to the mix. The samples were subsequently incubated for at 55° C. 1 h and then at 85° C. for 5 min.


3) Second Strand cDNA Synthesis:

    • cDNA was then used to synthesize the second strand, performed using the Phusion® High-Fidelity DNA polymerase (New England Biolabs) under the following conditions:
    • Mix: 20 μl cDNA from step 2, 4 μl dNTPs (10 mM), 2 μl TRAV primer mix (Table 9), 2 μl TRBV primers mix (Table 10), 20 μl 5× buffer, 1 μl Phusion® enzyme in a total volume of 100 μl.
    • Synthesis conditions:
      • 98° C. for 5 min
      • 40° C. for 30 s
      • 72° C. for 5 min


4) cDNA Purification:

    • 100 μl of the cDNA product from step 3 were purified using an AMPURE XP beads (Beckman Coulter) according to the manufacturer's instruction.


5) TCR Gene Amplification:

    • TCR gene amplification was performed using a Phusion® High-Fidelity DNA polymerase (New England Biolabs) under the following conditions:
    • PCR mix: 7 μl cDNA from step 4, 0.4 μl dNTPs (10 mM), 0.4 μl primer mix (20 μM Nextera5′, 10 μM Reverse primer PCR 1 TRAV or 2.5 μM Reverse primer PCR1 TRBV, see Table 11), 2 μl 5× buffer and 0.2 μl Phusion® enzyme in a total volume of 10 μl.
    • PCR conditions:
      • 94° C. for 5 min
      • 20 cycles of
        • 98° C. for 10 s
        • 55° C. for 30 s
        • 72° C. for 30 s
      • 72° C. for 2 min
    • PCR products were purified using 1 μl of ExoSAP-IT® PCR Product Cleanup Kit (Affymetrix) according to the manufacturer's instructions.


6) Addition of Next Generation Sequencing Adapters:

    • Illumina® sequencing adapters were added by PCR using a Phusion® High-Fidelity DNA polymerase (New England Biolabs). The following mix was added to the 11 μl of PCR1: 1 μl dNTPs (10 mM), 1 μl primer mix (1.25 μM each, see Table 12), 3 μl 5× buffer and 0.2 μl Phusion® enzyme and 9.8 μl of H2O.
    • PCR conditions:
      • 94° C. for 5 min
      • perform 25 cycles of:
        • 98° C. for 10 s
        • 55° C. for 30 s
        • 72° C. for 30 s
      • 72° C. for 2 min


7) TCR Library Purification:

    • 10 μl of the PCR product from step 5 were purified using an AMPURE XP beads (Beckman Coulter) according to the manufacturer's instruction. Samples could then directly be used for Illumina® sequencing.


Example 4: Sensitivity of the TCR Sequencing Method

One of the challenges of TCR sequencing are the small amounts of genetic material for each T-cell clone. In many cases, the number of T-cells that can be recovered from a given experiment is too small for researchers to directly extract sufficient amounts of RNA for a subsequent amplification of the TCR genes. In such instances, the T-cells of interest can be mixed with 3T3 mouse cells, which serve as a carrier.


5×10{circumflex over ( )}4 3T3 cells were mixed with 10{circumflex over ( )}6, 10{circumflex over ( )}5, 10{circumflex over ( )}4, 10{circumflex over ( )}3 or 0 CD8 positive T-cells, respectively. The RNA of each mixture was isolated and subjected to steps 2 to 4 of the SEQTR method outlined above (see Detailed Description of the Invention). PCR products were separated on an agarose gel and visualized.


No TCR-specific PCR products were observed in samples that only contained 3T3 cells (see FIG. 4). However, TCR-specific bands were detected in all other samples: Increasing amounts of CD8 positive T-cells in the samples were correlated with increasing amounts of TCR-specific PCR products and decreasing intensity of the unspecific dimer primer band. These data demonstrate that the SEQTR method is sensitive enough to amplify TCR genes from as little as 1,000 T-cells, with no detectable background signal from the 3T3 carrier cells.


Example 5: Specificity of the SEQTR Method

Another challenge of TCR sequencing is the lack of specific amplification of TCR genes from complex samples. Competing TCR sequencing technologies such as services offered by Adaptive Biotechnology are characterized by up to 90% unspecific amplification. As a result, only as little as 10% of all sequencing data are informative for TCR repertoire determination, increasing cost and duration of any project aiming to sequence TCR repertoires.


5×10{circumflex over ( )}4 3T3 cells were mixed with 10{circumflex over ( )}6, 10{circumflex over ( )}5, 10{circumflex over ( )}4, 10{circumflex over ( )}3 or 0 CD8 positive T-cells, respectively. TCR repertoires for the individual samples were sequenced using the SEQTR method, and the percentage of reads that corresponded to TCR or non-TCR sequences, respectively, was determined. As shown in FIG. 5, 93-97% of all sequencing reads indeed corresponded to TCR genes, independent of the amount of T-cells used as starting material. In summary, these data show that TCR amplification using the SEQTR method is highly specific even when as little as 1,000 T-cells are used as starting material.


Example 6: Unambiguous Identification of TCR Genes

In humans, the TCR locus comprises 54 different V segments for the TCR α chain and 65 different V segments for the TCR β chain. However, many of these V segments are highly homologous. Consequently, one of the big challenges of TCR sequencing is to successfully differentiate between two or more TCR gene segments with high degrees of homology. For instance, depending on the choice of primer used in the amplification of the TCR gene and the length of the generated PCR product, the resulting sequencing data might be compatible with more than one V or J segment (in other words, two or more TCR V or J segments show 100% homology in the sequenced region). In these cases, the TCR gene for a specific read cannot be unambiguously assigned/identified.


5×10{circumflex over ( )}4 3T3 cells were mixed with 10{circumflex over ( )}6, 10{circumflex over ( )}5, 10{circumflex over ( )}4, 10{circumflex over ( )}3 or 0 CD8 positive T-cells, respectively. The RNA of each mixture was isolated and subjected to the TCR sequencing method. Out of all the sequencing reads that were identified as TCR genes, it was assessed if the V or J segments could be identified unambiguously. The data show that between 95% and 97% of all TCR sequencing reads could be assigned to a specific TCR segment, even when using as little as 1,000 T-cells as genetic starting material (see FIG. 6). In summary, the data demonstrate the robustness of the SEQTR method as 90 to 93% of all reads can be used to identify TCR sequences once unspecific sequences and ambiguous TCR sequences have been removed.


Due to the homology between V segments, it can be sometimes difficult to clearly identify the TCR sequence. hTRBV6-2 and hTRBV6-3 cannot be differentiated as they have 100% homology and thus will code for the same TCR. Due to their sequences, hTRBV12-3 and hTRBV12-4 cannot be differentiated with the method disclosed herein. Only paired-end sequencing that will catch the 5′-end of the V segment can discriminate these two sequences. Thus the hTRBV12-3 and hTRBV12-4 were considered as a unique sequence for the analysis of the repertoire.


Example 7: Linearity of TCR Gene Amplification

Because non-linear amplification of individual TCR sequences can lead to an incorrect over- or underrepresentation of the affected TCR genes in the final TCR repertoire, linearity of amplification is a critical determinant of the reliability and quality of the TCR sequencing data.


To test linearity of TCR gene amplification in our system, a fixed amount of DNA encoding a known TCR sequence was diluted at different concentrations into a DNA pool representing a naïve CD8 repertoire. Subsequently, the TCR repertoire of each sample was analyzed with SEQTR.


The observed frequency of the known TCR sequence in the entire TCR repertoire was then sequenced for each dilution and compared to the expected frequency. The scatter plot in FIG. 7 shows an excellent correlation (R2=0.99) between the dilution and the frequency of the known TCR sequence in the repertoire observed after sequencing. These data confirm the linearity of the amplification and suggest that results obtained using the SEQTR technique are quantitative.


Example 8: Reproducibility of the SEQTR Method

The reproducibility of the method was tested by performing two independent technical replicates starting from the same sample. The frequencies for each V-J rearrangement in the TCR β chains were determined and compared between the two replicates, as illustrated in FIG. 8. Each sphere represents a single V-J rearrangement that was detected in both replicates. Each sphere represents a single V-J rearrangement with the size of a sphere indicating the relative frequency of the specific V-J recombination. Grey spheres represent rearrangements for which the relative frequencies detected in the two replicates differed by less than two-fold. Black spheres represent rearrangements for which the relative frequencies detected in the two replicates differed by more than two-fold. Consistent with common practice in the analysis of gene expression data, differences between replaces of less than 2-fold are not considered significant.


The data show that only 13% of all V-J rearrangements showed a significant frequency difference of more than two-fold between the two technical replicates (see FIG. 8 upper inset). However, as illustrated in FIG. 8, V-J recombinations that were significantly different between the technical replicates were rather poorly expressed, as indicated by the small sizes of the black spheres. Therefore, if the frequencies of the individual V-J rearrangement are taken into consideration, only 0.5% of the sequences showed more than a two-fold difference between the replicates (see FIG. 8 lower inset), demonstrating that the SEQTR method is very reproducible.


Example 9: Sequencing of Example Repertoires Using the SEQTR Method

The SEQTR method was tested on three different type of CD8 positive T-cells:

    • (1) T-cell population 1: CD8 positive T-cells isolated from peripheral blood mononuclear cells (PBMCs).
    • (2) T-cell population 2: CD8 positive T-cells as in population 1 were FACS sorted using tetramers. Tetramers are MHC molecules presenting a specific peptide, linked to fluorescent dye. Tetramers bind T-cell expressing a TCR that specifically recognizes the peptide. The fluorescent dye allows sorting of the the desired T-cells by FACS.
    • (3) T-cell population 3: CD8 positive T-cells as in population 2 that were subsequently expanded in vitro.


The relative frequencies of each V-J rearrangement were determined using the SEQTR method (see FIG. 9). As expected, the naïve TCR repertoire derived from PBMC (population 1) is highly diverse (see FIG. 9A). Almost all the possible V-J rearrangements are represented in the sample, with no single V-J rearrangement exhibiting a frequency of over 11% The repertoire of the tetramer sorted CD8 positive T-cell subset 2 (see FIG. 9B) is less diverse as compared to the naïve one. Not only are fewer V-J rearrangements present in the repertoire overall. Moreover, two V-J rearrangements are clearly dominant, exhibiting frequencies of over 20%. These V-J rearrangements represent the few T-cells that recognize the epitope TEDYMIHII (SEQ ID NO: 236) conjugated to the tetramer and that were enriched during the tetramer purification step. Finally, the rapid clonal expansion (population 3) of the tetramer-purified T-cells enhances the bias of the TCR repertoire towards the T-cell clones already dominating subset 2. Consequently, part of the low frequency V-J rearrangements are lost and not detected anymore (see FIG. 9C). In summary, these data illustrate that the SEQTR method is well suited to differentiate between TCR repertoires with different degrees of diversities.


Example 10: Comparison of the SEQTR Method with Low-Throughput Single Cell Cloning

In order to determine how accurate the TCR repertoire data obtained using the SEQTR method were as compared to the true TCR repertoire present in a given T-cell population, we compared our results to data obtained by single cell sequencing.


Tetramer-specific CD8 were sorted from PBMC by FACS. The recovered cell population was split in two. Half of the cells were subjected to the SEQTR method to sequence the TCR repertoire. For the other half of the cells, individual T-cell clones were isolated and expanded in vitro (single cell cloning). Once the clones were established, the TCR genes of each T-cell clones were amplified and sequenced using classical Sanger sequencing (see FIG. 10A).


Among the 42 individual clones tested using the single cell method, six different TCRs were identified (see FIG. 10B). Using the SEQTR method, 116 different TCR genes were found (the eight most frequently observed V-J rearrangements are shown in FIG. 10C, also see Table 13 and Table 14). Indeed, the five TCRs most frequently observed with the single cell cloning technique also correspond to the five clones most frequently observed when applying the SEQTR method. Overall, all six TCR clones identified with single cell sequencing are represented among the eight TCRs with the highest frequencies observed in the SEQTR method. In summary, these data suggest that the SEQTR method produces a true representation of the actual TCR repertoire of a given T-cell population.









TABLE 13







CDR3 regions of TCR clones identified using the


single cell sequencing method.








SEQ ID NO
CDR3 region





237
CASSRHVGGVPEAFFG





238
CASSIGRGSEQYFG





239
CASSDVLSGEAFFG





240
CASQGHKNTEAFFG





241
CASSLGPGGVKTNEKLFFG





242
CASSLGPGGVKTNEKLFFG
















TABLE 14







Eight most frequently observed V-J rearrangements


of the 116 different TCR genes identified using


the SEQTR method.








SEQ ID NO
CDR3 region





243
CASSDVLSGEAFFG





244
CASQGHKNTEAFFG





245
CASSLGPGGVKTNEKLFFG





246
CASSIGRGSEQYFG





247
CASSRHVGGVPEAFFG





248
CASSASKGQPQHFG





249
CASQGHKNTEAFFG





250
CASSLGPGGVKTNEKLFFG









Example 11: TCR Sequencing Services Offered by Adaptive Biotechnology Provide Sequencing Data that May Reflect Up to 90% Unspecific TCR Amplification

Tumor samples from 16 patients were collected and the tumor cells were separated from the surrounding tissue (stroma). In addition, epitope-specific TIL were sorted by FACS from the tumor samples using tetramer staining (TET). Finally, the tumor cells were engrafted into humanized mice. After some time, the tumor was collected and epitope specific TIL were sorted by FACS.


DNA extraction was performed for each sample. DNA was sent to Adaptive Biotechnology for TCR sequencing (immunoSEQ® method, survey protocol 200,000-300,000 reads per sample).


In 80% of the samples, the immunoSEQ® method failed to generate 200,000 reads per samples, suggesting that the immunoSEQ® method fails to generate TCR repertoires with significant reliability.


Example 12: Amplification of TCR Genes from PBMC and CD4 Positive T-Cells

RNA was isolated from 10{circumflex over ( )}6 PBMC or 10{circumflex over ( )}6 CD4 positive T-cells, respectively, from three independent samples, The RNA was then subjected to steps 2 to 4 of the SEQTR method outlined above (see Detailed Description of the Invention). PCR products were separated on an agarose gel and visualized (see FIG. 12). Only TCR-specific bands are observed, suggesting that the SEQTR method cannot only be used for CD8 positive T-cells (see Example 7), but also for CD4 positive T-cells and even for T-cells that are part of a complex mixture of other PBMCs.


The foregoing examples and description of the embodiments should be taken as illustrating, rather than as limiting the present invention as defined by the claims. As will be readily appreciated, numerous variations and combinations of the features set forth above can be utilized without departing from the present invention as set forth in the claims. Such variations are not regarded as a departure from the scope of the invention, and all such variations are intended to be included within the scope of the following claims. All references cited herein are incorporated by reference herein in their entireties.


As described and claimed herein, including in the accompanying drawings, reference is made to particular features, including method steps. It is to be understood that the disclosure of the invention in this specification includes all possible combinations of such particular features. For example, where a particular feature is disclosed in the context of a particular aspect or embodiment, or a particular claim, that feature can also be used, to the extent possible, in combination with and/or in the context of other particular aspects and embodiments, and in the disclosed methods, systems and kits generally.


Where reference is made herein to a method comprising two or more defined steps, the defined steps can be carried out in any order or simultaneously (except where the context excludes that possibility), and the method can include one or more other steps which are carried out before any of the defined steps, between two of the defined steps, or after all the defined steps (except where the context excludes that possibility).









TABLE 15







TCR α chain V segments and binding sites for primers presented in Table 2 and Table 9.


The sequence for each V segment presented in this table consists of three parts (listed


from 5′ to 3′): Sequence upstream of primer binding site, sequence of the primer binding


site, sequence downstream of the primer binding site.












V

SEQ

Primer
hTRAV sequence


segment
Primer
ID

binding site
downstream of


name
name
NO
hTRAV sequence upstream of primer binding site
within hTRAV
primer binding site





hTRAV01-1
hTRAV01-1
117
ATGTGGGGAGCTTTCCTTCTCTATGTTTCCATGAAGATGGGAGGCACTGCAGGACAAAGCCTTGAGCAGCCCTCT
CTTCTACAG
ACTCTGCCTCTTA





GAAGTGACAGCTGTGGAAGGAGCCATTGTCCAGATAAACTGCACGTACCAGACATCTGGGTTTTATGGGCTGTC
GAGCTCCAG
CTTCTGCGCTGT





CTGGTACCAGCAACATGATGGCGGAGCACCCACATTTCTTTCTTACAATGCTCTGGATGGTTTGGAGGAGACAGG
ATGAAAG
GAGAGA





TCGTTTTTCTTCATTCCTTAGTCGCTCTGATAGTTATGGTTACCTC







hTRAV01-2
hTRAV01-2
118
ATGTGGGGAGTTTTCCTTCTTTATGTTTCCATGAAGATGGGAGGCACTACAGGACAAAACATTGACCAGCCCACT
CTTTTGAAG
ACTCTGCCTCTTA





GAGATGACAGCTACGGAAGGTGCCATTGTCCAGATCAACTGCACGTACCAGACATCTGGGTTCAACGGGCTGTT
GAGCTCCAG
CCTCTGTGCTGT





CTGGTACCAGCAACATGCTGGCGAAGCACCCACATTTCTGTCTTACAATGTTCTGGATGGTTTGGAGGAGAAAGG
ATGAAAG
GAGAGA





TCGTTTTTCTTCATTCCTTAGTCGGTCTAAAGGGTACAGTTACCTC







hTRAV02
hTRAV02
119
ATGGCTTTGCAGAGCACTCTGGGGGCGGTGTGGCTAGGGCTTCTCCTCAACTCTCTCTGGAAGGTTGCAGAAAGC
TGCTCATCC
GGCAGATGCTGC





AAGGACCAAGTGTTTCAGCCTTCCACAGTGGCATCTTCAGAGGGAGCTGTGGTGGAAATCTTCTGTAATCACTCT
TCCAGGTGC
TGTTTACTACTGT





GTGTCCAATGCTTACAACTTCTTCTGGTACCTTCACTTCCCGGGATGTGCACCAAGACTCCTTGTTAAAGGCTCAA
GGGA
GCTGTGGAGGA





AGCCTTCTCAGCAGGGACGATACAACATGACCTATGAACGGTTCTCTTCATCGC







hTRAV03
hTRAV03
120
ATGGCCTCTGCACCCATCTCGATGCTTGCGATGCTCTTCACATTGAGTGGGCTGAGAGCTCAGTCAGTGGCTCAG
GAAGAAACC
GCGACTCCGCTT





CCGGAAGATCAGGTCAACGTTGCTGAAGGGAATCCTCTGACTGTGAAATGCACCTATTCAGTCTCTGGAAACCCT
ATCTGCCCT
TGTACTTCTGTGC





TATCTTTTTTGGTATGTTCAATACCCCAACCGAGGCCTCCAGTTCCTTCTGAAATACATCACAGGGGATAACCTGG
TGTGA
TGTGAGAGACA





TTAAAGGCAGCTATGGCTTTGAAGCTGAATTTAACAAGAGCCAAACCTCCTTCCACCT







hTRAV04
hTRAV04
121
ATGAGGCAAGTGGCGAGAGTGATCGTGTTCCTGACCCTGAGTACTTTGAGCCTTGCTAAGACCACCCAGCCCATC
CCTGCCCCG
ACTGCTGTGTAC





TCCATGGACTCATATGAAGGACAAGAAGTGAACATAACCTGTAGCCACAACAACATTGCTACAAATGATTATAT
GGTTTCCCT
TACTGCCTCGTG





CACGTGGTACCAACAGTTTCCCAGCCAAGGACCACGATTTATTATTCAAGGATACAAGACAAAAGTTACAAACG
GAGCGAC
GGTGACA





AAGTGGCCTCCCTGTTTATCCCTGCCGACAGAAAGTCCAGCACTCTGAG







hTRAV05
hTRAV05
122
ATGAAGACATTTGCTGGATTTTCGTTCCTGTTTTTGTGGCTGCAGCTGGACTGTATGAGTAGAGGAGAGGATGTG
TCTCTGCGC
GACTGGGGACTC





GAGCAGAGTCTTTTCCTGAGTGTCCGAGAGGGAGACAGCTCCGTTATAAACTGCACTTACACAGACAGCTCCTCC
ATTGCAGAC
AGCTATCTACTT





ACCTACTTATACTGGTATAAGCAAGAACCTGGAGCAGGTCTCCAGTTGCTGACGTATATTTTTTCAAATATGGAC
ACCCA
CTGTGCAGAGAG





ATGAAACAAGACCAAAGACTCACTGTTCTATTGAATAAAAAGGATAAACATCTG

TA





hTRAV06
hTRAV06
123
ATGGAGTCATTCCTGGGAGGTGTTTTGCTGATTTTGTGGCTTCAAGTGGACTGGGTGAAGAGCCAAAAGATAGAA
TTGTTTCAT
GCCTGCAGACTC





CAGAATTCCGAGGCCCTGAACATTCAGGAGGGTAAAACGGCCACCCTGACCTGCAACTATACAAACTATTCCCC
ATCACAGCC
AGCTACCTACCT





AGCATACTTACAGTGGTACCGACAAGATCCAGGAAGAGGCCCTGTTTTCTTGCTACTCATACGTGAAAATGAGA
TCCCA
CTGTGCTCTAGA





AAGAAAAAAGGAAAGAAAGACTGAAGGTCACCTTTGATACCACCCTTAAACAGAGT

CA





hTRAV07
hTRAV07
124
ATGGAGAAGATGCGGAGACCTGTCCTAATTATATTTTGTCTATGTCTTGGCTGGGCAAATGGAGAAAACCAGGTG
GCTTGTACA
GCCTGAAGATTC





GAGCACAGCCCTCATTTTCTGGGACCCCAGCAGGGAGACGTTGCCTCCATGAGCTGCACGTACTCTGTCAGTCGT
TTACAGCCG
AGCCACCTATTT





TTTAACAATTTGCAGTGGTACAGGCAAAATACAGGGATGGGTCCCAAACACCTATTATCCATGTATTCAGCTGGA
TGCA
CTGTGCTGTAGA





TATGAGAAGCAGAAAGGAAGACTAAATGCTACATTACTGAAGAATGGAAGCA

TG





hTRAV08-1
hTRAV08-
125
ATGCTCCTGTTGCTCATACCAGTGCTGGGGATGATTTTTGCCCTGAGAGATGCCAGAGCCCAGTCTGTGAGCCAG
ATCTGAGGA
GTGGAGTGACAC



1/08-3

CATAACCACCACGTAATTCTCTCTGAAGCAGCCTCACTGGAGTTGGGATGCAACTATTCCTATGGTGGAACTGTT
AACCCTCTG
AGCTGAGTACTT





AATCTCTTCTGGTATGTCCAGTACCCTGGTCAACACCTTCAGCTTCTCCTCAAGTACTTTTCAGGGGATCCACTGG
TGCA
CTGTGCCGTGAA





TTAAAGGCATCAAGGGCTTTGAGGCTGAATTTATAAAGAGTAAATTCTCCTTTA

TGC





hTRAV08-2
hTRAV08-
126
ATGCTCCTGCTGCTCGTCCCAGTGCTCGAGGTGATTTTTACTCTGGGAGGAACCAGAGCCCAGTCGGTGACCCAG
ACCTGACGA
ATGAGCGACGCG



2/08-4

CTTGACAGCCACGTCTCTGTCTCTGAAGGAACCCCGGTGCTGCTGAGGTGCAACTACTCATCTTCTTATTCACCAT
AACCCTCAG
GCTGAGTACTTC





CTCTCTTCTGGTATGTGCAACACCCCAACAAAGGACTCCAGCTTCTCCTGAAGTACACATCAGCGGCCACCCTGG
CCCAT
TGTGTTGTGAGT





TTAAAGGCATCAACGGTTTTGAGGCTGAATTTAAGAAGAGTGAAACCTCCTTCC

GA





hTRAV08-3
hTRAV08-
127
ATGCTCCTGGAGCTTATCCCACTGCTGGGGATACATTTTGTCCTGAGAACTGCCAGAGCCCAGTCAGTGACCCAG
ATCTGAGGA
TTGGAGTGATGC



1/08-3

CCTGACATCCACATCACTGTCTCTGAAGGAGCCTCACTGGAGTTGAGATGTAACTATTCCTATGGGGCAACACCT
AACCCTCTG
TGCTGAGTACTT





TATCTCTTCTGGTATGTCCAGTCCCCCGGCCAAGGCCTCCAGCTGCTCCTGAAGTACTTTTCAGGAGACACTCTGG
TGCA
CTGTGCTGTGGG





TTCAAGGCATTAAAGGCTTTGAGGCTGAATTTAAGAGGAGTCAATCTTCCTTCA

TGC





hTRAV08-4
hTRAV08-
128
ATGCTCCTGCTGCTCGTCCCAGTGCTCGAGGTGATTTTTACCCTGGGAGGAACCAGAGCCCAGTCGGTGACCCAG
ACCTGACGA
ATGAGCGACGCG



2/08-4

CTTGGCAGCCACGTCTCTGTCTCTGAAGGAGCCCTGGTTCTGCTGAGGTGCAACTACTCATCGTCTGTTCCACCAT
AACCCTCAG
GCTGAGTACTTC





ATCTCTTCTGGTATGTGCAATACCCCAACCAAGGACTCCAGCTTCTCCTGAAGTACACATCAGCGGCCACCCTGG
CCCAT
TGTGCTGTGAGT





TTAAAGGCATCAACGGTTTTGAGGCTGAATTTAAGAAGAGTGAAACCTCCTTCC

GACACA





hTRAV08-5
hTRAV08-5
129
ATGCTCCTGGTGCTCATCCCACTGCTGGGGATACATTTTGTCCTGAGTGAGAACTGTCAGAGCCCAGTCAGTGAC
CCTATGCCT
TCTTAATCCTGTC





CCAGCCTGACATCCGCATCACTGTCTCTGAAGGAGCCTCACTGGAGTTGAGATGTAACTATTCCTATGGGGCGAT
GTCTTTACT
AGCTGAGGAGGA





GTTGTGGGAAGTCAGGGACCCCAAACGGAGGGACCGGCTGAAGCCATGGCAGAAGAATGTGGATTGTGAAGAT
TTAATC
TGTATGTCACC





TTCATGGACATTTATTAGTTCCCCAAATTAATACTTTTATAATTTCTTATGCCTCTCTTTACTGCAATCTCTAAACA







TAAATTGTAAAGATTTCATGGACACTTATCACTTCCCCAATCAATACCCCTGTGATTT







hTRAV08-6
hTRAV08-6
130
ATGCTCCTGCTGCTCGTCCCAGCGTTCCAGGTGATTTTTACCCTGGGAGGAACCAGAGCCCAGTCTGTGACCCAG
CTTGAGGAA
AAGCGACACGGC





CTTGACAGCCAAGTCCCTGTCTTTGAAGAAGCCCCTGTGGAGCTGAGGTGCAACTACTCATCGTCTGTTTCAGTG
ACCCTCAGT
TGAGTACTTCTG





TATCTCTTCTGGTATGTGCAATACCCCAACCAAGGACTCCAGCTTCTCCTGAAGTATTTATCAGGATCCACCCTGG
CCATAT
TGCTGTGAGTGA





TTAAAGGCATCAACGGTTTTGAGGCTGAATTTAACAAGAGTCAAACTTCCTTCCA







hTRAV08-7
hTRAV08-7
131
ATGCTCTTAGTGGTCATTCTGCTGCTTGGAATGTTCTTCACACTGAGAACCAGAACCCAGTCGGTGACCCAGCTT
GAAACCATC
TGCTGCTGAGTA





GATGGCCACATCACTGTCTCTGAAGAAGCCCCTCTGGAACTGAAGTGCAACTATTCCTATAGTGGAGTTCCTTCT
AACCCATGT
CTTCTGTGCTGTG





CTCTTCTGGTATGTCCAATACTCTAGCCAAAGCCTCCAGCTTCTCCTCAAAGACCTAACAGAGGCCACCCAGGTT
GAGTGA
GGTGACAGG





AAAGGCATCAGAGGTTTTGAGGCTGAATTTAAGAAGAGCGAAACCTCCTTCTACCTGAG







hTRAV09-1
hTRAV09-1
132
ATGAATTCTTCTCCAGGACCAGCGATTGCACTATTCTTAATGTTTGGGGGAATCAATGGAGATTCAGTGGTCCAG
ACTTGGAGA
GAGTCAGACTCC





ACAGAAGGCCAAGTGCTCCCCTCTGAAGGGGATTCCCTGATTGTGAACTGCTCCTATGAAACCACACAGTACCCT
AAGACTCAG
GCTGTGTACTTCT





TCCCTTTTTTGGTATGTCCAATATCCTGGAGAAGGTCCACAGCTCCACCTGAAAGCCATGAAGGCCAATGACAAG
TTCAA
GTGCTCTGAGTG





GGAAGGAACAAAGGTTTTGAAGCCATGTACCGTAAAGAAACCACTTCTTTCC

A





hTRAV09-2
hTRAV09-2
133
ATGAACTATTCTCCAGGCTTAGTATCTCTGATACTCTTACTGCTTGGAAGAACCCGTGGAAATTCAGTGACCCAG
ACTTGGAGA
GTGTCAGACTCA





ATGGAAGGGCCAGTGACTCTCTCAGAAGAGGCCTTCCTGACTATAAACTGCACGTACACAGCCACAGGATACCC
AAGGCTCAG
GCGGTGTACTTC





TTCCCTTTTCTGGTATGTCCAATATCCTGGAGAAGGTCTACAGCTCCTCCTGAAAGCCACGAAGGCTGATGACAA
TTCAA
TGTGCTCTGAGT





GGGAAGCAACAAAGGTTTTGAAGCCACATACCGTAAAGAAACCACTTCTTTCC

GA





hTRAV10
hTRAV10
134
ATGAAAAAGCATCTGACGACCTTCTTGGTGATTTTGTGGCTTTATTTTTATAGGGGGAATGGCAAAAACCAAGTG
CTGCACATC
GCTCAGCGATTC





GAGCAGAGTCCTCAGTCCCTGATCATCCTGGAGGGAAAGAACTGCACTCTTCAATGCAATTATACAGTGAGCCCC
ACAGCCTCC
AGCCTCCTACAT





TTCAGCAACTTAAGGTGGTATAAGCAAGATACTGGGAGAGGTCCTGTTTCCCTGACAATCATGACTTTCAGTGAG
CA
CTGTGTGGTGAG





AACACAAAGTCGAACGGAAGATATACAGCAACTCTGGATGCAGACACAAAGCAAAGCTCT

CG





hTRAV11
hTRAV11
135
ACGGAGAAGCCCTTGGGAGTTTCATTCTTGATTTCCTCCTGGCAGCTGTGCTGGGTGAATAGACTACATACACTG
GTTTGGAAT
CTGGGAGATTCA





GAGCAGAGTCCTTCATTCCTGAATATTCAGGAGGGAATGCATGCCGTTCTTAATTGTACTTATCAGGAGAGAACA
ATCGCAGCC
GCCACCTACTTC





CTCTTCAATTTCCACTGGTTCCGGCAGGATCCGGGGAGAAGACTTGTGTCTTTGACCTTAATTCAATCAAGCCAG
TCTCAT
TGTGCTTTGC





AAGGAGCAGGGAGACAAATATTTTAAAGAACTGCTTGGAAAAGAAAAATTTTATAGT







hTRAV12-1
hTRAV12-1
136
ATGATATCCTTGAGAGTTTTACTGGTGATCCTGTGGCTTCAGTTAAGCTGGGTTTGGAGCCAACGGAAGGAGGTG
CCCTGCTCA
CTCAGTGATTCA





GAGCAGGATCCTGGACCCTTCAATGTTCCAGAGGGAGCCACTGTCGCTTTCAACTGTACTTACAGCAACAGTGCT
TCAGAGACT
GCCACCTACCTC





TCTCAGTCTTTCTTCTGGTACAGACAGGATTGCAGGAAAGAACCTAAGTTGCTGATGTCCGTATACTCCAGTGGT
CCAAG
TGTGTGGTGAAC





AATGAAGATGGAAGGTTTACAGCACAGCTCAATAGAGCCAGCCAGTATATTT

A





hTRAV12-2
hTRAV12-2
137
ATGAAATCCTTGAGAGTTTTACTAGTGATCCTGTGGCTTCAGTTGAGCTGGGTTTGGAGCCAACAGAAGGAGGTG
CTCTGCTCA
CCCAGTGATTCA





GAGCAGAATTCTGGACCCCTCAGTGTTCCAGAGGGAGCCATTGCCTCTCTCAACTGCACTTACAGTGACCGAGGT
TCAGAGACT
GCCACCTACCTC





TCCCAGTCCTTCTTCTGGTACAGACAATATTCTGGGAAAAGCCCTGAGTTGATAATGTTCATATACTCCAATGGT
CCCAG
TGTGCCGTGAA





GACAAAGAAGATGGAAGGTTTACAGCACAGCTCAATAAAGCCAGCCAGTATGTTT







hTRAV12-3
hTRAV12-3
138
ATGAAATCCTTGAGAGTTTTACTGGTGATCCTGTGGCTTCAGTTAAGCTGGGTTTGGAGCCAACAGAAGGAGGTG
CCTTGTTCA
CCCAGTGATTCA





GAGCAGGATCCTGGACCACTCAGTGTTCCAGAGGGAGCCATTGTTTCTCTCAACTGCACTTACAGCAACAGTGCT
TCAGAGACT
GCCACCTACCTC





TTTCAATACTTCATGTGGTACAGACAGTATTCCAGAAAAGGCCCTGAGTTGCTGATGTACACATACTCCAGTGGT
CACAG
TGTGCAATGAGC





AACAAAGAAGATGGAAGGTTTACAGCACAGGTCGATAAATCCAGCAAGTATATCT

GCACAG





hTRAV13-1
hTRAV13-1
139
ATGACATCCATTCGAGCTGTATTTATATTCCTGTGGCTGCAGCTGGACTTGGTGAATGGAGAGAATGTGGAGCAG
TCCCTGCAC
CCTGAAGACTCG





CATCCTTCAACCCTGAGTGTCCAGGAGGGAGACAGCGCTGTTATCAAGTGTACTTATTCAGACAGTGCCTCAAAC
ATCACAGAG
GCTGTCTACTTCT





TACTTCCCTTGGTATAAGCAAGAACTTGGAAAAGGACCTCAGCTTATTATAGACATTCGTTCAAATGTGGGCGAA
ACCCAA
GTGCAGCAAGTA





AAGAAAGACCAACGAATTGCTGTTACATTGAACAAGACAGCCAAACATTTC







hTRAV13-2
hTRAV13-2
140
ATGGCAGGCATTCGAGCTTTATTTATGTACTTGTGGCTGCAGCTGGACTGGGTGAGCAGAGGAGAGAGTGTGGG
TCTCTGCAA
CCTGGAGACTCA





GCTGCATCTTCCTACCCTGAGTGTCCAGGAGGGTGACAACTCTATTATCAACTGTGCTTATTCAAACAGCGCCTC
ATTGCAGCT
GCTGTCTACTTTT





AGACTACTTCATTTGGTACAAGCAAGAATCTGGAAAAGGTCCTCAATTCATTATAGACATTCGTTCAAATATGGA
ACTCAA
GTGCAGAGAATA





CAAAAGGCAAGGCCAAAGAGTCACCGTTTTATTGAATAAGACAGTGAAACATCTC







hTRAV14
hTRAV14
141
ATGTCACTTTCTAGCCTGCTGAAGGTGGTCACAGCTTCACTGTGGCTAGGACCTGGCATTGCCCAGAAGATAACT
TTGTCATCT
GGGACTCAGCAA





CAAACCCAACCAGGAATGTTCGTGCAGGAAAAGGAGGCTGTGACTCTGGACTGCACATATGACACCAGTGATCA
CCGCTTCAC
TGTATTTCTGTGC





AAGTTATGGTCTATTCTGGTACAAGCAGCCCAGCAGTGGGGAAATGATTTTTCTTATTTATCAGGGGTCTTATGA
AACTGG
AATGAGAGAGGG





CGAGCAAAATGCAACAGAAGGTCGCTACTCATTGAATTTCCAGAAGGCAAGAAAATCCGCCAACC







hTRAV15
hTRAV15
142
ATGTATACGTATGTAACAAACCTGCGCGTTGTGCACATGTACCCTAGAACGGGTGAACAGCCTCCATATTCTGGA
GTTTTGAAT
CCTGGAGATTCA





GTAGAGTCCTTCATTCATTCCTGAGTATCCGGGAGGGAATGCACAACATTCTTAATTGCACTTATGAGGAGAGAA
ATGCTGGTC
GGCACCTACTTC





CGTTCTCTTAACTTCTACTGGTTCTGGCAGGGTCTGGAAAAGGACTTGTGTCTTTGACCTTAATTCAATCAAGCCA
TCTCAT
TGTGCTTTGAGG





GATGGAGGAGGGAGACAAACATTTTAAAGAAGCGCTTGGAAAAGAGAAGTTTTATAGT







hTRAV16
hTRAV16
143
ATGAAGCCCACCCTCATCTCAGTGCTTGTGATAATATTTATACTCAGAGGAACAAGAGCCCAGAGAGTGACTCA
CCTGAAGAA
GGAAGACTCAGC





GCCCGAGAAGCTCCTCTCTGTCTTTAAAGGGGCCCCAGTGGAGCTGAAGTGCAACTATTCCTATTCTGGGAGTCC
ACCATTTGC
CATGTATTACTG





TGAACTCTTCTGGTATGTCCAGTACTCCAGACAACGCCTCCAGTTACTCTTGAGACACATCTCTAGAGAGAGCAT
TCAAGA
TGCTCTAAGTGG





CAAAGGCTTCACTGCTGACCTTAACAAAGGCGAGACATCTTTCCA







hTRAV17
hTRAV17
144
ATGGAAACTCTCCTGGGAGTGTCTTTGGTGATTCTATGGCTTCAACTGGCTAGGGTGAACAGTCAACAGGGAGAA
TCCTTGTTG
GCAGCAGACACT





GAGGATCCTCAGGCCTTGAGCATCCAGGAGGGTGAAAATGCCACCATGAACTGCAGTTACAAAACTAGTATAAA
ATCACGGCT
GCTTCTTACTTCT





CAATTTACAGTGGTATAGACAAAATTCAGGTAGAGGCCTTGTCCACCTAATTTTAATACGTTCAAATGAAAGAGA
TCCCGG
GTGCTACGGACG





GAAACACAGTGGAAGATTAAGAGTCACGCTTGACACTTCCAAGAAAAGCAGT







hTRAV18
hTRAV18
145
ATGCTGTCTGCTTCCTGCTCAGGACTTGTGATCTTGTTGATATTCAGAAGGACCAGTGGAGACTCGGTTACCCAG
ACCTGGAGA
GCTGTCGGACTC





ACAGAAGGCCCAGTTACCCTCCCTGAGAGGGCAGCTCTGACATTAAACTGCACTTATCAGTCCAGCTATTCAACT
AGCCCTCGG
TGCCGTGTACTA





TTTCTATTCTGGTATGTCCAGTATCTAAACAAAGAGCCTGAGCTCCTCCTGAAAAGTTCAGAAAACCAGGAGACG
TGCA
CTGCGCTCTGAG





GACAGCAGAGGTTTTCAGGCCAGTCCTATCAAGAGTGACAGTTCCTTCC

A





hTRAV19
hTRAV19
146
ATGCTGACTGCCAGCCTGTTGAGGGCAGTCATAGCCTCCATCTGTGTTGTATCCAGCATGGCTCAGAAGGTAACT
CACCATCAC
GGACTCAGCAGT





CAAGCGCAGACTGAAATTTCTGTGGTGGAGAAGGAGGATGTGACCTTGGACTGTGTGTATGAAACCCGTGATAC
AGCCTCACA
ATACTTCTGTGCT





TACTTATTACTTATTCTGGTACAAGCAACCACCAAGTGGAGAATTGGTTTTCCTTATTCGTCGGAACTCTTTTGAT
AGTCGT
CTGAGTGAGGC





GAGCAAAATGAAATAAGTGGTCGGTATTCTTGGAACTTCCAGAAATCCACCAGTTCCTTCAACTT







hTRAV20
hTRAV20
147
ATGGAGAAAATGTTGGAGTGTGCATTCATAGTCTTGTGGCTTCAGCTTGGCTGGTTGAGTGGAGAAGACCAGGTG
TTTCTGCAC
AACCTGAAGACT





ACGCAGAGTCCCGAGGCCCTGAGACTCCAGGAGGGAGAGAGTAGCAGTCTTAACTGCAGTTACACAGTCAGCGG
ATCACAGCC
CAGCCACTTATC





TTTAAGAGGGCTGTTCTGGTATAGGCAAGATCCTGGGAAAGGCCCTGAATTCCTCTTCACCCTGTATTCAGCTGG
CCTA
TCTGTGCTGTGC





GGAAGAAAAGGAGAAAGAAAGGCTAAAAGCCACATTAACAAAGAAGGAAAGC

AGG





hTRAV21
hTRAV21
148
ATGGAGACCCTCTTGGGCCTGCTTATCCTTTGGCTGCAGCTGCAATGGGTGAGCAGCAAACAGGAGGTGACGCA
CTTTATACA
TGGTGACTCAGC





GATTCCTGCAGCTCTGAGTGTCCCAGAAGGAGAAAACTTGGTTCTCAACTGCAGTTTCACTGATAGCGCTATTTA
TTGCAGCTT
CACCTACCTCTG





CAACCTCCAGTGGTTTAGGCAGGACCCTGGGAAAGGTCTCACATCTCTGTTGCTTATTCAGTCAAGTCAGAGAGA
CTCAGCC
TGCTGTGAGG





GCAAACAAGTGGAAGACTTAATGCCTCGCTGGATAAATCATCAGGACGTAGTA







hTRAV22
hTRAV22
149
ATGAAGAGGATATTGGGAGCTCTGCTGGGGCTCTTGAGTGCCCAGGTTTGCTGTGTGAGAGGAATACAAGTGGA
GTACATTTC
AGACTCAGGCGT





GCAGAGTCCTCCAGACCTGATTCTCCAGGAGGGAGCCAATTCCACGCTGCGGTGCAATTTTTCTGACTCTGTGAA
CTCTTCCCA
TTATTTCTGTGCT





CAATTTGCAGTGGTTTCATCAAAACCCTTGGGGACAGCTCATCAACCTGTTTTACATTCCCTCAGGGACAAAACA
GACCAC
GTGGAGC





GAATGGAAGATTAAGCGCCACGACTGTCGCTACGGAACGCTACAGCTTATT







hTRAV23
hTRAV23
150
ATGGACAAGATCTTAGGAGCATCATTTTTAGTTCTGTGGCTTCAACTATGCTGGGTGAGTGGCCAACAGAAGGAG
CATTGCATA
CTGGAGACTCAG





AAAAGTGACCAGCAGCAGGTGAAACAAAGTCCTCAATCTTTGATAGTCCAGAAAGGAGGGATTTCAATTATAAA
TCATGGATT
CCACCTACTTCT





CTGTGCTTATGAGAACACTGCGTTTGACTACTTTCCATGGTACCAACAATTCCCTGGGAAAGGCCCTGCATTATT
CCCAGC
GTGCAGCAAGCA





GATAGCCATACGTCCAGATGTGAGTGAAAAGAAAGAAGGAAGATTCACAATCTCCTTCAATAAAAGTGCCAAGC







AGTTCT







hTRAV24
hTRAV24
151
ATGGAGAAGAATCCTTTGGCAGCCCCATTACTAATCCTCTGGTTTCATCTTGACTGCGTGAGCAGCATACTGAAC
GCTATTTGT
AGCCTGAAGACT





GTGGAACAAAGTCCTCAGTCACTGCATGTTCAGGAGGGAGACAGCACCAATTTCACCTGCAGCTTCCCTTCCAGC
ACATCAAAG
CAGCCACATACC





AATTTTTATGCCTTACACTGGTACAGATGGGAAACTGCAAAAAGCCCCGAGGCCTTGTTTGTAATGACTTTAAAT
GATCCC
TCTGTGCCTTTA





GGGGATGAAAAGAAGAAAGGACGAATAAGTGCCACTCTTAATACCAAGGAGGGTTACA







hTRAV25
hTRAV25
152
ATGCTACTCATCACATCAATGTTGGTCTTATGGATGCAATTGTCACAGGTGAATGGACAACAGGTAATGCAAATT
CAGCTCCCT
CCCAGACTACAG





CCTCAGTACCAGCATGTACAAGAAGGAGAGGACTTCACCACGTACTGCAATTCCTCAACTACTTTAAGCAATATA
GCACATCAC
ATGTAGGAACCT





CAGTGGTATAAGCAAAGGCCTGGTGGACATCCCGTTTTTTTGATACAGTTAGTGAAGAGTGGAGAAGTGAAGAA
AGCCA
ACTTCTGTGCAG





GCAGAAAAGACTGACATTTCAGTTTGGAGAAGCAAAAAAGAA

GG





hTRAV26-1
hTRAV26-1
153
ATGAGGCTGGTGGCAAGAGTAACTGTGTTTCTGACCTTTGGAACTATAATTGATGCTAAGACCACCCAGCCCCCC
TTGATCCTG
GAGACACTGCTG





TCCATGGATTGCGCTGAAGGAAGAGCTGCAAACCTGCCTTGTAATCACTCTACCATCAGTGGAAATGAGTATGTG
CCCCACGCT
TGTACTATTGCA





TATTGGTATCGACAGATTCACTCCCAGGGGCCACAGTATATCATTCATGGTCTAAAAAACAATGAAACCAATGA
ACGCTGA
TCGTCAGAGTCG





AATGGCCTCTCTGATCATCACAGAAGACAGAAAGTCCAGCACC







hTRAV26-2
hTRAV26-2
154
ATGAAGTTGGTGACAAGCATTACTGTACTCCTATCTTTGGGTATTATGGGTGATGCTAAGACCACACAGCCAAAT
TTGATCCTG
GAGATGCTGCTG





TCAATGGAGAGTAACGAAGAAGAGCCTGTTCACTTGCCTTGTAACCACTCCACAATCAGTGGAACTGATTACATA
CACCGTGCT
TGTACTACTGCA





CATTGGTATCGACAGCTTCCCTCCCAGGGTCCAGAGTACGTGATTCATGGTCTTACAAGCAATGTGAACAACAGA
ACCTTGA
TCCTGAGAGAC





ATGGCCTCTCTGGCAATCGCTGAAGACAGAAAGTCCAGTACC







hTRAV27
hTRAV27
155
ATGGTCCTGAAATTCTCCGTGTCCATTCTTTGGATTCAGTTGGCATGGGTGAGCACCCAGCTGCTGGAGCAGAGC
GTTCTCTCC
CAGCCTGGTGAT





CCTCAGTTTCTAAGCATCCAAGAGGGAGAAAATCTCACTGTGTACTGCAACTCCTCAAGTGTTTTTTCCAGCTTAC
ACATCACTG
ACAGGCCTCTAC





AATGGTACAGACAGGAGCCTGGGGAAGGTCCTGTCCTCCTGGTGACAGTAGTTACGGGTGGAGAAGTGAAGAAG
CAGCC
CTCTGTGCAGGA





CTGAAGAGACTAACCTTTCAGTTTGGTGATGCAAGAAAGGACA

G





hTRAV28
hTRAV28
156
ATGAAGGCATTAATAGGAATCTTGCTGGGCTTCCTGTGGATACAGATTTGCTCGCAAATGAAAGTGGAGCAGAG
GCCACCTAT
GCCTGAGGACTC





TCCTCAGGTCCTGATCCTCCAAGAGGGAAGAAATTCATTCCTGGTGTGCAGTTGTTCTATTTACATGATCCGTGTG
ACATCAGAT
AGCTATTTACTTC





CAGTGGTTTCATCAAAAGCCTGGAGGACCCCTCATGTCCTTATTTAACATTAATTCAGGAATACAGCAAAAAAGA
TCCCA
TGTGCTGTGGGG





AGACTAAAATCCGCAGTCAAAGCTGAGGAACTTTATG

A





hTRAV29
hTRAV29
157
ATGGCCATGCTCCTGGGGGCATCAGTGCTGATTCTGTGGCTTCAGCCAGACTGGGTAAACAGTCAACAGAAGAA
TCTCTGCAC
GCCTGGAGACTC





TGATGACCAGCAAGTTAAGCAAAATTCACCATCCCTGAGCGTCCAGGAAGGAAGAATTTCTATTCTGAACTGTG
ATTGTGCCC
TGCAGTGTACTT





ACTATACTAACAGCATGTTTGATTATTTCCTATGGTACAAAAAATACCCTGCTGAAGGTCCTACATTCCTGATATC
TCCCA
CTGTGCAGCAAG





TATAAGTTCCATTAAGGATAAAAATGAAGATGGAAGATTCACTGTCTTCTTAAACAAAAGTGCCAAGCACCTC

CG





hTRAV30
hTRAV30
158
ATGGAGACTCTCCTGAAAGTGCTTTCAGGCACCTTGTTGTGGCAGTTGACCTGGGTGAGAAGCCAACAACCAGTG
CCCTGTACC
CAGTTACTCAGG





CAGAGTCCTCAAGCCGTGATCCTCCGAGAAGGGGAAGATGCTGTCATCAACTGCAGTTCCTCCAAGGCTTTATAT
TTACGGCCT
AACCTACTTCTG





TCTGTACACTGGTACAGGCAGAAGCATGGTGAAGCACCCGTCTTCCTGATGATATTACTGAAGGGTGGAGAACA
CCCAGCT
CGGCACAGAGA





GAAGGGTCATGAAAAAATATCTGCTTCATTTAATGAAAAAAAGCAGCAAAGCT







hTRAV31
hTRAV31
159
ATGACTGTTGGCAGCATATTACGGGCACTCATGGCCTCTGCCTTCCTTGCATGTCACAGAGGGTCATTCAATCCC
CTTATCATA
GAAGACCTGCAA





AACCAGCAATATCTACGCAGGAGGGTGAGACCGTGAAACTGGACTGTGCATACAAAACTAATATTGTATATTAC
TCATCATCA
CATATTTCTGTTG





ATATTGTATTGGTACAAAAGGTCTCCCAATGGGAAGATTATTTTCCTCATTTATCAGCAAACAGATGCAGAAACC
CAGCCA
TCTCAAAGAGCC





AATGCGACACAGGGTCAATATTCTGTGAGCTTCCAGAAAACAACTAAAACTATTCAG







hTRAV32
hTRAV32
160
ATGGCAAGAAGAATGGAAAAGTCCCTGGGAGCTTTATTCAAATTCAGCTGAAGCTGGCCAAGAAAAGGATGTGA
TCCCTGCAT
CCAGGAGACTCA





TACAGAGTTATTCAAATCTAAATGTCTAGGAGAGAGAAATGGCCGTTATTAATGACAGTTATACAGATGGAGCTT
ATTACAGCC
TTCCTGTACTTCT





TGAATTATTTCTGTTGGTACAAGAAGAAAACGGGGAAGGCCCTAATATCTTAATGGAGATTCATTCAAATGTGGA
ACCCAA
GTGCAGTGAGAA





TAGAAAACAGGACAGAAGGCTCACTGTACTGTTGAATAAAAATGCTAAACATGTC

CACA





hTRAV33
hTRAV33
161
ATGCTCTGCCCTGGCCTGCTGTGGGCATTCGTGGTCCCCTTTGGCTTCAGATCCAGCATGGCTCAGAAAGTAACC
ACCTCACCA
TGACTCAGCCAA





CAAGTTCAGACCACAGTAACTAGGCAGAAAGGAGTAGCTGTGACCTTGGACTGCATGTTTGAAACCAGATAGAA
TCAATTCCT
GTACTTCTGTGCT





TTCGTACACTTTATACTGGTACAAGCAACAAGCAACCTCCCAGTGAAGAGATGGTTTTCCTTATTCATCAGGGTT
TAAAAC
CTCAGGAATCC





ATTCTAAGTCAAATGCAAAGCCTGTGAACTTTGAAAAAAAGAAAAAGTTCATCA







hTRAV34
hTRAV34
162
ATGGAGACTGTTCTGCAAGTACTCCTAGGGATATTGGGGTTCCAAGCAGCCTGGGTCAGTAGCCAAGAACTGGA
TCCCTGCAT
CCCAGCCATGCA





GCAGAGTCCTCAGTCCTTGATCGTCCAAGAGGGAAAGAATCTCACCATAAACTGCACGTCATCAAAGACGTTAT
ATCACAGCC
GGCATCTACCTC





ATGGCTTATACTGGTATAAGCAAAAGTATGGTGAAGGTCTTATCTTCTTGATGATGCTACAGAAAGGTGGGGAA
TCCCAG
TGTGGAGCAGAC





GAGAAAAGTCATGAAAAGATAACTGCCAAGTTGGATGAGAAAAAGCAGCAAAGT

A





hTRAV35
hTRAV35
163
ATGCTCCTTGAACATTTATTAATAATCTTGTGGATGCAGCTGACATGGGTCAGTGGTCAACAGCTGAATCAGAGT
CTTCCTGAA
ACCTAGTGATGT





CCTCAATCTATGTTTATCCAGGAAGGAGAAGATGTCTCCATGAACTGCACTTCTTCAAGCATATTTAACACCTGG
TATCTCAGC
AGGCATCTACTT





CTATGGTACAAGCAGGAACCTGGGGAAGGTCCTGTCCTCTTGATAGCCTTATATAAGGCTGGTGAATTGACCTCA
ATCCAT
CTGTGCTGGGCA





AATGGAAGACTGACTGCTCAGTTTGGTATAACCAGAAAGGACAG

G





hTRAV36
hTRAV36
164
ATGATGAAGTGTCCACAGGCTTTACTAGCTATCTTTTGGCTTCTACTGAGCTGGGTGAGCAGTGAAGACAAGGTG
TCCTGAACA
ACCGGAGACTCG





GTACAAAGCCCTCTATCTCTGGTTGTCCACGAGGGAGACACCGTAACTCTCAATTGCAGTTATGAAGTGACTAAC
TCACAGCCA
GCCATCTACCTC





TTTCGAAGCCTACTATGGTACAAGCAGGAAAAGAAAGCTCCCACATTTCTATTTATGCTAACTTCAAGTGGAATT
CCCAG
TGTGCTGTGGAG





GAAAAGAAGTCAGGAAGACTAAGTAGCATATTAGATAAGAAAGAACTTTCCAGCA

G





hTRAV37
hTRAV37
165
ATGGAAACTCCACTGAGCACTCTGCTGCTGCTCCTCTGTGTGCAGCTGACCTGGTCAAATGGACAACTGCCAGTG
TCCCTGCAC
CTCCATGACTCA





GAACAGAATGCTCCTTCCCTGAAAGTCAAGGAAGGTGACAGCGTCACACTGAACTGCAGTTACAGAGACAGCCC
ATACAGGAT
ACCACATTCTTCT





TTCAGATTTCTTCAGTGGTTCAGGCAGGATCCTGAGGAAGGCCTCATTTCCCTGATACAAATGCTATCAACTGTG
TCCCAG
GCGCAGCAAGCA





AGAGAGAAGATCAGTGGAAGATTCACAGCCAGGCTTAAAAAAGGAGACCAGCACATT







hTRAV38-1
hTRAV38
166
ATGACACGAGTTAGCTTGCTGTGGGCAGTCGTGGTCTCCACCTGTCTTGAATCCGGCATGGCCCAGACAGTCACT
CAAGATCTC
GGGACACTGCGA





CAGTCTCAACCAGAGATGTCTGTGCAGGAGGCAGAGACTGTGACCCTGAGTTGCACATATGACACCAGTGAGAA
AGACTCACA
TGTATTTCTGTGC





TAATTATTATTTGTTCTGGTACAAGCAGCCTCCCAGCAGGCAGATGATTCTCGTTATTCGCCAAGAAGCTTATAA
GCTGG
TTTCATGAAGCA





GCAACAGAATGCAACGGAGAATCGTTTCTCTGTGAACTTCCAGAAAGCAGCCAAATCCTTCAGTCT







hTRAV38-2
hTRAV38
167
ATGGCATGCCCTGGCTTCCTGTGGGCACTTGTGATCTCCACCTGTCTTGAATTTAGCATGGCTCAGACAGTCACTC
CAAGATCTC
GGGATGCCGCGA





AGTCTCAACCAGAGATGTCTGTGCAGGAGGCAGAGACCGTGACCCTGAGCTGCACATATGACACCAGTGAGAGT
AGACTCACA
TGTATTTCTGTGC





GATTATTATTTATTCTGGTACAAGCAGCCTCCCAGCAGGCAGATGATTCTCGTTATTCGCCAAGAAGCTTATAAG
GCTGG
TTATAGGAGCG





CAACAGAATGCAACAGAGAATCGTTTCTCTGTGAACTTCCAGAAAGCAGCCAAATCCTTCAGTCT







hTRAV39
hTRAV39
168
ATGAAGAAGCTACTAGCAATGATTCTGTGGCTTCAACTAGACCGGTTAAGTGGAGAGCTGAAAGTGGAACAAAA
CCGTCTCAG
CAGCTGCCGTGC





CCCTCTGTTCCTGAGCATGCAGGAGGGAAAAAACTATACCATCTACTGCAATTATTCAACCACTTCAGACAGACT
CACCCTCCA
ATGACCTCTCTG





GTATTGGTACAGGCAGGATCCTGGGAAAAGTCTGGAATCTCTGTTTGTGTTGCTATCAAATGGAGCAGTGAAGCA
CATCA
CCACCTACTTCT





GGAGGGACGATTAATGGCCTCACTTGATACCAAAGC

GTGCCGTGGACA





hTRAV40
hTRAV40
169
ATGAACTCCTCTCTGGACTTTCTAATTCTGATCTTAATGTTTGGAGGAACCAGCAGCAATTCAGTCAAGCAGACG
CCATTGTGA
TATCAGACTCAG





GGCCAAATAACCGTCTCGGAGGGAGCATCTGTGACTATGAACTGCACATACACATCCACGGGGTACCCTACCCTT
AATATTCAG
CCGTGTACTACT





TTCTGGTATGTGGAATACCCCAGCAAACCTCTGCAGCTTCTTCAGAGAGAGACAATGGAAAACAGCAAAAACTT
TCCAGG
GTCTTCTGGGAG





CGGAGGCGGAAATATTAAAGACAAAAACTCCC

A





hTRAV41
hTRAV10
170
ATGGTGAAGATCCGGCAATTTTTGTTGGCTATTTTGTGGCTTCAGCTAAGCTGTGTAAGTGCCGCCAAAAATGAA
CTGCACATC
TCCCAGAGACTC





GTGGAGCAGAGTCCTCAGAACCTGACTGCCCAGGAAGGAGAATTTATCACAATCAACTGCAGTTACTCGGTAGG
ACAGCCTCC
TGCCGTCTACAT





AATAAGTGCCTTACACTGGCTGCAACAGCATCCAGGAGGAGGCATTGTTTCCTTGTTTATGCTGAGCTCAGGGAA
CA
CTGTGCTGTCAG





GAAGAAGCATGGAAGATTAATTGCCACAATAAACATACAGGAAAAGCACAGCTCC

A
















TABLE 16







TCR β chain V segments and binding sites for primers presented in Table 4 and Table 10. The sequence for each V segments


presented in this table consists of three parts (listed from 5′ to 3′): Sequence upstream of primer binding site, sequence of


the primer binding site and sequence downstream of the primer binding site.












V

SEQ

Primer
hTRbV sequence


segment
Primer
ID

binding site
downstream of


name
name
NO
hTRBV sequence upstream of primer binding site
within hTRbV
primer binding site





hTRBV01
hTRBV01
171
ATGGGCTGAAGTCTCCACTGTGGTGTGGTCCATTGTCTCAGGCTCCATGGATACTGGAATTACCCAGACACCAAA
GTGGTCGCA
CTCAGCTGCGTA





ATACCTGGTCACAGCAATGGGGAGTAAAAGGACAATGAAACGTGAGCATCTGGGACATGATTCTATGTATTGGT
CTGCAGCAA
TCTCTGCACCAG





ACAGACAGAAAGCTAAGAAATCCCTGGAGTTCATGTTTTACTACAACTGTAAGGAATTCATTGAAAACAAGACT
GAAGA
CAGCCAAGA





GTGCCAAATCACTTCACACCTGAATGCCCTGACAGCTCTCGCTTATACCTTCAT







hTRBV02
hTRBV02
172
ATGGATACCTGGCTCGTATGCTGGGCAATTTTTAGTCTCTTGAAAGCAGGACTCACAGAACCTGAAGTCACCCAG
GATCCGGTC
CTCAGCCATGTA





ACTCCCAGCCATCAGGTCACACAGATGGGACAGGAAGTGATCTTGCGCTGTGTCCCCATCTCTAATCACTTATAC
CACAAAGCT
CTTCTGTGCCAG





TTCTATTGGTACAGACAAATCTTGGGGCAGAAAGTCGAGTTTCTGGTTTCCTTTTATAATAATGAAATCTCAGAG
GGAGGA
CAGTGAAGC





AAGTCTGAAATATTCGATGATCAATTCTCAGTTGAAAGGCCTGATGGATCAAATTTCACTCTGAA







hTRBV03-1
hTRBV03-1
173
ATGGGCTGCAGGCTCCTCTGCTGTGTGGTCTTCTGCCTCCTCCAAGCAGGTCCCTTGGACACAGCTGTTTCCCAGA
CATCAATTC
CTCTGCTGTGTAT





CTCCAAAATACCTGGTCACACAGATGGGAAACGACAAGTCCATTAAATGTGAACAAAATCTGGGCCATGATACT
CCTGGAGCT
TTCTGTGCCAGC





ATGTATTGGTATAAACAGGACTCTAAGAAATTTCTGAAGATAATGTTTAGCTACAATAATAAGGAGCTCATTATA
TGGTGA
AGCCAAGA





AATGAAACAGTTCCAAATCGCTTCTCACCTAAATCTCCAGACAAAGCTCACTTAAATCTTCA







hTRBV03-2
hTRBV03-1
174
ATGGGCTGCAGGCTCCTCTGCTATGTGGCCCTCTGCCTCCTGCAAGCAGGATCCACTGGACACAGCCGTTTCCCA
CATCAATTC
CTCTGCTGTGTAT





GACTCCAAAATACCTGGTCACACAGATGGGAAAAAAGGAGTCTCTTAAATGAGAACAAAATCTGGGCCATAATG
CCTGGAGCT
TTCTGTGCCAGC





CTATGTATTGGTATAAACAGGACTCTAAGAAATTTCTGAAGACAATGTTTATCTACAGTAACAAGGAGCCAATTT
TGGTGA
AGCCAAGA





TAAATGAAACAGTTCCAAATCGCTTCTCACCTGACTCTCCAGACAAAGCTCATTTAAATCTTCA







hTRBV04-1
hTRBV04-1
175
ATGGGCTGCAGGCTGCTCTGCTGTGCGGTTCTCTGTCTCCTGGGAGCAGTTCCCATAGACACTGAAGTTACCCAG
TTCACCTAC
AAGACTCAGCCC





ACACCAAAACACCTGGTCATGGGAATGACAAATAAGAAGTCTTTGAAATGTGAACAACATATGGGGCACAGGGC
ACGCCCTGC
TGTATCTCTGCG





TATGTATTGGTACAAGCAGAAAGCTAAGAAGCCACCGGAGCTCATGTTTGTCTACAGCTATGAGAAACTCTCTAT
AGCCAG
CCAGCAGCCAAG





AAATGAAAGTGTGCCAAGTCGCTTCTCACCTGAATGCCCCAACAGCTCTCTCTTAAACC

A





hTRBV04-2
hTRBV04-2
176
ATGGGCTGCAGGCTGCTCTGCTGTGCGGTTCTCTGTCTCCTGGGAGCGGTCCCCATGGAAACGGGAGTTACGCAG
TTCACCTAC
AAGACTCGGCCC





ACACCAAGACACCTGGTCATGGGAATGACAAATAAGAAGTCTTTGAAATGTGAACAACATCTGGGGCATAACGC
ACACCCTGC
TGTATCTCTGTGC





TATGTATTGGTACAAGCAAAGTGCTAAGAAGCCACTGGAGCTCATGTTTGTCTACAACTTTAAAGAACAGACTGA
AGCCAG
CAGCAGCCAAGA





AAACAACAGTGTGCCAAGTCGCTTCTCACCTGAATGCCCCAACAGCTCTCACTTATTCC







hTRBV04-3
hTRBV04-2
177
ATGGGCTGCAGGCTGCTCTGCTGTGCGGTTCTCTGTCTCCTGGGAGCGGGTGAGTTGGTCCCCATGGAAACGGGA
TTCACCTAC
AAGACTCGGCCC





GTTACGCAGACACCAAGACACCTGGTCATGGGAATGACAAATAAGAAGTCTTTGAAATGTGAACAACATCTGGG
ACACCCTGC
TGTATCTCTGCG





TCATAACGCTATGTATTGGTACAAGCAAAGTGCTAAGAAGCCACTGGAGCTCATGTTTGTCTACAGTCTTGAAGA
AGCCAG
CCAGCAGCCAAG





ACGGGTTGAAAACAACAGTGTGCCAAGTCGCTTCTCACCTGAATGCCCCAACAGCTCTCACTTATTCC

A





hTRBV05-1
hTRBV05-1
178
ATGGGCTCCAGGCTGCTCTGTTGGGTGCTGCTTTGTCTCCTGGGAGCAGGCCCAGTAAAGGCTGGAGTCACTCAA
GAATGTGAG
GGGACTCGGCCC





ACTCCAAGATATCTGATCAAAACGAGAGGACAGCAAGTGACACTGAGCTGCTCCCCTATCTCTGGGCATAGGAG
CACCTTGGA
TTTATCTTTGCGC





TGTATCCTGGTACCAACAGACCCCAGGACAGGGCCTTCAGTTCCTCTTTGAATACTTCAGTGAGACACAGAGAAA
GCTGG
CAGCAGCTTGG





CAAAGGAAACTTCCCTGGTCGATTCTCAGGGCGCCAGTTCTCTAACTCTCGCTCTGAGAT







hTRBV05-2
hTRBV05-2
179
ATGGGCTCCGGACTCCTCTGCTGGACGCTGCTTTGTTTCCTGGGAGCAGGCCCAGTGGAGGCTGGAATCACCCAA
TACTGAGTC
GGACTCAGCCCT





GCTCCAAGACACCTGATCAAAACAAGAGACCAGCAAGTGACACTGAGATGCTCCCCTGCCTCTGGGCATAACTG
AAACACGGA
GTATCTCTGTGC





TGTGTCCTGGTACCTACGAACTCCAAGTCAGCCCCTCTAGTTATTGTTACAATATTGTAATAGGTTACAAAGAGC
GCTAGG
CAGCAACTTG





AAAAGGAAACTTGCCTAATTGATTCTCAGCTCACCACGTCCATAACTAT







hTRBV05-3
hTRBV05-3
180
ATGGGCCCCGGGCTCCTCTGCTGGGAACTGCTTTATCTCCTGGGAGCAGGCCCAGTGGAGGCTGGAGTCACCCAA
GCTCTGAGA
TGGAGCTGGGGG





AGTCCCACACACCTGATCAAAACGAGAGGACAGCAAGTGACTCTGAGATGCTCTCCTATCTCTGGGCACAGCAG
TGAATGTGA
ACTCGGCCCTGT





TGTGTCCTGGTACCAACAGGCCCCGGGTCAGGGGCCCCAGTTTATCTTTGAATATGCTAATGAGTTAAGGAGATC
GTGCCT
ATCTCTGTGCCA





AGAAGGAAACTTCCCTAATCGATTCTCAGGGCGCCAGTTCCATGACTGTT

GAAGCTTGG





hTRBV05-4
hTRBV05-4
181
ATGGGCCCTGGGCTCCTCTGCTGGGTGCTGCTTTGTCTCCTGGGAGCAGGCTCAGTGGAGACTGGAGTCACCCAA
CTGAGCTGA
GGAGCTGGACGA





AGTCCCACACACCTGATCAAAACGAGAGGACAGCAAGTGACTCTGAGATGCTCTTCTCAGTCTGGGCACAACAC
ATGTGAACG
CTCGGCCCTGTA





TGTGTCCTGGTACCAACAGGCCCTGGGTCAGGGGCCCCAGTTTATCTTTCAGTATTATAGGGAGGAAGAGAATGG
CCTT
TCTCTGTGCCAG





CAGAGGAAACTTCCCTCCTAGATTCTCAGGTCTCCAGTTCCCTAATTATAGCT

CAGCTTGG





hTRBV05-5
hTRBV05-4
182
ATGGGCCCTGGGCTCCTCTGCTGGGTGCTGCTTTGTCTCCTGGGAGCAGGCCCAGTGGACGCTGGAGTCACCCAA
CTGAGCTGA
GTTGCTGGGGGA





AGTCCCACACACCTGATCAAAACGAGAGGACAGCAAGTGACTCTGAGATGCTCTCCTATCTCTGGGCACAAGAG
ATGTGAACG
CTCGGCCCTGTA





TGTGTCCTGGTACCAACAGGTCCTGGGTCAGGGGCCCCAGTTTATCTTTCAGTATTATGAGAAAGAAGAGAGAG
CCTT
TCTCTGTGCCAG





GAAGAGGAAACTTCCCTGATCGATTCTCAGCTCGCCAGTTCCCTAACTATAGCT

CAGCTTGG





hTRBV05-6
hTRBV05-4
183
ATGGGCCCCGGGCTCCTCTGCTGGGCACTGCTTTGTCTCCTGGGAGCAGGCTTAGTGGACGCTGGAGTCACCCAA
CTGAGCTGA
GTTGCTGGGGGA





AGTCCCACACACCTGATCAAAACGAGAGGACAGCAAGTGACTCTGAGATGCTCTCCTAAGTCTGGGCATGACAC
ATGTGAACG
CTCGGCCCTCTA





TGTGTCCTGGTACCAACAGGCCCTGGGTCAGGGGCCCCAGTTTATCTTTCAGTATTATGAGGAGGAAGAGAGAC
CCTT
TCTCTGTGCCAG





AGAGAGGCAACTTCCCTGATCGATTCTCAGGTCACCAGTTCCCTAACTATAGCT

CAGCTTGG





hTRBV05-7
hTRBV05-4
184
ATGGGCCCCGGGCTCCTCTGCTGGGTGCTGCTTTGTCCCCTAGGAGAAGGCCCAGTGGACGCTGGAGTCACCCAA
CTGAGCTGA
GTTGCTAGGGGA





AGTCCCACACACCTGATCAAAACGAGAGGACAGCACGTGACTCTGAGATGCTCTCCTATCTCTGGGCACACCAG
ATGTGAACG
CTCGGCCCTCTA





TGTGTCCTCGTACCAACAGGCCCTGGGTCAGGGGCCCCAGTTTATCTTTCAGTATTATGAGAAAGAAGAGAGAG
CCTT
TCTCTGTGCCAG





GAAGAGGAAACTTCCCTGATCAATTCTCAGGTCACCAGTTCCCTAACTATAGCT

CAGCTTGG





hTRBV05-8
hTRBV05-4
185
ATGGGACCCAGGCTCCTCTTCTGGGCACTGCTTTGTCTCCTCGGAACAGGCCCAGTGGAGGCTGGAGTCACACAA
CTGAGCTGA
GGAGCTGGAGGA





AGTCCCACACACCTGATCAAAACGAGAGGACAGCAAGCGACTCTGAGATGCTCTCCTATCTCTGGGCACACCAG
ATGTGAACG
CTCGGCCCTGTA





TGTGTACTGGTACCAACAGGCCCTGGGTCTGGGCCTCCAGTTCCTCCTTTGGTATGACGAGGGTGAAGAGAGAAA
CCTT
TCTCTGTGCCAG





CAGAGGAAACTTCCCTCCTAGATTTTCAGGTCGCCAGTTCCCTAATTATAGCT

CAGCTTGG





hTRBV06-1
hTRBV06-1
186
ATGAGCATCGGGCTCCTGTGCTGTGTGGCCTTTTCTCTCCTGTGGGCAAGTCCAGTGAATGCTGGTGTCACTCAG
GAGTTCTCG
CGGCTGCTCCCT





ACCCCAAAATTCCAGGTCCTGAAGACAGGACAGAGCATGACACTGCAGTGTGCCCAGGATATGAACCATAACTC
CTCAGGCTG
CCCAGACATCTG





CATGTACTGGTATCGACAAGACCCAGGCATGGGACTGAGGCTGATTTATTACTCAGCTTCTGAGGGTACCACTGA
GAGT
TGTACTTCTGTGC





CAAAGGAGAAGTCCCCAATGGCTACAATGTCTCCAGATTAAACAAACGG

CAGCAGTGAAGC





hTRBV06-2
hTRBV06-2
187
ATGAGCCTCGGGCTCCTGTGCTGTGGGGCCTTTTCTCTCCTGTGGGCAGGTCCAGTGAATGCTGGTGTCACTCAG
CTGGGGTTG
CCTCCCAAACAT





ACCCCAAAATTCCGGGTCCTGAAGACAGGACAGAGCATGACACTGCTGTGTGCCCAGGATATGAACCATGAATA
GAGTCGGCT
CTGTGTACTTCTG





CATGTACTGGTATCGACAAGACCCAGGCATGGGGCTGAGGCTGATTCATTACTCAGTTGGTGAGGGTACAACTG
GCTC
TGCCAGCAGTTA





CCAAAGGAGAGGTCCCTGATGGCTACAATGTCTCCAGATTAAAAAAACAGAATTTCCTG

CTC





hTRBV06-3
hTRBV06-2
188
ATGAGCCTCGGGCTCCTGTGCTGTGGGGCCTTTTCTCTCCTGTGGGCAGGTCCAGTGAATGCTGGTGTCACTCAG
CTGGGGTTG
CCTCCCAAACAT





ACCCCAAAATTCCGGGTCCTGAAGACAGGACAGAGCATGACACTGCTGTGTGCCCAGGATATGAACCATGAATA
GAGTCGGCT
CTGTGTACTTCTG





CATGTACTGGTATCGACAAGACCCAGGCATGGGGCTGAGGCTGATTCATTACTCAGTTGGTGAGGGTACAACTG
GCTC
TGCCAGCAGTTA





CCAAAGGAGAGGTCCCTGATGGCTACAATGTCTCCAGATTAAAAAAACAGAATTTCCTG

CTC





hTRBV06-4
hTRBV06-4
189
ATGAGAATCAGGCTCCTGTGCTGTGTGGCCTTTTCTCTCCTGTGGGCAGGTCCAGTGATTGCTGGGATCACCCAG
CCCCTCACG
TACCCTCTCAGA





GCACCAACATCTCAGATCCTGGCAGCAGGACGGCGCATGACACTGAGATGTACCCAGGATATGAGACATAATGC
TTGGCGTCT
CATCTGTGTACTT





CATGTACTGGTATAGACAAGATCTAGGACTGGGGCTAAGGCTCATCCATTATTCAAATACTGCAGGTACCACTGG
GCTG
CTGTGCCAGCAG





CAAAGGAGAAGTCCCTGATGGTTATAGTGTCTCCAGAGCAAACACAGATGATTTC

TGACTC





hTRBV06-5
hTRBV06-5
190
ATGAGCATCGGCCTCCTGTGCTGTGCAGCCTTGTCTCTCCTGTGGGCAGGTCCAGTGAATGCTGGTGTCACTCAG
TCCCGCTCA
TGCTCCCTCCCA





ACCCCAAAATTCCAGGTCCTGAAGACAGGACAGAGCATGACACTGCAGTGTGCCCAGGATATGAACCATGAATA
GGCTGCTGT
GACATCTGTGTA





CATGTCCTGGTATCGACAAGACCCAGGCATGGGGCTGAGGCTGATTCATTACTCAGTTGGTGCTGGTATCACTGA
CGGC
CTTCTGTGCCAG





CCAAGGAGAAGTCCCCAATGGCTACAATGTCTCCAGATCAACCACAGAGGATT

CAGTTACTC





hTRBV06-6
hTRBV06-6
191
ATGAGCATCAGCCTCCTGTGCTGTGCAGCCTTTCCTCTCCTGTGGGCAGGTCCAGTGAATGCTGGTGTCACTCAG
GATTTCCCG
TGGCTGCTCCCT





ACCCCAAAATTCCGCATCCTGAAGATAGGACAGAGCATGACACTGCAGTGTACCCAGGATATGAACCATAACTA
CTCAGGCTG
CCCAGACATCTG





CATGTACTGGTATCGACAAGACCCAGGCATGGGGCTGAAGCTGATTTATTATTCAGTTGGTGCTGGTATCACTGA
GAGT
TGTACTTCTGTGC





TAAAGGAGAAGTCCCGAATGGCTACAACGTCTCCAGATCAACCACAGAG

CAGCAGTTACTC





hTRBV06-7
hTRBV06-7
192
ATGAGCCTCGGGCTCCTGTGCTGTGTGGCCTTTTCTCTCCTGTGGGCAGGTCCAATGAATGCTGGTGTCACTCAGA
TCCCCCTCA
GCTCCCTCTCAG





CCCCAAAATTCCACGTCCTGAAGACAGGACAGAGCATGACTCTGCTGTGTGCCCAGGATATGAACCATGAATAC
AGCTGGAGT
ACTTCTGTTTACT





ATGTATCGGTATCGACAAGACCCAGGCAAGGGGCTGAGGCTGATTTACTACTCAGTTGCTGCTGCTCTCACTGAC
CAGCT
TCTGTGCCAGCA





AAAGGAGAAGTTCCCAATGGCTACAATGTCTCCAGATCAAACACAGAGGATT

GTTACTC





hTRBV06-8
hTRBV06-8
193
ATGAGCCTCGGGCTCCTGTGCTGTGCGGCCTTTTCTCTCCTGTGGGCAGGTCCCGTGAATGCTGGTGTCACTCAGA
TCCCACTCA
TGCTCCCTCCCA





CCCCAAAATTCCACATCCTGAAGACAGGACAGAGCATGACACTGCAGTGTGCCCAGGATATGAACCATGGATAC
GGCTGGTGT
GACATCTGTGTA





ATGTCCTGGTATCGACAAGACCCAGGCATGGGGCTGAGACTGATTTACTACTCAGCTGCTGCTGGTACTACTGAC
CGGC
CTTGTGTGCCAG





AAAGAAGTCCCCAATGGCTACAATGTCTCTAGATTAAACACAGAGGATT

CAGTTACTC





hTRBV06-9
hTRBV06-6
194
ATGAGCATCGGGCTCCTGTGCTGTGTGGCCTTTTCTCTCCTGTGGGAGGGTCCAGTGAATGCTGGTGTCACTCAG
GATTTCCCG
CAGCTGCTCCCT





ACCCCAAAATTCCACATCCTGAAGACAGGACAGAGCATGACACTGCAGTGTGCCCAGGATATGAACCATGGATA
CTCAGGCTG
CCCAGACATCTG





CTTGTCCTGGTATCGACAAGACCCAGGCATGGGGCTGAGGCGCATTCATTACTCAGTTGCTGCTGGTATCACTGA
GAGT
TATACTTCTGTGC





CAAAGGAGAAGTCCCCGATGGCTACAATGTATCCAGATCAAACACAGAG

CAGCAGTTATTC





hTRBV07-1
hTRBV07-1
195
ATGGGCACAAGGCTCCTCTGCTGGGCAGCCATATGTCTCCTGGGGGCAGATCACACAGGTGCTGGAGTCTCCCA
CTCTGAAGT
GCAGGGGGACTT





GTCCCTGAGACACAAGGTAGCAAAGAAGGGAAAGGATGTAGCTCTCAGATATGATCCAATTTCAGGTCATAATG
TCCAGCGCA
GGCTGTGTATCT





CCCTTTATTGGTACCGACAGAGCCTGGGGCAGGGCCTGGAGTTTCCAATTTACTTCCAAGGCAAGGATGCAGCAG
CACA
CTGTGCCAGCAG





ACAAATCGGGGCTTCCCCGTGATCGGTTCTCTGCACAGAGGTCTGAGGGATCCATCTCCA

CTCAGC





hTRBV07-2
hTRBV07-2
196
ATGGGCACCAGGCTCCTCTTCTGGGTGGCCTTCTGTCTCCTGGGGGCAGATCACACAGGAGCTGGAGTCTCCCAG
GATCCAGCG
GACTCGGCCGTG





TCCCCCAGTAACAAGGTCACAGAGAAGGGAAAGGATGTAGAGCTCAGGTGTGATCCAATTTCAGGTCATACTGC
CACACAGCA
TATCTCTGTGCC





CCTTTACTGGTACCGACAGAGCCTGGGGCAGGGCCTGGAGTTTTTAATTTACTTCCAAGGCAACAGTGCACCAGA
GGAG
AGCAGCTTAGC





CAAATCAGGGCTGCCCAGTGATCGCTTCTCTGCAGAGAGGACTGGGGGATCCGTCTCCACTCTGAC







hTRBV07-3
hTRBV07-5
197
ATGGGCACCAGGCTCCTCTGCTGGGCAGCCCTGTGCCTCCTGGGGGCAGATCACACAGGTGCTGGAGTCTCCCAG
ACTCTGAAG
GCGGGGGGACTC





ACCCCCAGTAACAAGGTCACAGAGAAGGGAAAATATGTAGAGCTCAGGTGTGATCCAATTTCAGGTCATACTGC
ATCCAGCGC
AGCCGTGTATCT





CCTTTACTGGTACCGACAAAGCCTGGGGCAGGGCCCAGAGTTTCTAATTTACTTCCAAGGCACGGGTGCGGCAG
ACAGA
CTGTGCCAGCAG





ATGACTCAGGGCTGCCCAACGATCGGTTCTTTGCAGTCAGGCCTGAGGGATCCGTCTCT

CTTAAC





hTRBV07-4
hTRBV07-5
198
ATGGGCACCAGGCTCCTCTGCTGGGTGGTCCTGGGTTTCCTAGGGACAGATCACACAGGTGCTGGAGTCTCCCAG
ACTCTGAAG
GCAGGGGGACTC





TCCCCAAGGTACAAAGTCGCAAAGAGGGGACGGGATGTAGCTCTCAGGTGTGATTCAATTTCGGGTCATGTAAC
ATCCAGCGC
AGCTGTGTATCT





CCTTTATTGGTACCGACAGACCCTGGGGCAGGGCTCAGAGGTTCTGACTTACTCCCAGAGTGATGCTCAACGAGA
ACAGA
CTGTGCCAGCAG





CAAATCAGGGCGGCCCAGTGGTCGGTTCTCTGCAGAGAGGCCTGAGAGATCCGTCTCC

CTTAGC





hTRBV07-5
hTRBV07-5
199
ATGGGCACCAGGCTCCTCTGCTGGGTGGTCCTGGGTTTCCTAGGGACAGATCACACAGGTGCTGGAGTCTCCCAG
AGATCCAGC
GCGACTCGGCTG





TCCCCAAGGTACGAAGTCACACAGAGGGGACAGGATGTAGCTCCCAGGTGTGATCCAATTTCGGGTCAGGTAAC
GCACAGAGC
TGTATCTCTGTGC





CCTTTATTGGTACCGACAGACCCTGGGGCAGGGCCAAGAGTTTCTGACTTCCTTCCAGGATGAAACTCAACAAGA
AAGG
CAGAAGCTTAG





TAAATCAGGGCTGCTCAGTGATCAATTCTCCACAGAGAGGTCTGAGGATCTTTCTCCACCTGA







hTRBV07-6
hTRBV07-6
200
ATGGGCACCAGTCTCCTATGCTGGGTGGTCCTGGGTTTCCTAGGGACAGATCACACAGGTGCTGGAGTCTCCCAG
CAGCGCACA
CGGCCATGTATC





TCTCCCAGGTACAAAGTCACAAAGAGGGGACAGGATGTAGCTCTCAGGTGTGATCCAATTTCGGGTCATGTATCC
GAGCAGCGG
GCTGTGCCAGCA





CTTTATTGGTACCGACAGGCCCTGGGGCAGGGCCCAGAGTTTCTGACTTACTTCAATTATGAAGCCCAACAAGAC
GACT
GCTTAGC





AAATCAGGGCTGCCCAATGATCGGTTCTCTGCAGAGAGGCCTGAGGGATCCATCTCCACTCTGACGATC







hTRBV07-7
hTRBV07-6
201
ATGGGTACCAGTCTCCTATGCTGGGTGGTCCTGGGTTTCCTAGGGACAGATCACACAGGTGCTGGAGTCTCCCAG
CAGCGCACA
CAGCCATGTATC





TCTCCCAGGTACAAAGTCACAAAGAGGGGACAGGATGTAACTCTCAGGTGTGATCCAATTTCGAGTCATGCAAC
GAGCAGCGG
GCTGTGCCAGCA





CCTTTATTGGTATCAACAGGCCCTGGGGCAGGGCCCAGAGTTTCTGACTTACTTCAATTATGAAGCTCAACCAGA
GACT
GCTTAGC





CAAATCAGGGCTGCCCAGTGATCGGTTCTCTGCAGAGAGGCCTGAGGGATCCATCTCCACTCTGACGATT







hTRBV07-8
hTRBV07-2
202
ATGGGCACCAGGCTCCTCTGCTGGGTGGTCCTGGGTTTCCTAGGGACAGATCACACAGGTGCTGGAGTCTCCCAG
GATCCAGCG
GACTCCGCCGTG





TCCCCTAGGTACAAAGTCGCAAAGAGAGGACAGGATGTAGCTCTCAGGTGTGATCCAATTTCGGGTCATGTATCC
CACACAGCA
TATCTCTGTGCC





CTTTTTTGGTACCAACAGGCCCTGGGGCAGGGGCCAGAGTTTCTGACTTATTTCCAGAATGAAGCTCAACTAGAC
GGAG
AGCAGCTTAGC





AAATCGGGGCTGCCCAGTGATCGCTTCTTTGCAGAAAGGCCTGAGGGATCCGTCTCCACTCTGAA







hTRBV07-9
hTRBV07-9 
203
ATGGGCACCAGCCTCCTCTGCTGGATGGCCCTGTGTCTCCTGGGGGCAGATCACGCAGATACTGGAGTCTCCCAG
GAGATCCAG
GGGACTCGGCCA





AACCCCAGACACAAGATCACAAAGAGGGGACAGAATGTAACTTTCAGGTGTGATCCAATTTCTGAACACAACCG
CGCACAGAG
TGTATCTCTGTGC





CCTTTATTGGTACCGACAGACCCTGGGGCAGGGCCCAGAGTTTCTGACTTACTTCCAGAATGAAGCTCAACTAGA
CAGG
CAGCAGCTTAGC





AAAATCAAGGCTGCTCAGTGATCGGTTCTCTGCAGAGAGGCCTAAGGGATCTTTCTCCACCTTG







hTRBV08-1
hTRBV08-1
204
GAGGCAGGGATCAGCCAGATACCAAGATATCACAGACACACAGGGAAAAAGATCATCCTGAAATATGCTCAGA
CCCTCAACC
GCACCAGCCAGA





TTAGGAACCATTATTCAGTGTTCTGTTATCAATAAGACCAAGAATAGGGGCTGAGGCTGATCCATTATTCAGGTA
CTGGAGTCT
CCTCTGTACCTCT





GTATTGGCAGCATGACCAAAGGCGGTGCCAAGGAAGGGTACAATGTCTCTGGAAACAAGCTCAAGCATTTT
ACTA
GTGGCAGTGCAT





C







hTRBV08-2
hTRBV08-2
205
ATGAACCCCAAACTCTTCTGTGTGACCCTTTGTCTCCTGGGAGCAGGCTCTATTGATGCTGGGATCACCCAGATG
TCCCCAATC
GCACCAGCCAGA





CCAAGATATCACATTGTACAGAAGAAAGAGATGATCCTGGAATGTGCTCAGGTTAGGAACAGTGTTCTGATATC
CTGGCATCC
CCTATCTGTACC





GACAGGACCCAAGACGGGGGCTGAAGCTTATCCACTATTCAGGCAGTGGTCACAGCAGGACCAAAGTTGATGTC
ACCA
ACTGTGGCAGCA





ACAGAGGGGTACTGTGTTTCTTGAAACAAGCTTGAGCATT

CATC





hTRBV09
hTRBV09
206
ATGGGCTTCAGGCTCCTCTGCTGTGTGGCCTTTTGTCTCCTGGGAGCAGGCCCAGTGGATTCTGGAGTCACACAA
CTAAACCTG
GGGGGACTCAGC





ACCCCAAAGCACCTGATCACAGCAACTGGACAGCGAGTGACGCTGAGATGCTCCCCTAGGTCTGGAGACCTCTC
AGCTCTCTG
TTTGTATTTCTGT





TGTGTACTGGTACCAACAGAGCCTGGACCAGGGCCTCCAGTTCCTCATTCAGTATTATAATGGAGAAGAGAGAG
GAGCT
GCCAGCAGCGTA





CAAAAGGAAACATTCTTGAACGATTCTCCGCACAACAGTTCCCTGACTTGCACTCTGAA

G





hTRBV10-1
hTRBV10-1
207
ATGGGCACGAGGCTCTTCTTCTATGTGGCCCTTTGTCTGCTGTGGGCAGGACACAGGGATGCTGAAATCACCCAG
CCCTCACTC
CTCCTCCCAGAC





AGCCCAAGACACAAGATCACAGAGACAGGAAGGCAGGTGACCTTGGCGTGTCACCAGACTTGGAACCACAACA
TGGAGTCTG
ATCTGTATATTTC





ATATGTTCTGGTATCGACAAGACCTGGGACATGGGCTGAGGCTGATCCATTACTCATATGGTGTTCAAGACACTA
CTGC
TGCGCCAGCAGT





ACAAAGGAGAAGTCTCAGATGGCTACAGTGTCTCTAGATCAAACACAGAGGACCTCC

GAGTC





hTRBV10-2
hTRBV10-2
208
ATGGGCACCAGGCTCTTCTTCTATGTGGCCCTTTGTCTGCTGTGGGCAGGACACAGGGATGCTGGAATCACCCAG
CCCTCACTC
CCGCTCCCAGAC





AGCCCAAGATACAAGATCACAGAGACAGGAAGGCAGGTGACCTTGATGTGTCACCAGACTTGGAGCCACAGCTA
TGGAGTCAG
ATCTGTGTATTTC





TATGTTCTGGTATCGACAAGACCTGGGACATGGGCTGAGGCTGATCTATTACTCAGCAGCTGCTGATATTACAGA
CTAC
TGCGCCAGCAGT





TAAAGGAGAAGTCCCCGATGGCTATGTTGTCTCCAGATCCAAGACAGAGAATTTCC

GAGTC





hTRBV10-3
hTRBV10-3
209
ATGGGCACAAGGTTGTTCTTCTATGTGGCCCTTTGTCTCCTGTGGACAGGACACATGGATGCTGGAATCACCCAG
TCCTCACTC
CAGCTCCCAGAC





AGCCCAAGACACAAGGTCACAGAGACAGGAACACCAGTGACTCTGAGATGTCACCAGACTGAGAACCACCGCT
TGGAGTCCG
ATCTGTGTACTTC





ATATGTACTGGTATCGACAAGACCCGGGGCATGGGCTGAGGCTGATCCATTACTCATATGGTGTTAAAGATACTG
CTAC
TGTGCCATCAGT





ACAAAGGAGAAGTCTCAGATGGCTATAGTGTCTCTAGATCAAAGACAGAGGATTTCC

GAGTC





hTRBV11-1
hTRBV11-1
210
ATGAGCACCAGGCTTCTCTGCTGGATGGCCCTCTGTCTCCTGGGGGCAGAACTCTCAGAAGCTGAAGTTGCCCAG
CCACTCTCA
GAGCTTGGGGAC





TCCCCCAGATATAAGATTACAGAGAAAAGCCAGGCTGTGGCTTTTTGGTGTGATCCTATTTCTGGCCATGCTACC
AGATCCAGC
TCGGCCATGTAT





CTTTACTGGTACCGGCAGATCCTGGGACAGGGCCCGGAGCTTCTGGTTCAATTTCAGGATGAGAGTGTAGTAGAT
CTGCA
CTCTGTGCCAGC





GATTCACAGTTGCCTAAGGATCGATTTTCTGCAGAGAGGCTCAAAGGAGTAGACT

AGCTTAGC





hTRBV11-2
hTRBV11-1
211
ATGGGCACCAGGCTCCTCTGCTGGGCGGCCCTCTGTCTCCTGGGAGCAGAACTCACAGAAGCTGGAGTTGCCCA
CCACTCTCA
AAGCTTGAGGAC





GTCTCCCAGATATAAGATTATAGAGAAAAGGCAGAGTGTGGCTTTTTGGTGCAATCCTATATCTGGCCATGCTAC
AGATCCAGC
TCGGCCGTGTAT





CCTTTACTGGTACCAGCAGATCCTGGGACAGGGCCCAAAGCTTCTGATTCAGTTTCAGAATAACGGTGTAGTGGA
CTGCA
CTCTGTGCCAGC





TGATTCACAGTTGCCTAAGGATCGATTTTCTGCAGAGAGGCTCAAAGGAGTAGACT

AGCTTAGA





hTRBV11-3
hTRBV11-1
212
ATGGGTACCAGGCTCCTCTGCTGGGTGGCCTTCTGTCTCCTGGTGGAAGAACTCATAGAAGCTGGAGTGGTTCAG
CCACTCTCA
GAGCTTGGGGAC





TCTCCCAGATATAAGATTATAGAGAAAAAACAGCCTGTGGCTTTTTGGTGCAATCCTATTTCTGGCCACAATACC
AGATCCAGC
TCGGCCGTGTAT





CTTTACTGGTACCTGCAGAACTTGGGACAGGGCCCGGAGCTTCTGATTCGATATGAGAATGAGGAAGCAGTAGA
CTGCA
CTCTGTGCCAGC





CGATTCACAGTTGCCTAAGGATCGATTTTCTGCAGAGAGGCTCAAAGGAGTAGACT

AGCTTAGA





hTRBV12-1
hTRBV12-1
213
ATGGGCTCTTGGACCCTCTGTGTGTCCCTTTATATCCTGGTAGCGACACACACAGATGCTGGTGTTATCCAGTCAC
GAGGATCCA
GGGACTTGGGCC





CCAGGCACAAAGTGACAGAGATGGGACAATCAGTAACTCTGAGATGCGAACCAATTTCAGGCCACAATGATCTT
GCCCATGGA
TATATTTCTGTGC





CTCTGGTACAGACAGACCTTTGTGCAGGGACTGGAATTGCTGAATTACTTCTGCAGCTGGACCCTCGTAGATGAC
ACCCA
CAGCAGCTTTGC





TCAGGAGTGTCCAAGGATTGATTCTCAGCACAGATGCCTGATGTATCATTCTCCACTCT







hTRBV12-2
hTRBV12-2
214
ATGGACTCCTGGACCCTCTGTGTGTCCCTTTGTATCCTGGTAGCGACATGCACAGATGCTGGCATTATCCAGTCAC
CTGAAGATC
AGGGGGACTCGG





CCAAGCATGAGGTGACAGAAATGGGACAAACAGTGACTCTGAGATGTGAGCCAATTTTTGGCCACAATTTCCTTT
CAGCCTGCA
CCGTGTATGTCT





TCTGGTACAGAGATACCTTCGTGCAGGGACTGGAATTGCTGAGTTACTTCCGGAGCTGATCTATTATAGATAATG
GAGC
GTGCAAGTCGCT





CAGGTATGCCCACAGAGCGATTCTCAGCTGAGAGGCCTGATGGATCATTCTCTACT

TAGC





hTRBV12-3
hTRBV12-3
215
ATGGACTCCTGGACCTTCTGCTGTGTGTCCCTTTGCATCCTGGTAGCGAAGCATACAGATGCTGGAGTTATCCAG
CAGCCCTCA
CAGCTGTGTACT





TCACCCCGCCATGAGGTGACAGAGATGGGACAAGAAGTGACTCTGAGATGTAAACCAATTTCAGGCCACAACTC
GAACCCAGG
TCTGTGCCAGCA





CCTTTTCTGGTACAGACAGACCATGATGCGGGGACTGGAGTTGCTCATTTACTTTAACAACAACGTTCCGATAGA
GACT
GTTTAGC





TGATTCAGGGATGCCCGAGGATCGATTCTCAGCTAAGATGCCTAATGCATCATTCTCCACTCTGAAGATC







hTRBV12-4
hTRBV12-3
216
ATGGGCTCCTGGACCCTCTGCTGTGTGTCCCTTTGCATCCTGGTAGCAAAGCACACAGATGCTGGAGTTATCCAG
CAGCCCTCA
CAGCTGTGTACT





TCACCCCGGCACGAGGTGACAGAGATGGGACAAGAAGTGACTCTGAGATGTAAACCAATTTCAGGACACGACTA
GAACCCAGG
TCTGTGCCAGCA





CCTTTTCTGGTACAGACAGACCATGATGCGGGGACTGGAGTTGCTCATTTACTTTAACAACAACGTTCCGATAGA
GACT
GTTTAGC





TGATTCAGGGATGCCCGAGGATCGATTCTCAGCTAAGATGCCTAATGCATCATTCTCCACTCTGAAGATC







hTRBV12-5
hTRBV12-3
217
ATGGCCACCAGGCTCCTCTGCTGTGTGGTTCTTTGTCTCCTGGGAGAAGAGCTTATAGATGCTAGAGTCACCCAG
CAGCCCTCA
CAGCTGTGTATT





ACACCAAGGCACAAGGTGACAGAGATGGGACAAGAAGTAACAATGAGATGTCAGCCAATTTTAGGCCACAATA
GAACCCAGG
TTTGTGCTAGTG





CTGTTTTCTGGTACAGACAGACCATGATGCAAGGACTGGAGTTGCTGGCTTACTTCCGCAACCGGGCTCCTCTAG
GACT
GTTTGGT





ATGATTCGGGGATGCCGAAGGATCGATTCTCAGCAGAGATGCCTGATGCAACTTTAGCCACTCTGAAGATC







hTRBV13
hTRBV13
218
ATGCTTAGTCCTGACCTGCCTGACTCTGCCTGGAACACCAGGCTCCTCTGCCATGTCATGCTTTGTCTCCTGGGAG
GAGCTCCTT
CAGCCCTGTACT





CAGTTTCAGTGGCTGCTGGAGTCATCCAGTCCCCAAGACATCTGATCAAAGAAAAGAGGGAAACAGCCACTCTG
GGAGCTGGG
TCTGTGCCAGCA





AAATGCTATCCTATCCCTAGACACGACACTGTCTACTGGTACCAGCAGGGTCCAGGTCAGGACCCCCAGTTCCTC
GGACT
GCTTAGG





ATTTCGTTTTATGAAAAGATGCAGAGCGATAAAGGAAGCATCCCTGATCGATTCTCAGCTCAACAGTTCAGTGAC







TATCATTCTGAACTGAACAT







hTRBV14
hTRBV14
219
ATGGTTTCCAGGCTTCTCAGTTTAGTGTCCCTTTGTCTCCTGGGAGCAAAGCACATAGAAGCTGGAGTTACTCAG
GGTGCAGCC
GATTCTGGAGTT





TTCCCCAGCCACAGCGTAATAGAGAAGGGCCAGACTGTGACTCTGAGATGTGACCCAATTTCTGGACATGATAA
TGCAGAACT
TATTTCTGTGCCA





TCTTTATTGGTATCGACGTGTTATGGGAAAAGAAATAAAATTTCTGTTACATTTTGTGAAAGAGTCTAAACAGGA
GGAG
GCAGCCAAGA





TGAGTCCGGTATGCCCAACAATCGATTCTTAGCTGAAAGGACTGGAGGGACGTATTCTACTCTGAA







hTRBV15
hTRBV15
220
ATGGGTCCTGGGCTTCTCCACTGGATGGCCCTTTGTCTCCTTGGAACAGGTCATGGGGATGCCATGGTCATCCAG
GACATCCGC
GGGACACAGCCA





AACCCAAGATACCAGGTTACCCAGTTTGGAAAGCCAGTGACCCTGAGTTGTTCTCAGACTTTGAACCATAACGTC
TCACCAGGC
TGTACCTGTGTG





ATGTACTGGTACCAGCAGAAGTCAAGTCAGGCCCCAAAGCTGCTGTTCCACTACTATGACAAAGATTTTAACAAT
CTGG
CCACCAGCAGAG





GAAGCAGACACCCCTGATAACTTCCAATCCAGGAGGCCGAACACTTCTTTCTGCTTTCTT

A





hTRBV16
hTRBV16
221
ATGAGCCCAATATTCACCTGCATCACAATCCTTTGTCTGCTGGCTGCAGGTTCTCCTGGTGAAGAAGTCGCCCAG
TGAGATCCA
GAGGATTCAGCA





ACTCCAAAACATCTTGTCAGAGGGGAAGGACAGAAAGCAAAATTATATTGTGCCCCAATAAAAGGACACAGTTA
GGCTACGAA
GTGTATTTTTGTG





TGTTTTTTGGTACCAACAGGTCCTGAAAAACGAGTTCAAGTTCTTGATTTCCTTCCAGAATGAAAATGTCTTTGAT
GCTT
CCAGCAGCCAAT





GAAACAGGTATGCCCAAGGAAAGATTTTCAGCTAAGTGCCTCCCAAATTCACCCTGTAGCCT

C





hTRBV17
hTRBV17
222
ATGGATATCTGGCTCCTCTGCTGGGTGACCCTGTGTCTCTTGGCGGCAGGACACTCGGAGCCTGGAGTCAGCCAG
GAAGATCCA
AGGGACTCAGCC





ACCCCCAGACACAAGGTCACCAACATGGGACAGGAGGTGATTCTGAGGTGCGATCCATCTTCTGGTCACATGTTT
TCCCGCAGA
GTGTATCTCTAC





GTTCACTGGTACCGACAGAATCTGAGGCAAGAAATGAAGTTGCTGATTTCCTTCCAGTACCAAAACATTGCAGTT
GCCG
AGTAGCGGTGG





GATTCAGGGATGCCCAAGGAACGATTCACAGCTGAAAGACCTAACGGAACGTCTTCCACGCT







hTRBV18
hTRBV18
223
ATGGACACCAGAGTACTCTGCTGTGCGGTCATCTGTCTTCTGGGGGCAGGTCTCTCAAATGCCGGCGTCATGCAG
GGATCCAGC
AGATTCGGCAGC





AACCCAAGACACCTGGTCAGGAGGAGGGGACAGGAGGCAAGACTGAGATGCAGCCCAATGAAAGGACACAGTC
AGGTAGTGC
TTATTTCTGTGCC





ATGTTTACTGGTATCGGCAGCTCCCAGAGGAAGGTCTGAAATTCATGGTTTATCTCCAGAAAGAAAATATCATAG
GAGG
AGCTCACCACC





ATGAGTCAGGAATGCCAAAGGAACGATTTTCTGCTGAATTTCCCAAAGAGGGCCCCAGCATCCTGA







hTRBV19
hTRBV19
224
ATGAGCAACCAGGTGCTCTGCTGTGTGGTCCTTTGTTTCCTGGGAGCAAACACCGTGGATGGTGGAATCACTCAG
CACTGTGAC
AACCCGACAGCT





TCCCCAAAGTACCTGTTCAGAAAGGAAGGACAGAATGTGACCCTGAGTTGTGAACAGAATTTGAACCACGATGC
ATCGGCCCA
TTCTATCTCTGTG





CATGTACTGGTACCGACAGGACCCAGGGCAAGGGCTGAGATTGATCTACTACTCACAGATAGTAAATGACTTTC
AAAG
CCAGTAGTATAG





AGAAAGGAGATATAGCTGAAGGGTACAGCGTCTCTCGGGAGAAGAAGGAATCCTTTCCTCT

A





hTRBV20
hTRBV20
225
ATGCTGCTGCTTCTGCTGCTTCTGGGGCCAGGTATAAGCCTCCTTCTACCTGGGAGCTTGGCAGGCTCCGGGCTTG
CTGACAGTG
CTGAAGACAGCA





GTGCTGTCGTCTCTCAACATCCGAGCTGGGTTATCTGTAAGAGTGGAACCTCTGTGAAGATCGAGTGCCGTTCCC
ACCAGTGCC
GCTTCTACATCT





TGGACTTTCAGGCCACAACTATGTTTTGGTATCGTCAGTTCCCGAAACAGAGTCTCATGCTGATGGCAACTTCCA
CATC
GCAGTGCTAGAG





ATGAGGGCTCCAAGGCCACATACGAGCAAGGCGTCGAGAAGGACAAGTTTCTCATCAACCATGCAAGCCTGACC

A





TTGTCCACT







hTRBV21
hTRBV21
226
ATGTGCCTCAGACTTCTCTGCTGTGTGGCCATTTCTTTCTGGGGAGCCAGGCTCCACGGACACCAAGGTCACCCA
GAGATCCAG
GGGACACAGCAC





GAGACCTAGACTTCTGGTCAAAGCAAGTGAACAGAAAGCAAAGATGGATTGTGTTCCTATAAAAGCACATAGTT
TCCACGGAG
TGTATTTCTGTGC





ATGTTTACTGGTATCGTAAGAAGCTGGAAGAAGAGCTCAAGTTTTTGGTTTACTTTCAGAATGAAGAACTTATTC
TCAG
CAGCAGCAAAGC





AGAAAGCAGAAATAATCAATGAGCGATTTTTAGCCCAATGCTCCAAAAACTCATCCTGTACCTTG







hTRBV22
hTRBV22
227
ATGGGGAGCTGGGTCCTCTGCTATGTGACCCTGTGTCTCCTGGGAGCAGGACCCTTGGATGCTGACATCTATCAG
GTGAAGTTG
AACAGCTTTGTA





ATGCCATTCCAGCTCACTGGGGCTGGATGGGATGTGACTCTGGAGTGGAAACGGAATTTGAGACACAATGACAT
GCCCACACC
CTTCTGTCCTGG





GTACTGCTACTGGTACTGGCAGGACCCAAAGCAAAATCTGAGACTGATCTATTACTCAAGGGTTGAAAAGGATA
AGCCA
GAGCGCAC





TTCAGAGAGGAGATCTAACTGAAGGCTACGTGTCTGCCAAGAGGAGAAGGGGCTATTTCTTCTCAGG







hTRBV23
hTRBV23
228
ATGGGCACCAGGCTCCTCGGCTGTGCAGCCCTGTGTCTCCTGGCAGCAGACTCTTTTCATGCCAAAGTCACACAG
CCTGGCAAT
CCGGGAGACACG





ACTCCAGGACATTTGGTCAAAGGAAAAGGACAGAAAACAAAGATGGATTGTACCCCCGAAAAAGGACATACTTT
CCTGTCCTC
GCACTGTATCTC





TGTTTATTGGTATCAACAGAATCAGAATAAAGAGTTTATGCTTTTGATTTCCTTTCAGAATGAACAAGTTCTTCAA
AGAA
TGCGCCAGCAGT





GAAACGGAGATGCACAAGAAGCGATTCTCATCTCAATGCCCCAAGAACGCACCCTGCAG

CAATC





hTRBV24
hTRBV24
229
ATGGCCTCCCTGCTCTTCTTCTGTGGGGCCTTTTATCTCCTGGGAACAGGGTCCATGGATGCTGATGTTACCCAGA
GAGTCTGCC
CAGCTCTTTACTT





CCCCAAGGAATAGGATCACAAAGACAGGAAAGAGGATTATGCTGGAATGTTCTCAGACTAAGGGTCATGATAGA
ATCCCCAAC
CTGTGCCACCAG





ATGTACTGGTATCGACAAGACCCAGGACTGGGCCTACGGTTGATCTATTACTCCTTTGATGTCAAAGATATAAAC
CAGA
TGATTTG





AAAGGAGAGATCTCTGATGGATACAGTGTCTCTCGACAGGCACAGGCTAAATTCTCCCTGTCCCTA







hTRBV25
hTRBV25
230
ATGACTATCAGGCTCCTCTGCTACATGGGCTTTTATTTTCTGGGGGCAGGCCTCATGGAAGCTGACATCTACCAG
GGAGTCTGC
TACCTCTCAGTA





ACCCCAAGATACCTTGTTATAGGGACAGGAAAGAAGATCACTCTGGAATGTTCTCAAACCATGGGCCATGACAA
CAGGCCCTC
CCTCTGTGCCAG





AATGTACTGGTATCAACAAGATCCAGGAATGGAACTACACCTCATCCACTATTCCTATGGAGTTAATTCCACAGA
ACA
CAGTGAATA





GAAGGGAGATCTTTCCTCTGAGTCAACAGTCTCCAGAATAAGGACGGAGCATTTTCCCCTGACCCT







hTRBV26
hTRBV26
231
ATGAGCAACAGGCTTCTCTGCTGTGTGATCATTTGTCTCCTAAGAGCAGGCCTCAAGGATGCTGTAGTTACACAA
GAAGTCTGC
ACATCTGTGTAT





TTCCCAAGACACAGAATCATTGGGACAGGAAAGGAATTCATTCTACAGTGTTCCCAGAATATGAATCATGTTACA
CAGCACCAA
CTCTATGCCAGC





ATGTACTGGTATCGACAGGACCCAGGACTTGGACTGAAGCTGGTCTATTATTCACCTGGCACTGGGAGCACTGAA
CCAG
AGTTCATC





AAAGGAGATATCTCTGAGGGGTATCATGTTTCTTGAAATACTATAGCATCTTTTCCCCTGACCCT







hTRBV27
hTRBV27
232
ATGGGCCCCCAGCTCCTTGGCTATGTGGTCCTTTGCCTTCTAGGAGCAGGCCCCCTGGAAGCCCAAGTGACCCAG
GGAGTCGCC
ACCTCTCTGTACT





AACCCAAGATACCTCATCACAGTGACTGGAAAGAAGTTAACAGTGACTTGTTCTCAGAATATGAACCATGAGTA
CAGCCCCAA
TCTGTGCCAGCA





TATGTCCTGGTATCGACAAGACCCAGGGCTGGGCTTAAGGCAGATCTACTATTCAATGAATGTTGAGGTGACTGA
CCAG
GTTTATC





TAAGGGAGATGTTCCTGAAGGGTACAAAGTCTCTCGAAAAGAGAAGAGGAATTTCCCCCTGATCCT







hTRBV28
hTRBV28
233
ATGGGAATCAGGCTCCTGTGTCGTGTGGCCTTTTGTTTCCTGGCTGTAGGCCTCGTAGATGTGAAAGTAACCCAG
GGAGTCCGC
ACATCTATGTAC





AGCTCGAGATATCTAGTCAAAAGGACGGGAGAGAAAGTTTTTCTGGAATGTGTCCAGGATATGGACCATGAAAA
CAGCACCAA
CTCTGTGCCAGC





TATGTTCTGGTATCGACAAGACCCAGGTCTGGGGCTACGGCTGATCTATTTCTCATATGATGTTAAAATGAAAGA
CCAG
AGTTTATG





AAAAGGAGATATTCCTGAGGGGTACAGTGTCTCTAGAGAGAAGAAGGAGCGCTTCTCCCTGATTCT







hTRBV29
hTRBV29
234
ATGCTGAGTCTTCTGCTCCTTCTCCTGGGACTAGGCTCTGTGTTCAGTGCTGTCATCTCTCAAAAGCCAAGCAGGG
GTGAGCAAC
CAGCAGCATATA





ATATCTGTCAACGTGGAACCTCCCTGACGATCCAGTGTCAAGTCGATAGCCAAGTCACCATGATGTTCTGGTACC
ATGAGCCCT
TCTCTGCAGCGT





GTCAGCAACCTGGACAGAGCCTGACACTGATCGCAACTGCAAATCAGGGCTCTGAGGCCACATATGAGAGTGGA
GAAGA
TGAAGA





TTTGTCATTGACAAGTTTCCCATCAGCCGCCCAAACCTAACATTCTCAACTCTGACT







hTRBV30
hTRBV30
235
ATGCTCTGCTCTCTCCTTGCCCTTCTCCTGGGCACTTTCTTTGGGGTCAGATCTCAGACTATTCATCAATGGCCAG
GAGTTCTAA
GTGACTCTGGCT





CGACCCTGGTGCAGCCTGTGGGCAGCCCGCTCTCTCTGGAGTGCACTGTGGAGGGAACATCAAACCCCAACCTAT
GAAGCTCCT
TCTATCTCTGTGC





ACTGGTACCGACAGGCTGCAGGCAGGGGCCTCCAGCTGCTCTTCTACTCCGTTGGTATTGGCCAGATCAGCTCTG
TCTCA
CTGGAGTGT





AGGTGCCCCAGAATCTCTCAGCCTCCAGACCCCAGGACCGGCAGTTCATCCT








Claims
  • 1. A method for sequencing immune cell receptor genes, comprising (1) providing RNA from immune cells;(2)(a) optionally transcribing the RNA into complementary RNA (cRNA), followed by reverse transcribing the cRNA into complementary DNA (cDNA) using one or more primers that comprise a first adapter sequence, wherein each 5′ end of the cDNA produced by reverse transcription contains the first adapter sequence;(2)(b) if step (2)(a) is not performed, reverse transcribing the RNA into complementary DNA (cDNA), followed by transcribing the cDNA into second strand cDNA using one or more primers that comprise a first adapter sequence, wherein each 5′ end of the cDNA produced by transcribing the cDNA into second strand cDNA contains the first adapter sequence;(3) amplifying the cDNA to produce a first amplification product using a first primer pair comprising a first primer that hybridizes to the first adapter sequence and a second primer that hybridizes to a constant region of immune cell receptor gene;(4) amplifying the first amplification product to produce a second amplification product using a second primer pair, in which i. a first primer of the second primer pair binds to the adapter sequence at the 5′ end of the second amplification product,ii. the second primer of the second primer pair binds to the constant region of immune cell receptor gene in the second amplification product, andiii. the first and second primers comprise adapter sequences for sequencing; and(5) sequencing the second amplification product.
  • 2. The method according to claim 1, wherein the reverse transcription step results in PCR products ranging from 150-600 bp.
  • 3. The method according to claim 1 or claim 2, wherein the immune cell receptor genes are T-cell receptor (TCR) genes or B-cell receptor (BCR) genes.
  • 4. The method of any one of claims 1-3, wherein the one or more primers used for reverse transcription (step (2)(a)) or second strand cDNA synthesis (step (2)(b)) hybridize to TCR α chain V segments.
  • 5. The method of claim 4, wherein the one or more primers used for reverse transcription (step (2)(a)) or second strand cDNA synthesis (step (2)(b)) comprise one or more of SEQ ID NOs: 1-50 or SEQ ID NOs: 261-310.
  • 6. The method of any one of claims 1-3, wherein the one or more primers used for reverse transcription (step (2)(a)) or second strand cDNA synthesis (step (2)(b)) hybridize to TCR β chain V segments.
  • 7. The method according to claim 6, wherein the one or more primers used for reverse transcription (step (2)(a)) or second strand cDNA synthesis (step (2)(b)) comprise one or more of SEQ ID NOs: 51-100 or SEQ ID NOs: 311-360.
  • 8. The method of any one of claims 1-3, wherein the one or more primers used for reverse transcription (step (2)(a)) or second strand cDNA synthesis (step (2)(b)) hybridize to TCR γ chain V segments.
  • 9. The method of any one of claims 1-3, wherein the one or more primers used for reverse transcription (step (2)(a)) or second strand cDNA synthesis (step (2)(b)) hybridize to TCR δ chain V segments.
  • 10. The method of any one of claims 1-3, wherein the one or more primers used for reverse transcription (step (2)(a)) or second strand cDNA synthesis (step (2)(b)) hybridize to BCR heavy chain V segments.
  • 11. The method of any one of claims 1-3, wherein the one or more primers used for reverse transcription (step (2)(a)) or second strand cDNA synthesis (step (2)(b)) hybridize to BCR light chain V segments.
  • 12. The method according to any one of claims 1-11, wherein the one or more primers used for reverse transcription (step (2)(a)) or second strand cDNA synthesis (step (2)(b)) contain a nucleotide barcode sequence.
  • 13. The method according to claim 12, wherein the nucleotide barcode comprises 6 to 20 nucleotides.
  • 14. The method according to claim 12 or claim 13, wherein the nucleotide barcode consists of 9 nucleotides.
  • 15. The method according to any one of claims 12-14, wherein the nucleotide barcode consists of the sequence NNNNTNNNN, NNNNANNNN or HHHHHNNNN.
  • 16. The method according to any one of claims 1-15, wherein the first adapter sequence of the one or more primers used for the reverse transcription (step (2)(a)) or second strand cDNA synthesis (step (2)(b)) comprises a T7 adapter or an Illumina® adapter.
  • 17. The method according to any one of claims 1-9 and 12-16, wherein the immune cells are T-cells and wherein the second primer of the first pair of primers hybridizes to the constant region of a TCR gene.
  • 18. The method according to any one of claims 1-3 and 10-16, wherein the immune cells are B-cells and wherein the second primer of the first pair of primers hybridizes to the constant region of a BCR gene.
  • 19. The method according to any one of claims 1-18, wherein the sequencing is next generation sequencing.
  • 20. The method according to any one of claims 1-19, wherein the RNA from the immune cells is obtained by mixing immune cells with carrier cells before RNA extraction.
  • 21. The method according to any one of claims 1-9 and 12-20, wherein the immune cells are tumor-infiltrating lymphocytes.
  • 22. The method according to any one of claims 1-9 and 12-20, wherein the immune cells are CD4 or CD8 positive T-cells.
  • 23. The method according to any one of claims 1-20, wherein the immune cells are purified from peripheral blood mononuclear cells (PBMC) before RNA extraction.
  • 24. The method according to any one of claims 1-20, wherein the immune cells are part of a mixture of peripheral blood mononuclear cells (PBMC).
  • 25. The method according to any one of claims 1-24, wherein the immune cells are derived from a mammal.
  • 26. The method according to claim 25, wherein the mammal is a human or a mouse.
  • 27. A kit for sequencing of T-cell receptors (TCRs), comprising at least one primer which comprises a TCR α chain V segment portion of any one of SEQ ID NOs: 1-50 or SEQ ID NOs: 261-310 and a barcode sequence.
  • 28. The kit according to claim 27, comprising at least one primer comprising any one of SEQ ID NOs: 1-50 or SEQ ID NOs: 261-310.
  • 29. A kit for sequencing of T-cell receptors (TCRs), comprising at least one primer which comprises a TCR β chain V segment portion of any one of SEQ ID NOs: 51-100 or SEQ ID NOs: 311-360 and a barcode sequence.
  • 30. The kit according to claim 29, comprising at least one primer comprising any one of SEQ ID NOs: 51-100 or SEQ ID NOs: 311-360.
RELATED APPLICATION

This application claims priority under 35 U.S.C. § 119(e) to U.S. provisional patent application Ser. No. 62/452,409, filed Jan. 31, 2017, the entire contents of which are incorporated herein by reference.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2018/015819 1/30/2018 WO 00
Provisional Applications (1)
Number Date Country
62452409 Jan 2017 US