ENHANCED IMMUNE CELL RECEPTOR SEQUENCING METHODS

Information

  • Patent Application
  • 20220411869
  • Publication Number
    20220411869
  • Date Filed
    April 12, 2022
    2 years ago
  • Date Published
    December 29, 2022
    2 years ago
Abstract
Disclosed are methods for sequencing immune cell receptor repertoires from immune cell populations, the methods comprising isolating RNA from immune cells, generating cDNA from the RNA, ligating adapter sequences to the cDNA, and sequencing the cDNA. Also provided are kits containing primer mixtures for the sequencing of immune cell receptor repertoires.
Description
REFERENCE TO A SEQUENCE LISTING SUBMITTED AS A TEXT FILE VIA EFS-WEB

The instant application contains a Sequence Listing which has been submitted in ASCII format via EFS-Web and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Apr. 5, 2022, is named L046170192US02-SEQ-JRV, and is 150,607 bytes in size.


FIELD

The disclosure relates to methods, systems and kits for sequencing immune cell receptor repertoires from immune cells, such as T-cells or B-cells.


BACKGROUND

Immune cell repertoires, such as B- or T-cell repertoires, consists of millions of lymphocytes, each expressing a different protein complex that enables specific recognition of a single antigen. CD4 and CD8 positive T-cells express so-called T-cell receptors (TCRs). These heterodimeric receptors recognize antigen-derived peptides displayed by major histocompatibility complex (MHC) molecules on the surface of antigen presenting cells, as described in Rudolph M G, Stanfield R L, Wilson I A. How TCRs bind MHCs, peptides, and coreceptors. Annu Rev Immunol. 2006; 24:419-66. TCRs are composed of two subunits, most commonly of one α and one β chain. A less common type of TCR contains one γ and one δ chain.


Alpha (α) chains consists of a (variable) V, a joining (J) and a constant (C) region, while beta (β) chains contain an additional diversity (D) region between the V and the J region (see FIG. 1), as described in Starr T K, Jameson S C, Hogquist K A. Positive and negative selection of T cells. Annu Rev Immunol. 2003; 21:139-76. Each of these TCR regions is encoded in several pieces, so-called gene segments, which are spatially segregated in the germline. In humans, the TCR α gene locus contains 54 different V gene segments, and 61 J gene segments. The human TCR β chain locus comprises 65 V, 2 D and 14 J segments. The great structural diversity of TCRs is achieved by somatic recombination of these TCR gene segments during lymphocyte development in the thymus. During this process, several gene segments of each region type are randomly selected and joined to form a rearranged TCR locus. Additional junctional diversity is created by the addition or removal of nucleotides at the sites of recombination, as described in Krangel M S. Mechanics of T cell receptor gene rearrangement. Curr Opin Immunol. 2009 April; 21(2):133-9. The process of V(D)J joining plays a critical role in shaping the third hypervariable loops (also called complementary determining regions, CDR3s) of the TCR α and β chains. These regions bind antigens and are essential for providing the high specificity of antigen recognition that TCRs exhibit.


Similarly to the TCR αβ, TCR gamma (γ) and delta (δ) segments undergo V(D)J rearrangement during thymus development. Both loci are recombined in the double negative (DN) stage of T-cell development. Differentiation towards γδ or αβ lineage relies on the ability of the cell to produce functional γδ or αβ TCR. The δ locus is embedded within the α locus. Dδ, Jδ and Cδ segments are located in between the V and the J segment of the α locus. The Vδ segments are the same as the Vα segments but only a fraction of the Vα segments are used for the TCR δ chain.


Overall, V(D)J recombination is able to generate millions of different TCR sequences and plays a critical role in an organism's ability to eliminate infections or transformed cells. Not surprisingly, TCR repertoires affect a wide range of diseases, including malignancy, autoimmune disorders and infectious diseases. TCR sequencing has been instrumental for our understanding of how the TCR repertoire evolves during infection or following treatment (e.g. after hematopoietic stem cell transplantation, chronical viral infection, immunotherapy). Further, the identification of TCRs on tumor-infiltrating lymphocytes and other T-cells that target cancer-specific epitopes has not only furthered our knowledge of malignant disease, but has also led to novel therapies for cancer such as adoptive T-cell transfer or cancer vaccines.


Due to the large diversity of sequences, determining TCR repertoires has been challenging in praxis. In the last couple of years, next generation sequencing (NGS) has opened up new opportunities to comprehensively assess the extreme diversity of TCR repertoires, as described in Genolet R, Stevenson B J, Farinelli L, Oster{dot over (a)}s M, Luescher I F. Highly diverse TCRα chain repertoire of pre-immune CD8+ T cells reveals new insights in gene recombination. EMBO J. 2012 Apr. 4; 31(7):1666-78; Robins H S, Campregher P V, Srivastava S K, Wacher A, Turtle C J, Kahsai O, Riddell S R, Warren E H, Carlson C S. Comprehensive assessment of T-cell receptor beta-chain diversity in alpha beta T cells. Blood. 2009 Nov. 5; 114(19):4099-107; Linnemann C, Heemskerk B, Kvistborg P, Kluin R J, Bolotin D A, Chen X, Bresser K, Nieuwland M, Schotte R, Michels S, Gomez-Eerland R, Jahn L, Hombrink P, Legrand N, Shu C J, Mamedov I Z, Velds A, Blank C U, Haanen J B, Turchaninova M A, Kerkhoven R M, Spits H, Hadrup S R, Heemskerk M H, Blankenstein T, Chudakov D M, Bendle G M, Schumacher T N. High-throughput identification of antigen-specific TCRs by TCR gene capture. Nat Med. 2013 November; 19(11):1534-41; Turchaninova M A, Britanova O V, Bolotin D A, Shugay M, Putintseva E V, Staroverov D B, Sharonov G, Shcherbo D, Zvyagin I V, Mamedov I Z, Linnemann C, Schumacher T N, Chudakov D M. Pairing of T-cell receptor chains via emulsion PCR. Eur J Immunol. 2013 September; 43(9):2507-15.


Since most current TCR sequencing techniques require enrichment of TCR genes for sequencing, the majority of methods include an amplification step, in which the nucleic acids encoding the individual TCRs are amplified. Therefore, one of the challenges of the TCR sequencing relates to the ability of the technology to maintain the proportion of each TCR during the amplification. Thus, the ways in which TCR libraries are prepared have a strong impact on the quality and the reliability of the obtained sequencing results and on the conclusions than can be drawn from the data. Several approaches have been used to amplify and sequence TCR repertoires in the past, each method with its own set of issues.


One frequently employed method for TCR sequencing is based on a multiplex PCR step, in which all the primers for the V and the J segments are mixed together to amplify all the possible V(D)J rearrangements/combinations, as described in Robins H S, Campregher P V, Srivastava S K, Wacher A, Turtle C J, Kahsai O, Riddell S R, Warren E H, Carlson C S. Comprehensive assessment of T-cell receptor beta-chain diversity in alpha beta T cells. Blood. 2009 Nov. 5; 114(19):4099-107. The main drawback of this technology is that the amplification is not quantitative: Because the efficiency of each primer pair varies, some TCR sequences are preferentially represented in the library.


Another TCR sequencing method uses a process called “DNA gene capture” to isolate TCR encoding DNA fragments, as described in Linnemann C, Heemskerk B, Kvistborg P, Kluin R J, Bolotin D A, Chen X, Bresser K, Nieuwland M, Schotte R, Michels S, Gomez-Eerland R, Jahn L, Hombrink P, Legrand N, Shu C J, Mamedov I Z, Velds A, Blank C U, Haanen J B, Turchaninova M A, Kerkhoven R M, Spits H, Hadrup S R, Heemskerk M H, Blankenstein T, Chudakov D M, Bendle G M, Schumacher T N. High-throughput identification of antigen-specific TCRs by TCR gene capture. Nat Med. 2013 November; 19(11):1534-41. However, since this method uses DNA rather than RNA, this method will also isolate V and J segments that have not yet undergone somatic rearrangement. As a consequence, many of the obtained sequencing data are uninformative for TCR gene identification as they do not contain the V(D)J region of rearranged TCR gene locus. Furthermore, using DNA instead of RNA for the TCR gene analysis may overestimate the diversity of the TCR repertoire as only one of the two β chains is expressed by the T-cells while the other gene is silenced (allelic exclusion).


A third method of TCR amplification is based on the 5′-Race PCR technology (SMARTer® Human TCR a/b Profiling Kit, Takara-Clontech). In this method, a nucleic acid adapter is added to the 5′-end of the cDNA during the reverse transcription step. As a result, TCR products can be subsequently amplified with a single primer pair, with one primer binding to the adapter at the 5′-end of the cDNA and the second primer binding to the constant region near the 3′-end of the cDNA. One of the disadvantages of this technique is that the amplification step will generate PCR fragments ranging between 500 and 600 bp. As the length of the V segment exceeds 400 bp it is actually not possible to sequence the V(D)J junction starting from the 5′end using ILLUMINA® sequencing technology, which can generate sequencing reads of up to 300 bp only. Sequencing of the V/J junction is thus usually performed from the constant region, crossing the J segment, the CDR3 region and part of the V segment. However, sequencing errors increase with the length of the sequencing read, and are thus most frequently introduced in the V segments—the region most challenging to correctly assign due to the high homology between different V segments. Consequently, sequencing starting from the constant region may lead to a reduction in the number of V segments that can be identified unambiguously. While this caveat can be avoided by paired-end sequencing, such modification of the protocol will significantly increase the duration and cost associated with this method.


SUMMARY

With each of the current methods exhibiting significant shortcomings, there is thus a considerable need for a TCR sequencing technology that provides TCR repertoire data with high sensitivity and reliability.


Disclosed herein are methods and kits for sequencing of T-cell receptor repertoires and other immune cell repertoires, such as B-cell repertoires, with high sensitivity and reliability. In one embodiment, the methods include the steps of (1) providing RNA from T-cells, (2) transcribing RNA into complimentary RNA (cRNA), (3) reverse transcribing the cRNA into cDNA while introducing a common adapter to the 5′ end of the cDNA products, (4) amplifying the cDNA using a single primer pair, (5) further amplifying with PCR products with a single primer pair which introduces adapters for next generation sequencing, wherein the first primer binds to the common adapter region, and wherein the second primer binds to the constant region of the TCR gene, and (6) sequencing the PCR products. In one embodiment, the methods include the steps of (1) providing RNA from T-cells, (2) reverse transcribing the RNA into cDNA, (3) generating second strand cDNA while introducing a common adapter to the 5′ end of the cDNA products, (4) amplifying the cDNA using a single primer pair, (5) further amplifying with PCR products with a single primer pair which introduces adapters for next generation sequencing, wherein the first primer binds to the common adapter region, and wherein the second primer binds to the constant region of the TCR gene, and (6) sequencing the PCR products. These embodiments are also called SEQTR method (Sequencing T-cell Receptors). Also provided are kits containing primer mixtures for the sequencing of T-cell receptor repertoires. Similar methods and kits for sequencing of B-cell receptor repertoires are provided.


According to one aspect, methods for sequencing immune cell receptor genes are provided. The methods include (1) providing RNA from immune cells; 2)(a) optionally transcribing the RNA into complementary RNA (cRNA), followed by reverse transcribing the cRNA into complementary DNA (cDNA) using one or more primers that comprise a first adapter sequence, wherein each 5′ end of the cDNA produced by reverse transcription contains the first adapter sequence; (2)(b) if step (2)(a) is not performed, reverse transcribing the RNA into complementary DNA (cDNA), followed by transcribing the cDNA into second strand cDNA using one or more primers that comprise a first adapter sequence, wherein each 5′ end of the cDNA produced by transcribing the cDNA into second strand cDNA contains the first adapter sequence; (3) amplifying the cDNA to produce a first amplification product using a first primer pair comprising a first primer that hybridizes to the first adapter sequence and a second primer that hybridizes to a constant region of immune cell receptor gene; (4) amplifying the first amplification product to produce a second amplification product using a second primer pair, in which (i) a first primer of the second primer pair binds to the adapter sequence at the 5′ end of the second amplification product, (ii) the second primer of the second primer pair binds to the constant region of immune cell receptor gene in the second amplification product, and (iii) the first and second primers comprise adapter sequences for sequencing; and (5) sequencing the second amplification product.


In some embodiments, the reverse transcription step results in PCR products ranging from 150-600 bp. In some embodiments, the immune cell receptor genes are T-cell receptor (TCR) genes or B-cell receptor (BCR) genes.


In some embodiments, the one or more primers used for reverse transcription (step (2)(a)) or second strand cDNA synthesis (step (2)(b)) hybridize to TCR α chain V segments. In some embodiments, the one or more primers used for reverse transcription (step (2)(a)) or second strand cDNA synthesis (step (2)(b)) comprise one or more of SEQ ID NOs: 1-50 or SEQ ID NOs: 261-310.


In some embodiments, the one or more primers used for reverse transcription (step (2)(a)) or second strand cDNA synthesis (step (2)(b)) hybridize to TCR β chain V segments. In some embodiments, the one or more primers used for reverse transcription (step (2)(a)) or second strand cDNA synthesis (step (2)(b)) comprise one or more of SEQ ID NOs: 51-100 or SEQ ID NOs: 311-360.


In some embodiments, the one or more primers used for reverse transcription (step (2)(a)) or second strand cDNA synthesis (step (2)(b)) hybridize to TCR γ chain V segments.


In some embodiments, the one or more primers used for reverse transcription (step (2)(a)) or second strand cDNA synthesis (step (2)(b)) hybridize to TCR δ chain V segments.


In some embodiments, the one or more primers used for reverse transcription (step (2)(a)) or second strand cDNA synthesis (step (2)(b)) hybridize to BCR heavy chain V segments.


In some embodiments, the one or more primers used for reverse transcription (step (2)(a)) or second strand cDNA synthesis (step (2)(b)) hybridize to BCR light chain V segments.


In some embodiments, the one or more primers used for reverse transcription (step (2)(a)) or second strand cDNA synthesis (step (2)(b)) contain a nucleotide barcode sequence. In some embodiments, the nucleotide barcode comprises 6 to 20 nucleotides. In some embodiments, the nucleotide barcode consists of 9 nucleotides. In some embodiments, the nucleotide barcode consists of the sequence NNNNTNNNN, NNNNANNNN or HHHHHNNNN.


In some embodiments, the first adapter sequence of the one or more primers used for the reverse transcription (step (2)(a)) or second strand cDNA synthesis (step (2)(b)) comprises a T7 adapter or an ILLUMINA® adapter.


In some embodiments, the immune cells are T-cells and wherein the second primer of the first pair of primers hybridizes to the constant region of a TCR gene.


In some embodiments, the immune cells are B-cells and wherein the second primer of the first pair of primers hybridizes to the constant region of a BCR gene.


In some embodiments, the sequencing is next generation sequencing.


In some embodiments, the RNA from the immune cells is obtained by mixing immune cells with carrier cells before RNA extraction.


In some embodiments, the immune cells are tumor-infiltrating lymphocytes.


In some embodiments, the immune cells are CD4 or CD8 positive T-cells.


In some embodiments, the immune cells are purified from peripheral blood mononuclear cells (PBMC) before RNA extraction.


In some embodiments, the immune cells are part of a mixture of PBMC.


In some embodiments, the immune cells are derived from a mammal. In some embodiments, the mammal is a human or a mouse.


According to another aspect, kits for sequencing of T-cell receptors are provided. The kits include at least one primer which comprises a TCR α chain V segment portion of any one of SEQ ID NOs: 1-50 or SEQ ID NOs: 261-310 and a barcode sequence. In some embodiments, the kits include at least one primer including any one of SEQ ID NOs: 1-50 or SEQ ID NOs: 261-310.


According to another aspect, kits for sequencing of T-cell receptors are provided. The kits include at least one primer which comprises a TCR β chain V segment portion of any one of SEQ ID NOs: 51-100 or SEQ ID NOs: 311-360 and a barcode sequence. In some embodiments, the kits include at least one primer comprising any one of SEQ ID NOs: 51-100 or SEQ ID NOs: 311-360.


These and other features, aspects, and advantages of the present invention will become better understood with regard to the following description, appended claims and accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows the arrangement of (variable) V, diversity (D), joining (J) and constant (C) regions in the α and β chains of T-cell receptors. Figure taken from Murphy, K., Travers, P., Walport, M., & Janeway, C. (2012). Janeway's immunobiology. New York: Garland Science.



FIG. 2 is an illustration of three different TCR sequencing techniques that have been employed in the past.



FIG. 3 provides an overview of the SEQTR method, using TCR α chains as an example. Each bar represents a TCR α chain gene. In RNA and cRNA molecules, the order of the segments is, left to right: V segments, J segments, and the constant region. Barcode regions are added in cDNA molecule to the left of V segments; and T7 adapter regions are added to the left of the barcodes (also indicated by T7 primer amplification in PCR1 and PCR2 steps). ILLUMINA® sequencing adapters are added in the PCR2 step to the 5′ and 3′ ends of the molecules, as shown in the last set of molecules.



FIG. 4 illustrates the sensitivity of the SEQTR method. 10{circumflex over ( )}6, 10{circumflex over ( )}5, 10{circumflex over ( )}4, 10{circumflex over ( )}3 or 0 CD8 positive T-cells, respectively, were mixed with 5×10{circumflex over ( )}4 3T3 cells. The RNA was extracted and subjected to transcription, reverse transcription and one round of amplification (steps 2-4, see Detailed Description). The resulting PCR products were separated on an agarose gels and visualized with ethidium bromide.



FIG. 5 illustrates the specificity of the SEQTR method. 10{circumflex over ( )}6, 10{circumflex over ( )}5, 10{circumflex over ( )}4, 10{circumflex over ( )}3 or 0 CD8 positive T-cells, respectively, were mixed with 5×10{circumflex over ( )}4 3T3 cells. The RNA was extracted and subjected to the SEQTR method. The percentages of sequencing reads that were or were not, respectively, associated with actual TCR genes are indicated.



FIG. 6 illustrates the unambiguous identification of TCR genes as a feature of the SEQTR method. 5×10{circumflex over ( )}4 3T3 cells were mixed with 10{circumflex over ( )}6, 10{circumflex over ( )}5, 10{circumflex over ( )}4, 10{circumflex over ( )}3 or 0 CD8 positive T-cells, respectively. The RNA of each mixture was isolated and subjected to the SEQTR method. Reads that were not associated with TCR genes were removed from the data set. For the remaining reads, the percentages of reads that could or could not, respectively, be unambiguously assigned to specific V or J segments are indicated.



FIG. 7 illustrates the linearity of the SEQTR method. A fixed amount of DNA encoding a known TCR sequence was diluted at different concentrations into a DNA mixture representing a naïve CD8 T-cell repertoire. TCR repertoires of the individual mixtures were sequenced using the SEQTR method. The observed frequency of the known TCR sequence in the entire repertoire was plotted against the respective TCR gene dilution.



FIG. 8 illustrates the reproducibility of the SEQTR method. TCR repertoires were sequenced using the SEQTR method from one biological sample in two independent technical replicates. The frequencies for each V-J rearrangement/combination in TCR β chains were determined and compared between the two replicates. Each sphere represents a single V-J rearrangement with the size of a sphere indicating the relative frequency of the specific V-J recombination. Grey spheres represent rearrangements for which the relative frequencies detected in the two replicates differed by less than two-fold. Black spheres represent rearrangements for which the relative frequencies detected in the two replicates differed by more than two-fold.



FIGS. 9A-9C illustrates the diversity of three different TCR repertoire sequencing data set using the SEQTR method. FIG. 9A CD8 positive T-cells were isolated from peripheral blood mononuclear cells (PBMC), FIG. 9B additionally purified using tetramers conjugated with neo-epitope TEDYMIHII (SEQ ID NO:236) or FIG. 9C additionally purified using tetramer conjugated with neo-epitope (same as in FIG. 9B) and subsequently expanded in vitro. The TCR repertoires of the respective samples were sequenced using the SEQTR method and the relative frequencies of all observed V/J rearrangements/combinations plotted.



FIGS. 10A-10C illustrate the overlap of TCRs identified using a single cell cloning method and TCRs identified using the SEQTR method. FIG. 10A: T-cells were isolated from PBMC and subjected to an additional round of purification using tetramers conjugated with neo-epitope TEDYMIHII (SEQ ID NO: 236). The resulting cell population was then sorted by fluorescence-activated cell sorting (FACS). Half of the sorted cells were subjected to the SEQTR method to sequence the TCR repertoire. For the other half of cells, individual T-cell clones were isolated and expanded in vitro (single cell cloning). Once the clones were established, the TCR genes of each T-cell clones were amplified and sequenced using classical Sanger sequencing. FIG. 10B: The table shows all six TCRs identified using the single cell cloning method. The sequences correspond to SEQ ID NOs: 237 through 242 from top to bottom, respectively. FIG. 10C: The table shows the eight most frequent TCRs identified using the SEQTR method. The sequences correspond to SEQ ID NOs: 243 through 250 from top to bottom, respectively.



FIG. 11 illustrates the number of reads for different samples obtained using the TCR sequencing service “immunoSEQ®” offered by Adaptive Biotechnology. The requested number of reads per sample was 200,000 reads. The number on the x axis represent analysis of samples from 16 different patients. Columns, left to right, for each sample represent number of reads from: the tumor; the stroma (tissue surrounding the tumor); epitope specific TIL (Tumor Infiltrating Lymphocyte) stained with tetramer and sorted by FACS from the tumor sample (TET); and tetramer sorted TIL from a piece of the tumor that has been engrafted in a mice (mTET).



FIG. 12 illustrates the amplification of TCR genes from T-cells that are part of a PBMC mixture (upper panel) or from isolated, CD4 positive T-cells (lower panel), using steps 2 to 4 of the SEQTR method.





DETAILED DESCRIPTION

In light of the shortcomings of existing techniques to sequence TCRs, it was determined that a TCR sequencing technology providing the most reliable TCR repertoire data includes the following features:

    • 1) The amplification of TCR genes is linear and does not employ multiplex PCR, therefore avoiding artificial overrepresentation of certain TCR sequences.
    • 2) The method is based on RNA and not DNA, thus only providing data for TCR sequences that have undergone rearrangement and that are actually expressed in T-cells.
    • 3) TCR genes are sequenced from the 5′ end, providing high quality sequencing data and therefore maximizing reliable and unambiguous identification of the highly homologous V segments.
    • 4) Sequencing data include the highly variable CDR3 region, therefore facilitating unambiguous identification of TCR sequences.


The disclosed methods, systems and kits fulfill all these criteria. These same features are of use in sequencing receptors from other immune cells, such as B-cells.


In some embodiments, the immune cell receptor sequencing methods comprise the following steps:

    • (1) Providing total RNA (RNA) as the starting material;
    • (2)(a) Transcribing the RNA into complimentary RNA (cRNA) followed by reverse transcribing the cRNA into cDNA, using primers that introduce a common adapter to the 5′ end of the cDNA products;
    • (2)(b) If step (2)(a) is not performed, reverse transcribing the RNA into complementary DNA (cDNA), followed by transcribing the cDNA into second strand cDNA using one or more primers that comprise a first adapter sequence, wherein each 5′ end of the cDNA produced by transcribing the cDNA into second strand cDNA contains the first adapter sequence;
    • (3) Amplifying the cDNA products using a single primer pair;
    • (4) Amplifying the PCR products of step 4 using a single primer pair, in which:


i. the primers introduce adapters for next generation sequencing, and ii. the first primer binds to the common adapter region at the 5′ end of the PCR products, and iii. the second primer binds to a region of the PCR products that constitutes the constant region of the TCR to be sequenced; and

    • (5) Sequencing the PCR products generated in step 4.


Genetic Information to be Sequenced

The genetic information to be sequenced is immune cell receptor genes. In the some embodiments of the invention, the genetic information to be sequenced comprises T-cell receptors genes. In some embodiments, the TCR genes that are sequenced encode TCR α chains or TCR β chains. In other embodiments, TCR genes that are sequenced encode TCR δ chains or TCR γ chains.


In other embodiments of the invention, the genetic information to be sequenced comprises B-cell receptor (BCR) genes.


Starting Material (Step 1)

RNA is isolated from immune cells and used to generate complimentary RNA (cRNA) by in vitro transcription. This is in contrast to existing TCR sequencing techniques that use DNA or complementary DNA (cDNA) as their genetic starting material.


In some embodiments, the immune cells from which RNA is obtained are isolated from peripheral blood mononuclear cells before RNA extraction. The immune cells are, in some embodiments, T-cells or B-cells.


In some embodiments, T-cells from which RNA is obtained express CD4 or CD8.


Generation of cRNA Through Transcription (Step (2)(a))


Complementary RNA (cRNA) is generated by in vitro transcription. Any method for performing in vitro transcription known to those skilled in molecular biology can be used. In some embodiments, the in vitro transcription in step 2 is performed using commercially available kits, such as the AMBION™ kits available from Thermo Fisher Scientific.


Reverse Transcription (Step (2)(a))


Reverse transcription of the cRNA is performed to generate complementary DNA (cDNA). Methods known to persons skilled in molecular biology are used to reverse transcribe cRNA to cDNA. Typically, such methods include hybridization of a primer to the 3′ end of the cRNA molecule and production of DNA starting at the hybridized primer using a reverse transcriptase enzyme and appropriate nucleotides, salts and buffers.


The choice of primers used in the reverse transcription reaction is important for the ability to differentiate between homologous, yet distinct, immune cell receptor sequences with high degrees of certainty and allows shortening of the V segments from the 5′ end, generating PCR products with a size of 250-300 bp. Such a size range of PCR products is optimal for next generation sequencing.


In some embodiments, the primers used for the reverse transcription are designed to bind within the V segments of the TCR genes (see FIG. 3). For example, the reverse transcription primers are designed to bind close enough to the V(D)J junction so that the resulting sequencing data cover the CDR3 of the V segment and the J segment, but far enough from the V(D)J junction to still allow differentiation between different V regions.


In some embodiments of the invention, a set of preferred primers is used (see, e.g., the sequences in Table 2 and Table 4, and Table 8 and Table 9). Due to the high degree of homology between different V segments, some of the primers described in Table 2 and Table 4 (and Table 8 and Table 9) bind to more than one V segment (see Table 3 and Table 5; the binding sites in their respective V segments for primers SEQ ID NOs: 1-100 and SEQ ID NOs: 261-360 are indicated in Table 15 and Table 16). However, the design of the primers presented in Table 2 and Table 4 (likewise Table 8 and Table 9) still allows the unambiguous assignment/identification of the respective V segments based on differences between the V segments downstream of the primer-binding site. In an alternative embodiment of the invention, only a subset of the preferred primers SEQ ID NOs: 1-100 and SEQ ID NOs: 261-360 may be used for the reverse transcription.


In yet another embodiment of the invention, primer sets may be used that bind to different regions in the V segments when compared to the primers having SEQ ID NOs: 1-100 and SEQ ID NOs: 261-360. For instance, the binding site of one or more primers may be moved towards the CDR3 region of the TCR gene. Due to the high degree of homology between V segments, the further the primer binding site is moved in the direction of the CDR3 region of the TCR gene, the larger the likelihood that the resulting sequencing data are consistent with the presence of more than one V segment. While, in these cases, the respective V segments cannot be assigned or identified unambiguously, the number of V/J segments possibly present in the sample can often be narrowed down to a small subset. Depending on the application, such limited information can already be of value to the experimenter.


In another embodiment of the invention, the binding site of one or more primers may be moved towards the 5′ end of the V segment as compared to the binding sites of primers SEQ ID NOs: 1-100 and SEQ ID NOs: 261-360. Many next generation sequencing technologies generate sequencing reads that are 150 bp long. Therefore, the further the primer binding site is moved towards the 5′ end of the V segment, the larger is the probability that the respective J segment (which can be found at the 3′ end of the resulting sequencing read) cannot be identified unambiguously. However, this problem can be circumvented by using alternative sequencing technologies that generate reads >150 bp.


In some embodiments, the primers used in step (2)(a) additionally contain a unique bar code. Such barcoding of each RNA molecule before the amplification can be used to correct the obtained sequencing results for PCR and sequencing errors.


In some embodiments, the primers for this reverse transcription step introduce a common T7 adapter at the 5′ end of the resulting PCR products. However, alternative adapter sequences are possible, including, but not limited to ILLUMINA® adapters and sequences presented in Table 1.









TABLE 1







Examples for alternative nucleotide adapters that can


be used instead of a T7 adapter sequence









SEQ ID NO
Primer name
Primer sequence (5′ to 3′)





251
Original Eberwine T7
AAACGACGGCCAGTGAATTGTAATACGACTCACTATAGGCGCT





252
Affymetrix T7
GGCCAGTGAATTGTAATACGACTCACTATAGGGAGGCGGT





253
Invitrogen T7
TAATACGACTCACTATAGGGAGGCGGT





254
Ambion T7
GGTAATACGACTCACTATAGGGAGAAGAGT





255
Agilent T7
AATTAATACGACTCACTATAGGGAGAT










Reverse Transcription (Step (2)(b))


Reverse transcription of the RNA is performed to generate complementary DNA (cDNA). Methods known to persons skilled in molecular biology are used to reverse transcribe RNA to cDNA. Typically, such methods include hybridization of a primer to the 3′ end of the RNA molecule and production of DNA starting at the hybridized primer using a reverse transcriptase enzyme and appropriate nucleotides, salts and buffers.


Transcribing the cDNA into Second Strand cDNA (Step (2)(b))


Following generation of cDNA, second strand cDNA is synthesized using methods known to persons skilled in molecular biology. Typically, such methods include hybridization of a primer to the 3′ end of the cDNA molecule and production of second strand cDNA starting at the hybridized primer using a polymerase enzyme and appropriate nucleotides, salts and buffers.


The choice of primers used in the second strand synthesis reaction is step (2)(b) is as described above for reverse transcription in step (2)(a). The choice of primers is important for the ability to differentiate between homologous, yet distinct, immune cell receptor sequences with high degrees of certainty and allows shortening of the V segments from the 5′ end, generating PCR products with a size of 250-300 bp. Such a size range of PCR products is optimal for next generation sequencing.


Amplification (Step 3)

Amplification of the cDNA is performed by any of the well-known amplification reactions, such as polymerase chain reaction (PCR). Methods known to persons skilled in the molecular biology art are used to amplify the cDNA or a portion thereof (e.g., as depicted in FIG. 3). Typically, such methods include hybridization of a pair of primers to the cDNA molecule and amplification of the DNA sequence between the hybridized primers using a polymerase enzyme and appropriate nucleotides, salts and buffers.


In some embodiments, the first primer of a primer pair used in an amplification step binds to the common adapter region of the cDNA products produced in step 3 and the second primer of the primer pair binds to a region of the cDNA products that constitutes the constant region of the TCR to be sequenced (see FIG. 3).


Of note, not all reverse primers designed to target the constant region of the TCR gene perform equally well in this reaction. For example, the primers listed in Table 7 all failed to provide good amplification with the selected T7 5′ adapter. Therefore, in certain embodiments, the primers listed in are Table 6 used in this amplification step.


Amplification (Step 4)

A second amplification step is performed to add additional sequences to the amplified molecules, such as sequences that are useful in downstream DNA sequencing reactions. In some embodiments of the present invention, the primers used in this step add appropriate adapters for ILLUMINA® sequencing.


Sequencing (Step 5)

Various suitable sequencing methods described herein or known in the art are used to obtain sequence information from the amplified sequences from the nucleic acid molecules within a sample. For example, sequencing methodologies that can be used in the methods disclosed herein include: classic Sanger sequencing, massively parallel sequencing, next generation sequencing, polony sequencing, 454 pyrosequencing, ILLUMINA® sequencing, SOLEXA® sequencing, SOLID™ sequencing (sequencing by oligonucleotide ligation and detection), ion semiconductor sequencing, DNA nanoball sequencing, heliscope single molecule sequencing, single molecule real time sequencing, nanopore DNA sequencing, tunneling currents DNA sequencing, sequencing by hybridization, sequencing with mass spectrometry, microfluidic Sanger sequencing, microscopy-based sequencing, RNA polymerase sequencing, in vitro virus high-throughput sequencing, Maxam-Gilbert sequencing, single-end sequencing, paired-end sequencing, deep sequencing, and/or ultra-deep sequencing.


Definitions

As disclosed herein, a number of ranges of values are provided. It is understood that each intervening value, to the tenth of the unit of the lower limit, unless the context clearly dictates otherwise, between the upper and lower limits of that range is also specifically disclosed. Each smaller range between any stated value or intervening value in a stated range and any other stated or intervening value in that stated range is encompassed within the invention. The upper and lower limits of these smaller ranges may independently be included or excluded in the range, and each range where either, neither, or both limits are included in the smaller ranges is also encompassed within the invention, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the invention.


As used herein, a “primer” is a nucleic acid molecule that hybridizes with a complementary (including partially complementary) polynucleotide strand. Primers can be DNA molecules, RNA molecules, or DNA or RNA analogs. DNA or RNA analogs can be synthesized from nucleotide analogs.


EXAMPLES
Example 1: Exemplary Protocol for the SEQTR Method Using T7 and TrueSeq Adapters

TCR α and β chain genes were sequenced in two independent reactions.


1) Starting material and RNA extraction

    • To obtain sufficient amounts of RNA in the extraction, a minimum of 500,000 T-cells were used as starting material. Alternatively, and especially in instances where fewer T-cells were available, T-cells were mixed with 50,000 mouse 3T3 cells that served as carrier. T-cell RNA was extracted using the RNeasy® Micro Kit from Qiagen Inc. according the manufacturer's instruction with the following modification: Elution was performed with 20 μl of water preheated to 50° C. RNA quality and quantity was verified using a fragment analyzer.


2) cRNA synthesis by in vitro transcription (IVT):

    • In vitro transcription of isolated RNA was performed using the MessageAmp™ II aRNA Amplification Kit from Ambion® (Thermo Fisher Scientific), which contains enzymes, buffers and nucleotides required to perform the first and second strand cDNA and the in vitro transcription. The kit also provides all columns and reagents needed for the cDNA and cRNA purifications. RNA amplification was performed according to the manufacturer's instructions with the following modifications: 1) Between 0.5 and 1 μg of total RNA as was used as starting material. 2) The IVT was performed in a final volume of 40 μl, and incubated at 37° C. for 16 h. Purified cRNA was quantified by absorbance using a NanoDrop™ spectrophotometer (Thermo Fisher Scientific).


3) cDNA synthesis by reverse transcription:

    • The reverse transcription of the cRNA was performed with the SuperScript® III from Invitrogen (Thermo Fisher Scientific). The kit provides the enzyme, the buffer and the dithiothreitol (DTT) needed for the reaction. Deoxynucleotides (dNTPs) and RNAsin® Ribonuclease inhibitor were purchased from Promega. The sequences for the primers used for the reverse transcription can be found in Table 2 (primers for sequencing TCR α chain genes) and Table 4 (primers for sequencing TCR β chain genes).
    • 500 ng of cRNA were used as starting material for the reverse transcription. cRNA was mixed with 1 μl hTRAV or hTRBV primers mix (2 μM each) and 1 μl dNTP (25 mM) in a final volume of 13 μl. The mix was first incubated at 70° C. for 10 min, then at 50° C. for 30 s. 4 μl 5× buffer, 1 μl DTT (100 mM), 1 μg SuperScript III and 1 μl RNAsin® were added to the mix. The samples were subsequently incubated for at 55° C. 1 h and then at 85° C. for 5 min. After the cDNA synthesis, 1 μg DNase-free RNase (Roche) was added to the cDNA and incubated at 37° C. for 30 min to remove the cRNA.


4) TCR gene amplification:

    • TCR gene amplification was performed using a Phusion® High-Fidelity DNA polymerase (New England Biolabs) under the following conditions: PCR mix: 1 μl cDNA from step 3, 1 μl dNTPs (25 mM), 1 μl primer mix (10 μM each, see Table 5), 5 μl 5× buffer and 0.2 μl Phusion® enzyme in a total volume of 25 μl.
    • PCR conditions:
      • 94° C. for 5 min
      • 20 to 30 cycles of
        • 98° C. for 10 s
        • 55° C. for 30 s
        • 72° C. for 30 s
      • 72° C. for 2 min
    • PCR products were purified either from agarose gels (using a Qiaquick Gel Extraction Kit from Qiagen) or using an ExoSAP-IT® PCR Product Cleanup Kit (Affymetrix) according to the manufacturer's instructions.


5) Addition of Next Generation Sequencing adapters:

    • ILLUMINA® sequencing adapters were added by PCR using a Phusion® High-Fidelity DNA polymerase (New England Biolabs). One third of the purified PCR product obtained in step 4 was mixed with 0.5 μl dNTPs (25 mM), 1 μl primer mix (10 μM each, see Table 8), 5 μl 5× buffer and 0.2 μl Phusion® enzyme in a total volume of 25 μl.
    • PCR conditions:
      • 94° C. for 5 min
      • perform 12 cycles of:
        • 98° C. for 10 s
        • 55° C. for 30 s
        • 72° C. for 30 s
      • 72° C. for 2 min


6) TCR library purification:

    • 10 μl of the PCR product from step 5 were purified using an ExoSAP-IT® PCR Product Cleanup Kit (Affymetrix) or Ampure XP beads (Beckman Coulter) according to the manufacturer's instruction. Samples could then directly be used for ILLUMINA® sequencing.









TABLE 2







Preferred primer sequences for amplification of TCR a chain V segments. N can be any


 nucleotide. The sequences for primers presented in this table consist of three parts


(listed from 5′ to 3′): T7 adapter, barcode and TCR a chain V segment.














Sequence



SEQ

Sequence T7 adapter
barcode portion
Sequence TCR a chain V


ID NO
Primer name
portion of the primer
of the primer
segment portion of the primer














 1
hTRAV1-1
TGTAATACGACTCACTATAG
NNNNTNNNN
CTTCTACAGGAGCTCCAGATGAAAG





 2
hTRAV1-2
TGTAATACGACTCACTATAG
NNNNTNNNN
CTTTTGAAGGAGCTCCAGATGAAAG





 3
hTRAV2
TGTAATACGACTCACTATAG
NNNNTNNNN
TGCTCATCCTCCAGGTGCGGGA





 4
hTRAV3
TGTAATACGACTCACTATAG
NNNNTNNNN
GAAGAAACCATCTGCCCTTGTGA





 5
hTRAV4
TGTAATACGACTCACTATAG
NNNNTNNNN
CCTGCCCCGGGTTTCCCTGAGCGAC





 6
hTRAV5
TGTAATACGACTCACTATAG
NNNNTNNNN
TCTCTGCGCATTGCAGACACCCA





 7
hTRAV6
TGTAATACGACTCACTATAG
NNNNTNNNN
TTGTTTCATATCACAGCCTCCCA





 8
hTRAV7
TGTAATACGACTCACTATAG
NNNNTNNNN
GCTTGTACATTACAGCCGTGCA





 9
hTRAV8-1/8-3
TGTAATACGACTCACTATAG
NNNNTNNNN
ATCTGAGGAAACCCTCTGTGCA





10
hTRAV8-2/8-4
TGTAATACGACTCACTATAG
NNNNTNNNN
ACCTGACGAAACCCTCAGCCCAT





11
hTRAV8-5
TGTAATACGACTCACTATAG
NNNNTNNNN
CCTATGCCTGTCTTTACTTTAATC





12
hTRAV8-6
TGTAATACGACTCACTATAG
NNNNTNNNN
CTTGAGGAAACCCTCAGTCCATAT





13
hTRAV8-7
TGTAATACGACTCACTATAG
NNNNTNNNN
GAAACCATCAACCCATGTGAGTGA





14
hTRAV9-1
TGTAATACGACTCACTATAG
NNNNTNNNN
ACTTGGAGAAAGACTCAGTTCAA





15
hTRAV9-2
TGTAATACGACTCACTATAG
NNNNTNNNN
ACTTGGAGAAAGGCTCAGTTCAA





16
hTRAV10
TGTAATACGACTCACTATAG
NNNNTNNNN
CTGCACATCACAGCCTCCCA





17
hTRAV11
TGTAATACGACTCACTATAG
NNNNTNNNN
GTTTGGAATATCGCAGCCTCTCAT





18
hTRAV12-1
TGTAATACGACTCACTATAG
NNNNTNNNN
CCCTGCTCATCAGAGACTCCAAG





19
hTRAV12-2
TGTAATACGACTCACTATAG
NNNNTNNNN
CTCTGCTCATCAGAGACTCCCAG





20
hTRAV12-3
TGTAATACGACTCACTATAG
NNNNTNNNN
CCTTGTTCATCAGAGACTCACAG





21
hTRAV13-1
TGTAATACGACTCACTATAG
NNNNTNNNN
TCCCTGCACATCACAGAGACCCAA





22
hTRAV13-2
TGTAATACGACTCACTATAG
NNNNTNNNN
TCTCTGCAAATTGCAGCTACTCAA





23
hTRAV14
TGTAATACGACTCACTATAG
NNNNTNNNN
TTGTCATCTCCGCTTCACAACTGG





24
hTRAV15
TGTAATACGACTCACTATAG
NNNNTNNNN
GTTTTGAATATGCTGGTCTCTCAT





25
hTRAV16
TGTAATACGACTCACTATAG
NNNNTNNNN
CCTGAAGAAACCATTTGCTCAAGA





26
hTRAV17
TGTAATACGACTCACTATAG
NNNNTNNNN
TCCTTGTTGATCACGGCTTCCCGG





27
hTRAV18
TGTAATACGACTCACTATAG
NNNNTNNNN
ACCTGGAGAAGCCCTCGGTGCA





28
hTRAV19
TGTAATACGACTCACTATAG
NNNNTNNNN
CACCATCACAGCCTCACAAGTCGT





29
hTRAV20
TGTAATACGACTCACTATAG
NNNNTNNNN
TTTCTGCACATCACAGCCCCTA





30
hTRAV21
TGTAATACGACTCACTATAG
NNNNTNNNN
CTTTATACATTGCAGCTTCTCAGCC





31
hTRAV22
TGTAATACGACTCACTATAG
NNNNTNNNN
GTACATTTCCTCTTCCCAGACCAC





32
hTRAV23
TGTAATACGACTCACTATAG
NNNNTNNNN
CATTGCATATCATGGATTCCCAGC





33
hTRAV24
TGTAATACGACTCACTATAG
NNNNTNNNN
GCTATTTGTACATCAAAGGATCCC





34
hTRAV25
TGTAATACGACTCACTATAG
NNNNTNNNN
CAGCTCCCTGCACATCACAGCCA





35
hTRAV26-1
TGTAATACGACTCACTATAG
NNNNTNNNN
TTGATCCTGCCCCACGCTACGCTGA





36
hTRAV26-2
TGTAATACGACTCACTATAG
NNNNTNNNN
TTGATCCTGCACCGTGCTACCTTGA





37
hTRAV27
TGTAATACGACTCACTATAG
NNNNTNNNN
GTTCTCTCCACATCACTGCAGCC





38
hTRAV28
TGTAATACGACTCACTATAG
NNNNTNNNN
GCCACCTATACATCAGATTCCCA





39
hTRAV29
TGTAATACGACTCACTATAG
NNNNTNNNN
TCTCTGCACATTGTGCCCTCCCA





40
hTRAV30
TGTAATACGACTCACTATAG
NNNNTNNNN
CCCTGTACCTTACGGCCTCCCAGCT





41
hTRAV31
TGTAATACGACTCACTATAG
NNNNTNNNN
CTTATCATATCATCATCACAGCCA





42
hTRAV32
TGTAATACGACTCACTATAG
NNNNTNNNN
TCCCTGCATATTACAGCCACCCAA





43
hTRAV33
TGTAATACGACTCACTATAG
NNNNTNNNN
ACCTCACCATCAATTCCTTAAAAC





44
hTRAV34
TGTAATACGACTCACTATAG
NNNNTNNNN
TCCCTGCATATCACAGCCTCCCAG





45
hTRAV35
TGTAATACGACTCACTATAG
NNNNTNNNN
CTTCCTGAATATCTCAGCATCCAT





46
hTRAV36
TGTAATACGACTCACTATAG
NNNNTNNNN
TCCTGAACATCACAGCCACCCAG





47
hTRAV37
TGTAATACGACTCACTATAG
NNNNTNNNN
TCCCTGCACATACAGGATTCCCAG





48
hTRAV38
TGTAATACGACTCACTATAG
NNNNTNNNN
CAAGATCTCAGACTCACAGCTGG





49
hTRAV39
TGTAATACGACTCACTATAG
NNNNTNNNN
CCGTCTCAGCACCCTCCACATCA





50
hTRAV40
TGTAATACGACTCACTATAG
NNNNTNNNN
CCATTGTGAAATATTCAGTCCAGG
















TABLE 3







V segments targeted by each primer used for


the amplification of TCR α chain V segments.









SEQ




ID NO
Primer
Targeted V segment(s)












1
hTRAV1-1
hTRAV01-1


2
hTRAV1-2
hTRAV01-2


3
hTRAV2
hTRAV02


4
hTRAV3
hTRAV03


5
hTRAV4
hTRAV04


6
hTRAV5
hTRAV05


7
hTRAV6
hTRAV06


8
hTRAV7
hTRAV07


9
hTRAV8-1/8-3
hTRAV08-1, hTRAV08-3


10
hTRAV8-2/8-4
hTRAV08-2, hTRAV08-4


11
hTRAV8-5
hTRAV08-5


12
hTRAV8-6
hTRAV08-6


13
hTRAV8-7
hTRAV08-7


14
hTRAV9-1
hTRAV09-1


15
hTRAV9-2
hTRAV09-2


16
hTRAV10
hTRAV10, hTRAV41


17
hTRAV11
hTRAV11


18
hTRAV12-1
hTRAV12-1


19
hTRAV12-2
hTRAV12-2


20
hTRAV12-3
hTRAV12-3


21
hTRAV13-1
hTRAV13-1


22
hTRAV13-2
hTRAV13-2


23
hTRAV14
hTRAV14


24
hTRAV15
hTRAV15


25
hTRAV16
hTRAV16


26
hTRAV17
hTRAV17


27
hTRAV18
hTRAV18


28
hTRAV19
hTRAV19


29
hTRAV20
hTRAV20


30
hTRAV21
hTRAV21


31
hTRAV22
hTRAV22


32
hTRAV23
hTRAV23


33
hTRAV24
hTRAV24


34
hTRAV25
hTRAV25


35
hTRAV26-1
hTRAV26-1


36
hTRAV26-2
hTRAV26-2


37
hTRAV27
hTRAV27


38
hTRAV28
hTRAV28


39
hTRAV29
hTRAV29


40
hTRAV30
hTRAV30


41
hTRAV31
hTRAV31


42
hTRAV32
hTRAV32


43
hTRAV33
hTRAV33


44
hTRAV34
hTRAV34


45
hTRAV35
hTRAV35


46
hTRAV36
hTRAV36


47
hTRAV37
hTRAV37


48
hTRAV38
hTRAV38-1, hTRAV38-2


49
hTRAV39
hTRAV39


50
hTRAV40
hTRAV40
















TABLE 4







Preferred primer sequences for amplification of TCR 3 chain V segments. N can be any


nucleotide. The sequences for primers presented in this table consist of three parts


(listed from 5′ to 3′): T7 adapter, barcode and TCR 3 chain V segment.














Sequence



SEQ

Sequence T7 adapter
barcode portion
Sequence TCR 3 chain V segment


ID NO
Primer name
portion of the primer
of the primer
portion of the primer














 51
hTRBV1
TGTAATACGACTCACTATAG
NNNNANNNN
GTGGTCGCACTGCAGCAAGAAGA





 52
hTRBV2
TGTAATACGACTCACTATAG
NNNNANNNN
GATCCGGTCCACAAAGCTGGAGGA





 53
hTRBV3-1
TGTAATACGACTCACTATAG
NNNNANNNN
CATCAATTCCCTGGAGCTTGGTGA





 54
hTRBV4-1
TGTAATACGACTCACTATAG
NNNNANNNN
TTCACCTACACGCCCTGCAGCCAG





 55
hTRBV4-2
TGTAATACGACTCACTATAG
NNNNANNNN
TTCACCTACACACCCTGCAGCCAG





 56
hTRBV5-1
TGTAATACGACTCACTATAG
NNNNANNNN
GAATGTGAGCACCTTGGAGCTGG





 57
hTRBV5-2
TGTAATACGACTCACTATAG
NNNNANNNN
TACTGAGTCAAACACGGAGCTAGG





 58
hTRBV5-3
TGTAATACGACTCACTATAG
NNNNANNNN
GCTCTGAGATGAATGTGAGTGCCT





 59
hTRBV5-4
TGTAATACGACTCACTATAG
NNNNANNNN
CTGAGCTGAATGTGAACGCCTT





 60
hTRBV6-1
TGTAATACGACTCACTATAG
NNNNANNNN
GAGTTCTCGCTCAGGCTGGAGT





 61
hTRBV6-2
TGTAATACGACTCACTATAG
NNNNANNNN
CTGGGGTTGGAGTCGGCTGCTC





 62
hTRBV6-4
TGTAATACGACTCACTATAG
NNNNANNNN
CCCCTCACGTTGGCGTCTGCTG





 63
hTRBV6-5
TGTAATACGACTCACTATAG
NNNNANNNN
TCCCGCTCAGGCTGCTGTCGGC





 64
hTRBV6-6
TGTAATACGACTCACTATAG
NNNNANNNN
GATTTCCCGCTCAGGCTGGAGT





 65
hTRBV6-7
TGTAATACGACTCACTATAG
NNNNANNNN
TCCCCCTCAAGCTGGAGTCAGCT





 66
hTRBV6-8
TGTAATACGACTCACTATAG
NNNNANNNN
TCCCACTCAGGCTGGTGTCGGC





 67
hTRBV7-1
TGTAATACGACTCACTATAG
NNNNANNNN
CTCTGAAGTTCCAGCGCACACA





 68
hTRBV7-2
TGTAATACGACTCACTATAG
NNNNANNNN
GATCCAGCGCACACAGCAGGAG





 69
hTRBV7-3
TGTAATACGACTCACTATAG
NNNNANNNN
ACTCTGAAGATCCAGCGCACAGA





 70
hTRBV7-5
TGTAATACGACTCACTATAG
NNNNANNNN
AGATCCAGCGCACAGAGCAAGG





 71
hTRBV7-6
TGTAATACGACTCACTATAG
NNNNANNNN
CAGCGCACAGAGCAGCGGGACT





 72
hTRBV7-9
TGTAATACGACTCACTATAG
NNNNANNNN
GAGATCCAGCGCACAGAGCAGG





 73
hTRBV8-1
TGTAATACGACTCACTATAG
NNNNANNNN
CCCTCAACCCTGGAGTCTACTA





 74
hTRBV8-2
TGTAATACGACTCACTATAG
NNNNANNNN
TCCCCAATCCTGGCATCCACCA





 75
hTRBV9
TGTAATACGACTCACTATAG
NNNNANNNN
CTAAACCTGAGCTCTCTGGAGCT





 76
hTRBV10-1
TGTAATACGACTCACTATAG
NNNNANNNN
CCCTCACTCTGGAGTCTGCTGC





 77
hTRBV10-2
TGTAATACGACTCACTATAG
NNNNANNNN
CCCTCACTCTGGAGTCAGCTAC





 78
hTRBV10-3
TGTAATACGACTCACTATAG
NNNNANNNN
TCCTCACTCTGGAGTCCGCTAC





 79
hTRBV11-1
TGTAATACGACTCACTATAG
NNNNANNNN
CCACTCTCAAGATCCAGCCTGCA





 80
hTRBV12-1
TGTAATACGACTCACTATAG
NNNNANNNN
GAGGATCCAGCCCATGGAACCCA





 81
hTRBV12-2
TGTAATACGACTCACTATAG
NNNNANNNN
CTGAAGATCCAGCCTGCAGAGC





 82
hTRBV12-3
TGTAATACGACTCACTATAG
NNNNANNNN
CAGCCCTCAGAACCCAGGGACT





 83
hTRBV13
TGTAATACGACTCACTATAG
NNNNANNNN
GAGCTCCTTGGAGCTGGGGGACT





 84
hTRBV14
TGTAATACGACTCACTATAG
NNNNANNNN
GGTGCAGCCTGCAGAACTGGAG





 85
hTRBV15
TGTAATACGACTCACTATAG
NNNNANNNN
GACATCCGCTCACCAGGCCTGG





 86
hTRBV16
TGTAATACGACTCACTATAG
NNNNANNNN
TGAGATCCAGGCTACGAAGCTT





 87
hTRBV17
TGTAATACGACTCACTATAG
NNNNANNNN
GAAGATCCATCCCGCAGAGCCG





 88
hTRBV18
TGTAATACGACTCACTATAG
NNNNANNNN
GGATCCAGCAGGTAGTGCGAGG





 89
hTRBV19
TGTAATACGACTCACTATAG
NNNNANNNN
CACTGTGACATCGGCCCAAAAG





 90
hTRBV20
TGTAATACGACTCACTATAG
NNNNANNNN
CTGACAGTGACCAGTGCCCATC





 91
hTRBV21
TGTAATACGACTCACTATAG
NNNNANNNN
GAGATCCAGTCCACGGAGTCAG





 92
hTRBV22
TGTAATACGACTCACTATAG
NNNNANNNN
GTGAAGTTGGCCCACACCAGCCA





 93
hTRBV23
TGTAATACGACTCACTATAG
NNNNANNNN
CCTGGCAATCCTGTCCTCAGAA





 94
hTRBV24
TGTAATACGACTCACTATAG
NNNNANNNN
GAGTCTGCCATCCCCAACCAGA





 95
hTRBV25
TGTAATACGACTCACTATAG
NNNNANNNN
GGAGTCTGCCAGGCCCTCACA





 96
hTRBV26
TGTAATACGACTCACTATAG
NNNNANNNN
GAAGTCTGCCAGCACCAACCAG





 97
hTRBV27
TGTAATACGACTCACTATAG
NNNNANNNN
GGAGTCGCCCAGCCCCAACCAG





 98
hTRBV28
TGTAATACGACTCACTATAG
NNNNANNNN
GGAGTCCGCCAGCACCAACCAG





 99
hTRBV29
TGTAATACGACTCACTATAG
NNNNANNNN
GTGAGCAACATGAGCCCTGAAGA





100
hTRBV30
TGTAATACGACTCACTATAG
NNNNANNNN
GAGTTCTAAGAAGCTCCTTCTCA
















TABLE 5







V segments targeted by each primer used for


the amplification of TCR β chain V segments.









SEQ
TCR b chain V



ID NO
segment name
Targeted V segment(s)












51
hTRBV1
hTRBV01


52
hTRBV2
hTRBV02


53
hTRBV3-1
hTRBV03-1, hTRBV03-2


54
hTRBV4-1
hTRBV04-1


55
hTRBV4-2
hTRBV04-2, hTRBV04-3


56
hTRBV5-1
hTRBV05-1


57
hTRBV5-2
hTRBV05-2


58
hTRBV5-3
hTRBV05-3


59
hTRBV5-4
hTRBV05-4, hTRBV05-5, hTRBV05-6,




hTRBV05-7, hTRBV05-8


60
hTRBV6-1
hTRBV06-1


61
hTRBV6-2
hTRBV06-2, hTRBV06-3


62
hTRBV6-4
hTRBV06-4


63
hTRBV6-5
hTRBV06-5


64
hTRBV6-6
hTRBV06-6, hTRBV06-9


65
hTRBV6-7
hTRBV06-7


66
hTRBV6-8
hTRBV06-8


67
hTRBV7-1
hTRBV07-1


68
hTRBV7-2
hTRBV07-2, hTRBV07-8


69
hTRBV7-3
hTRBV07-3, hTRBV07-4


70
hTRBV7-5
hTRBV07-5


71
hTRBV7-6
hTRBV07-6, hTRBV07-7


72
hTRBV7-9
hTRBV07-9


73
hTRBV8-1
hTRBV08-1


74
hTRBV8-2
hTRBV08-2


75
hTRBV9
hTRBV09


76
hTRBV10-1
hTRBV10-1


77
hTRBV10-2
hTRBV10-2


78
hTRBV10-3
hTRBV10-3


79
hTRBV11-1
hTRBV11-1, hTRBV11-2, hTRBV11-3


80
hTRBV12-1
hTRBV12-1


81
hTRBV12-2
hTRBV12-2


82
hTRBV12-3
hTRBV12-3, hTRBV12-4, hTRBV12-5


83
hTRBV13
hTRBV13


84
hTRBV14
hTRBV14


85
hTRBV15
hTRBV15


86
hTRBV16
hTRBV16


87
hTRBV17
hTRBV17


88
hTRBV18
hTRBV18


89
hTRBV19
hTRBV19


90
hTRBV20
hTRBV20


91
hTRBV21
hTRBV21


92
hTRBV22
hTRBV22


93
hTRBV23
hTRBV23


94
hTRBV24
hTRBV24


95
hTRBV25
hTRBV25


96
hTRBV26
hTRBV26


97
hTRBV27
hTRBV27


98
hTRBV28
hTRBV28


99
hTRBV29
hTRBV29


100
hTRBV30
hTRBV30
















TABLE 6







Primers for TCR gene amplification. Primer pair for sequencing of


TCR α genes: SEQ ID NO 101 and 102. Primer pair for sequencing


of TCR β genes: SEQ ID NO 101 and 103.










SEQ ID NO
Primer name
Primer sequence
TCR chain





101
Forward primer T7 TRAV/TRBV
TGTAATACGACTCACTATAG
α and β





102
Reverse primer PCR 1 TRAV
GGCCACAGCACTGTTGCTCTTGAAG
α





103
Reverse primer PCR 1 TRABV
CCACTGTGCACCTCCTTCCCATTC
β
















TABLE 7







Reverse primers for TCR gene amplification that


did not result in successful


amplification of PCR products.









SEQ ID NO
Primer sequence
TCR chain





104
TCGACCAGCTTGACATCACAGG
α





105
CAGATTTGTTGCTCCAGGCCACAG
α





106
TCTGTGATATACACATCAGAATC
α





107
GAATCAAAATCGGTGAATAGGCAG
α





108
GGCAGACAGACTTGTCACTGGATT
α





109
TAGGACACCGAGGTAAAGCCAC
β





110
CTGGGTGACGGGTTTGGCCCTAT
β





111
TTGACAGCGGAAGTGGTTGC
β





112
GGCTGCTCAGGCAGTATCTGGAGTC
β





113
GCCAGGCACACCAGTGTGGCCTTTT
β
















TABLE 8







Primers for addition of Next Generation Sequencing adapters. The primer portion


corresponding to the ILLUMINA ® adapters (forward and reverse) is underlined in forward


and reverse primers shown below. Primer pair for sequencing of TCR α genes: SEQ ID NOS:


114 and 115. Primer pair for sequencing of TCR β genes: SEQ ID NOS: 114 and 116.










SEQ


TCR


ID NO
Primer name
Primer sequence
chain





114
Forward primer Illumina_T7

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGC

α and β



TRAV/TRBV

TCTTCCGATCTTGTAATACGACTCACTATAG







115
Reverse primer PCR 2 TRAC

CAAGCAGAAGACGGCATACGAGATGCCTAAGTGACTGGAGTTCAGAC

α





GTGTGCTCTTCCGATCCTCAGCTGGTACACGGCAGGGTCA







116
Reverse primer PCR 2 TRBC

CAAGCAGAAGACGGCATACGAGATGCCTAAGTGACTGGAGTTCAGAC

β





GTGTGCTCTTCCGATCAAACACAGCGACCTCGGGTGGGAAC










Example 2: Exemplary Protocol for the SEQTR Method Using Nextera Adapters

TCR α and β chain genes were sequenced in two independent reactions.


1) Starting material and RNA extraction

    • To obtain sufficient amounts of RNA in the extraction, a minimum of 500,000 T-cells were used as starting material. Alternatively, and especially in instances where fewer T-cells were available, T-cells were mixed with 50,000 mouse 3T3 cells that served as carrier. T-cell RNA was extracted using the RNeasy® Micro Kit from Qiagen Inc. according the manufacturer's instruction with the following modification: Elution was performed with 20 μl of water preheated to 50° C. RNA quality and quantity was verified using a fragment analyzer.


2) cRNA synthesis by in vitro transcription (IVT):

    • In vitro transcription of isolated RNA was performed using the MessageAmp™ II aRNA Amplification Kit from Ambion® (Thermo Fisher Scientific), which contains enzymes, buffers and nucleotides required to perform the first and second strand cDNA and the in vitro transcription. The kit also provides all columns and reagents needed for the cDNA and cRNA purifications. RNA amplification was performed according to the manufacturer's instructions with the following modifications:
    • 1) Between 0.5 and 1 μg of total RNA as was used as starting material. 2) The IVT was performed in a final volume of 40 μl, and incubated at 37° C. for 16 h. Purified cRNA was quantified by absorbance using a NanoDrop™ spectrophotometer (Thermo Fisher Scientific).


3) cDNA synthesis by reverse transcription:

    • The reverse transcription of the cRNA was performed with the SuperScript® III from Invitrogen (Thermo Fisher Scientific). The kit provides the enzyme, the buffer and the dithiothreitol (DTT) needed for the reaction. Deoxynucleotides (dNTPs) and RNAsin® Ribonuclease inhibitor were purchased from Promega. The sequences for the primers used for the reverse transcription can be found in Table 9 (primers for sequencing TCR α chain genes) and Table 10 (primers for sequencing TCR β chain genes).
    • 500 ng of cRNA were used as starting material for the reverse transcription. cRNA was mixed with 1 μl hTRAV or hTRBV primers mix (2 μM each) and 1 μl dNTP (25 mM) in a final volume of 13 μl. The mix was first incubated at 70° C. for 10 min, then at 50° C. for 30 s. 4 μl 5× buffer, 1 μl DTT (100 mM), 1 μl SuperScript III and 1 μl RNAsin® were added to the mix. The samples were subsequently incubated for at 55° C. 1 h and then at 85° C. for 5 min. After the cDNA synthesis, 1 μg DNase-free RNase (Roche) was added to the cDNA and incubated at 37° C. for 30 min to remove the cRNA.


4) TCR gene amplification:

    • TCR gene amplification was performed using a Phusion® High-Fidelity DNA polymerase (New England Biolabs) under the following conditions:
    • PCR mix: 1 μl cDNA from step 3, 0.4 μl dNTPs (10 mM), 0.4 μl primer mix (20 μM Nextera 5′, 10 μM Reverse primer PCR 1 TRAV or 2.5 μM Reverse primer PCR1 TRBV, see Table 11), 2 μl 5× buffer and 0.2 μl Phusion® enzyme in a total volume of 10 μl.
    • PCR conditions:
      • 94° C. for 5 min
      • 20 cycles of
        • 98° C. for 10 s
        • 55° C. for 30 s
        • 72° C. for 30 s
      • 72° C. for 2 min
    • PCR products were purified using 1 μl of ExoSAP-IT® PCR Product Cleanup Kit (Affymetrix) according to the manufacturer's instructions.


5) Addition of Next Generation Sequencing adapters:

    • ILLUMINA® sequencing adapters were added by PCR using a Phusion® High-Fidelity DNA polymerase (New England Biolabs). The following mix was added to the 11 μl of PCR1: 1 μl dNTPs (10 mM), 1 μl primer mix (1.25 μM each, see Table 12), 3 μl 5× buffer and 0.2 μl Phusion® enzyme and 9.8 μl of H2O.
    • PCR conditions:
      • 94° C. for 5 min
      • perform 25 cycles of:
        • 98° C. for 10 s
        • 55° C. for 30 s
        • 72° C. for 30 s
      • 72° C. for 2 min


6) TCR library purification:

    • 10 μl of the PCR product from step 5 were purified using an AMPURE XP beads (Beckman Coulter) according to the manufacturer's instruction. Samples could then directly be used for ILLUMINA® sequencing.









TABLE 9







Preferred primer sequences for amplification of TCR α chain V segments. N can be any


nucleotide. The sequences for primers presented in this table consist of three parts (listed


from 5′ to 3′): T7 adapter, barcode and TCR α chain V segment.














Sequence



SEQ
Primer name
Sequence Nextera adapter
barcode portion
Sequence TCR α chain V segment


ID NO

portion of the primer
of the primer
portion of the primer














261
hTRAV1-1
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
CTTCTACAGGAGCTCCAGATGAAAG




GTATAAGAGACAG







262
hTRAV1-2
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
CTTTTGAAGGAGCTCCAGATGAAAG




GTATAAGAGACAG







263
hTRAV2
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
TGCTCATCCTCCAGGTGCGGGA




GTATAAGAGACAG







264
hTRAV3
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
GAAGAAACCATCTGCCCTTGTGA




GTATAAGAGACAG







265
hTRAV4
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
CCTGCCCCGGGTTTCCCTGAGCGAC




GTATAAGAGACAG







266
hTRAV5
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
TCTCTGCGCATTGCAGACACCCA




GTATAAGAGACAG







267
hTRAV6
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
TTGTTTCATATCACAGCCTCCCA




GTATAAGAGACAG







268
hTRAV7
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
GCTTGTACATTACAGCCGTGCA




GTATAAGAGACAG







269
hTRAV8-1/8-3
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
ATCTGAGGAAACCCTCTGTGCA




GTATAAGAGACAG







270
hTRAV8-2/8-4
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
ACCTGACGAAACCCTCAGCCCAT




GTATAAGAGACAG







271
hTRAV8-5
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
CCTATGCCTGTCTTTACTTTAATC




GTATAAGAGACAG







272
hTRAV8-6
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
CTTGAGGAAACCCTCAGTCCATAT




GTATAAGAGACAG







273
hTRAV8-7
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
GAAACCATCAACCCATGTGAGTGA




GTATAAGAGACAG







274
hTRAV9-1
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
ACTTGGAGAAAGACTCAGTTCAA




GTATAAGAGACAG







275
hTRAV9-2
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
ACTTGGAGAAAGGCTCAGTTCAA




GTATAAGAGACAG







276
hTRAV10
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
CTGCACATCACAGCCTCCCA




GTATAAGAGACAG







277
hTRAV11
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
GTTTGGAATATCGCAGCCTCTCAT




GTATAAGAGACAG







278
hTRAV12-1
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
CCCTGCTCATCAGAGACTCCAAG




GTATAAGAGACAG







279
hTRAV12-2
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
CTCTGCTCATCAGAGACTCCCAG




GTATAAGAGACAG







280
hTRAV12-3
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
CCTTGTTCATCAGAGACTCACAG




GTATAAGAGACAG







281
hTRAV13-1
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
TCCCTGCACATCACAGAGACCCAA




GTATAAGAGACAG







282
hTRAV13-2
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
TCTCTGCAAATTGCAGCTACTCAA




GTATAAGAGACAG







283
hTRAV14
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
TTGTCATCTCCGCTTCACAACTGG




GTATAAGAGACAG







284
hTRAV15
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
GTTTTGAATATGCTGGTCTCTCAT




GTATAAGAGACAG







285
hTRAV16
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
CCTGAAGAAACCATTTGCTCAAGA




GTATAAGAGACAG







286
hTRAV17
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
TCCTTGTTGATCACGGCTTCCCGG




GTATAAGAGACAG







287
hTRAV18
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
ACCTGGAGAAGCCCTCGGTGCA




GTATAAGAGACAG







288
hTRAV19
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
CACCATCACAGCCTCACAAGTCGT




GTATAAGAGACAG







289
hTRAV20
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
TTTCTGCACATCACAGCCCCTA




GTATAAGAGACAG







290
hTRAV21
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
CTTTATACATTGCAGCTTCTCAGCC




GTATAAGAGACAG







291
hTRAV22
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
GTACATTTCCTCTTCCCAGACCAC




GTATAAGAGACAG







292
hTRAV23
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
CATTGCATATCATGGATTCCCAGC




GTATAAGAGACAG







293
hTRAV24
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
GCTATTTGTACATCAAAGGATCCC




GTATAAGAGACAG







294
hTRAV25
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
CAGCTCCCTGCACATCACAGCCA




GTATAAGAGACAG







295
hTRAV26-1
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
TTGATCCTGCCCCACGCTACGCTGA




GTATAAGAGACAG







296
hTRAV26-2
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
TTGATCCTGCACCGTGCTACCTTGA




GTATAAGAGACAG







297
hTRAV27
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
GTTCTCTCCACATCACTGCAGCC




GTATAAGAGACAG







298
hTRAV28
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
GCCACCTATACATCAGATTCCCA




GTATAAGAGACAG







299
hTRAV29
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
TCTCTGCACATTGTGCCCTCCCA




GTATAAGAGACAG







300
hTRAV30
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
CCCTGTACCTTACGGCCTCCCAGCT




GTATAAGAGACAG







301
hTRAV31
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
CTTATCATATCATCATCACAGCCA




GTATAAGAGACAG







302
hTRAV32
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
TCCCTGCATATTACAGCCACCCAA




GTATAAGAGACAG







303
hTRAV33
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
ACCTCACCATCAATTCCTTAAAAC




GTATAAGAGACAG







304
hTRAV34
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
TCCCTGCATATCACAGCCTCCCAG




GTATAAGAGACAG







305
hTRAV35
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
CTTCCTGAATATCTCAGCATCCAT




GTATAAGAGACAG







306
hTRAV36
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
TCCTGAACATCACAGCCACCCAG




GTATAAGAGACAG







307
hTRAV37
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
TCCCTGCACATACAGGATTCCCAG




GTATAAGAGACAG







308
hTRAV38
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
CAAGATCTCAGACTCACAGCTGG




GTATAAGAGACAG







309
hTRAV39
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
CCGTCTCAGCACCCTCCACATCA




GTATAAGAGACAG







310
hTRAV40
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
CCATTGTGAAATATTCAGTCCAGG




GTATAAGAGACAG
















TABLE 10







Preferred primer sequences for amplification of TCR β chain V segments. N can be


any nucleotide. The sequences for primers presented in this table consist of three parts


(listed from 5′ to 3′): T7 adapter, barcode and TCR β chain V segment.














Sequence



SEQ

Sequence T7 adapter
barcode portion
Sequence TCR β chain V segment


ID NO
Primer name
portion of the primer
of the primer
portion of the primer














311
hTRBV1
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
GTGGTCGCACTGCAGCAAGAAGA




GTATAAGAGACAG







312
hTRBV2
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
GATCCGGTCCACAAAGCTGGAGGA




GTATAAGAGACAG







313
hTRBV3-1
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
CATCAATTCCCTGGAGCTTGGTGA




GTATAAGAGACAG







314
hTRBV4-1
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
TTCACCTACACGCCCTGCAGCCAG




GTATAAGAGACAG







315
hTRBV4-2
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
TTCACCTACACACCCTGCAGCCAG




GTATAAGAGACAG







316
hTRBV5-1
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
GAATGTGAGCACCTTGGAGCTGG




GTATAAGAGACAG







317
hTRBV5-2
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
TACTGAGTCAAACACGGAGCTAGG




GTATAAGAGACAG







318
hTRBV5-3
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
GCTCTGAGATGAATGTGAGTGCCT




GTATAAGAGACAG







319
hTRBV5-4
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
CTGAGCTGAATGTGAACGCCTT




GTATAAGAGACAG







320
hTRBV6-1
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
GAGTTCTCGCTCAGGCTGGAGT




GTATAAGAGACAG







321
hTRBV6-2
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
CTGGGGTTGGAGTCGGCTGCTC




GTATAAGAGACAG







322
hTRBV6-4
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
CCCCTCACGTTGGCGTCTGCTG




GTATAAGAGACAG







323
hTRBV6-5
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
TCCCGCTCAGGCTGCTGTCGGC




GTATAAGAGACAG







324
hTRBV6-6
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
GATTTCCCGCTCAGGCTGGAGT




GTATAAGAGACAG







325
hTRBV6-7
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
TCCCCCTCAAGCTGGAGTCAGCT




GTATAAGAGACAG







326
hTRBV6-8
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
TCCCACTCAGGCTGGTGTCGGC




GTATAAGAGACAG







327
hTRBV7-1
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
CTCTGAAGTTCCAGCGCACACA




GTATAAGAGACAG







328
hTRBV7-2
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
GATCCAGCGCACACAGCAGGAG




GTATAAGAGACAG







329
hTRBV7-3
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
ACTCTGAAGATCCAGCGCACAGA




GTATAAGAGACAG







330
hTRBV7-5
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
AGATCCAGCGCACAGAGCAAGG




GTATAAGAGACAG







331
hTRBV7-6
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
CAGCGCACAGAGCAGCGGGACT




GTATAAGAGACAG







332
hTRBV7-9
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
GAGATCCAGCGCACAGAGCAGG




GTATAAGAGACAG







333
hTRBV8-1
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
CCCTCAACCCTGGAGTCTACTA




GTATAAGAGACAG







334
hTRBV8-2
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
TCCCCAATCCTGGCATCCACCA




GTATAAGAGACAG







335
hTRBV9
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
CTAAACCTGAGCTCTCTGGAGCT




GTATAAGAGACAG







336
hTRBV10-1
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
CCCTCACTCTGGAGTCTGCTGC




GTATAAGAGACAG







337
hTRBV10-2
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
CCCTCACTCTGGAGTCAGCTAC




GTATAAGAGACAG







338
hTRBV10-3
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
TCCTCACTCTGGAGTCCGCTAC




GTATAAGAGACAG







339
hTRBV11-1
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
CCACTCTCAAGATCCAGCCTGCA




GTATAAGAGACAG







340
hTRBV12-1
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
GAGGATCCAGCCCATGGAACCCA




GTATAAGAGACAG







341
hTRBV12-2
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
CTGAAGATCCAGCCTGCAGAGC




GTATAAGAGACAG







342
hTRBV12-3
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
CAGCCCTCAGAACCCAGGGACT




GTATAAGAGACAG







343
hTRBV13
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
GAGCTCCTTGGAGCTGGGGGACT




GTATAAGAGACAG







344
hTRBV14
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
GGTGCAGCCTGCAGAACTGGAG




GTATAAGAGACAG







345
hTRBV15
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
GACATCCGCTCACCAGGCCTGG




GTATAAGAGACAG







346
hTRBV16
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
TGAGATCCAGGCTACGAAGCTT




GTATAAGAGACAG







347
hTRBV17
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
GAAGATCCATCCCGCAGAGCCG




GTATAAGAGACAG







348
hTRBV18
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
GGATCCAGCAGGTAGTGCGAGG




GTATAAGAGACAG







349
hTRBV19
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
CACTGTGACATCGGCCCAAAAG




GTATAAGAGACAG







350
hTRBV20
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
CTGACAGTGACCAGTGCCCATC




GTATAAGAGACAG







351
hTRBV21
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
GAGATCCAGTCCACGGAGTCAG




GTATAAGAGACAG







352
hTRBV22
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
GTGAAGTTGGCCCACACCAGCCA




GTATAAGAGACAG







353
hTRBV23
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
CCTGGCAATCCTGTCCTCAGAA




GTATAAGAGACAG







354
hTRBV24
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
GAGTCTGCCATCCCCAACCAGA




GTATAAGAGACAG







355
hTRBV25
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
GGAGTCTGCCAGGCCCTCACA




GTATAAGAGACAG







356
hTRBV26
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
GAAGTCTGCCAGCACCAACCAG




GTATAAGAGACAG







357
hTRBV27
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
GGAGTCGCCCAGCCCCAACCAG




GTATAAGAGACAG







358
hTRBV28
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
GGAGTCCGCCAGCACCAACCAG




GTATAAGAGACAG







359
hTRBV29
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
GTGAGCAACATGAGCCCTGAAGA




GTATAAGAGACAG







360
hTRBV30
TCGTCGGCAGCGTCAGATGT
HHHHHNNNN
GAGTTCTAAGAAGCTCCTTCTCA




GTATAAGAGACAG
















TABLE 11







Primers for TCR gene amplification. Primer pair for sequencing of TCR α genes:


SEQ ID NOs: 256 and 257. Primer pair for sequencing of TCR β genes: SEQ ID NOs: 256


and 258. The primer portion corresponding to the ILLUMINA ® adapters (forward and


reverse) is underlined in reverse primers shown below.










SEQ ID NO
Primer name
Primer sequence
TCR chain





256
Forward primer Nextera 5′
TCGTCGGCAGCGTC
α and β





257
Reverse primer PCR 1 TRAV

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG

α




GAATCAAAATCGGTGAATAGGCAG






258
Reverse primer PCR 1 TRBV

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG

β




GCCAGGCACACCAGTGTGGCCTTTT

















TABLE 12







Primers used to add the full Nextera sequence to both TCRα and TCRβ.










SEQ ID NO
Primer name
Primer sequence
TCR chain





259
Index Read 1
CAAGCAGAAGACGGCATACGAGAT [i7] GTCTCGTGGGCTC
α and β





260
Index Read 2
AATGATACGGCGACCACCGAGATCTACAC [i5] TCGTCGGCAGCG
α









Example 3: Exemplary Protocol for the SEQTR Method without In Vitro Transcription

TCR α and β chain genes were sequenced in two independent reactions.


1) Starting material and RNA extraction

    • To obtain sufficient amounts of RNA in the extraction, a minimum of 500,000 T-cells were used as starting material. Alternatively, and especially in instances where fewer T-cells were available, T-cells were mixed with 50,000 mouse 3T3 cells that served as carrier. T-cell RNA was extracted using the RNeasy® Micro Kit from Qiagen Inc. according the manufacturer's instruction with the following modification: Elution was performed with 20 μl of water preheated to 50° C. RNA quality and quantity was verified using a fragment analyzer.


2) cDNA synthesis by reverse transcription:

    • The reverse transcription of the RNA was performed with the SuperScript® III from Invitrogen (Thermo Fisher Scientific) and oligo d(T). The kit provides the enzyme, the buffer and the dithiothreitol (DTT) needed for the reaction. Deoxynucleotides (dNTPs), oligo d(T) and RNAsin® Ribonuclease inhibitor were purchased from Promega.
    • 500 ng of RNA were used as starting material for the reverse transcription. RNA was mixed with 1 μl of oligo d(T) and 1 μl dNTP (25 mM) in a final volume of 13 μl. The mix was first incubated at 70° C. for 10 min, then at 50° C. for 30 s. 4 μl 5 × buffer, 1 μl DTT (100 mM), 1 μl SuperScript III and 1 μl RNAsin® were added to the mix. The samples were subsequently incubated for at 55° C. 1 h and then at 85° C. for 5 min.


3) Second strand cDNA synthesis:

    • cDNA was then used to synthesize the second strand, performed using the Phusion® High-Fidelity DNA polymerase (New England Biolabs) under the following conditions:
    • Mix: 20 μl cDNA from step 2, 4 μl dNTPs (10 mM), 2 μl TRAV primer mix (Table 9), 2 μl TRBV primers mix (Table 10), 20 μl 5× buffer, 1 μl Phusion® enzyme in a total volume of 100 μl.
    • Synthesis conditions:
      • 98° C. for 5 min
      • 40° C. for 30 s
      • 72° C. for 5 min


4) cDNA purification:

    • 100 μl of the cDNA product from step 3 were purified using an AMPURE XP beads (Beckman Coulter) according to the manufacturer's instruction.


5) TCR gene amplification:

    • TCR gene amplification was performed using a Phusion® High-Fidelity DNA polymerase (New England Biolabs) under the following conditions: PCR mix: 7 μl cDNA from step 4, 0.4 μl dNTPs (10 mM), 0.4 μl primer mix (20 μM Nextera5′, 10 μM Reverse primer PCR 1 TRAV or 2.5 μM Reverse primer PCR1 TRBV, see Table 11), 2 μl 5× buffer and 0.2 μl Phusion® enzyme in a total volume of 10 μl.
    • PCR conditions:
      • 94° C. for 5 min
      • 20 cycles of
        • 98° C. for 10 s
        • 55° C. for 30 s
        • 72° C. for 30 s
      • 72° C. for 2 min
    • PCR products were purified using 1 μl of ExoSAP-IT® PCR Product Cleanup Kit (Affymetrix) according to the manufacturer's instructions.


6) Addition of Next Generation Sequencing adapters:

    • ILLUMINA® sequencing adapters were added by PCR using a Phusion® High-Fidelity DNA polymerase (New England Biolabs). The following mix was added to the 11 μl of PCR1: 1 μl dNTPs (10 mM), 1 μl primer mix (1.25 μM each, see Table 12), 3 μl 5× buffer and 0.2 μl Phusion® enzyme and 9.8 μl of H2O.
    • PCR conditions:
      • 94° C. for 5 min
      • perform 25 cycles of:
        • 98° C. for 10 s
        • 55° C. for 30 s
        • 72° C. for 30 s
      • 72° C. for 2 min


7) TCR library purification:

    • 10 μl of the PCR product from step 5 were purified using an AMPURE XP beads (Beckman Coulter) according to the manufacturer's instruction. Samples could then directly be used for ILLUMINA® sequencing.


Example 4: Sensitivity of the TCR Sequencing Method

One of the challenges of TCR sequencing are the small amounts of genetic material for each T-cell clone. In many cases, the number of T-cells that can be recovered from a given experiment is too small for researchers to directly extract sufficient amounts of RNA for a subsequent amplification of the TCR genes. In such instances, the T-cells of interest can be mixed with 3T3 mouse cells, which serve as a carrier.


5×10{circumflex over ( )}4 3T3 cells were mixed with 10{circumflex over ( )}6, 10{circumflex over ( )}5, 10{circumflex over ( )}4, 10{circumflex over ( )}3 or 0 CD8 positive T-cells, respectively. The RNA of each mixture was isolated and subjected to steps 2 to 4 of the SEQTR method outlined above (see Detailed Description of the Invention). PCR products were separated on an agarose gel and visualized.


No TCR-specific PCR products were observed in samples that only contained 3T3 cells (see FIG. 4). However, TCR-specific bands were detected in all other samples: Increasing amounts of CD8 positive T-cells in the samples were correlated with increasing amounts of TCR-specific PCR products and decreasing intensity of the unspecific dimer primer band. These data demonstrate that the SEQTR method is sensitive enough to amplify TCR genes from as little as 1,000 T-cells, with no detectable background signal from the 3T3 carrier cells.


Example 5: Specificity of the SEQTR Method

Another challenge of TCR sequencing is the lack of specific amplification of TCR genes from complex samples. Competing TCR sequencing technologies such as services offered by Adaptive Biotechnology are characterized by up to 90% unspecific amplification. As a result, only as little as 10% of all sequencing data are informative for TCR repertoire determination, increasing cost and duration of any project aiming to sequence TCR repertoires.


5×10{circumflex over ( )}4 3T3 cells were mixed with 10{circumflex over ( )}6, 10{circumflex over ( )}5, 10{circumflex over ( )}4, 10{circumflex over ( )}3 or 0 CD8 positive T-cells, respectively. TCR repertoires for the individual samples were sequenced using the SEQTR method, and the percentage of reads that corresponded to TCR or non-TCR sequences, respectively, was determined. As shown in FIG. 5, 93-97% of all sequencing reads indeed corresponded to TCR genes, independent of the amount of T-cells used as starting material. In summary, these data show that TCR amplification using the SEQTR method is highly specific even when as little as 1,000 T-cells are used as starting material.


Example 6: Unambiguous Identification of TCR Genes

In humans, the TCR locus comprises 54 different V segments for the TCR α chain and 65 different V segments for the TCR β chain. However, many of these V segments are highly homologous. Consequently, one of the big challenges of TCR sequencing is to successfully differentiate between two or more TCR gene segments with high degrees of homology. For instance, depending on the choice of primer used in the amplification of the TCR gene and the length of the generated PCR product, the resulting sequencing data might be compatible with more than one V or J segment (in other words, two or more TCR V or J segments show 100% homology in the sequenced region). In these cases, the TCR gene for a specific read cannot be unambiguously assigned/identified.


5×10{circumflex over ( )}4 3T3 cells were mixed with 10{circumflex over ( )}6, 10{circumflex over ( )}5, 10{circumflex over ( )}4, 10{circumflex over ( )}3 or 0 CD8 positive T-cells, respectively. The RNA of each mixture was isolated and subjected to the TCR sequencing method. Out of all the sequencing reads that were identified as TCR genes, it was assessed if the V or J segments could be identified unambiguously. The data show that between 95% and 97% of all TCR sequencing reads could be assigned to a specific TCR segment, even when using as little as 1,000 T-cells as genetic starting material (see FIG. 6). In summary, the data demonstrate the robustness of the SEQTR method as 90 to 93% of all reads can be used to identify TCR sequences once unspecific sequences and ambiguous TCR sequences have been removed.


Due to the homology between V segments, it can be sometimes difficult to clearly identify the TCR sequence. hTRBV6-2 and hTRBV6-3 cannot be differentiated as they have 100% homology and thus will code for the same TCR. Due to their sequences, hTRBV12-3 and hTRBV12-4 cannot be differentiated with the method disclosed herein. Only paired-end sequencing that will catch the 5′-end of the V segment can discriminate these two sequences. Thus the hTRBV12-3 and hTRBV12-4 were considered as a unique sequence for the analysis of the repertoire.


Example 7: Linearity of TCR Gene Amplification

Because non-linear amplification of individual TCR sequences can lead to an incorrect over- or underrepresentation of the affected TCR genes in the final TCR repertoire, linearity of amplification is a critical determinant of the reliability and quality of the TCR sequencing data.


To test linearity of TCR gene amplification in our system, a fixed amount of DNA encoding a known TCR sequence was diluted at different concentrations into a DNA pool representing a naïve CD8 repertoire. Subsequently, the TCR repertoire of each sample was analyzed with SEQTR.


The observed frequency of the known TCR sequence in the entire TCR repertoire was then sequenced for each dilution and compared to the expected frequency. The scatter plot in FIG. 7 shows an excellent correlation (R2=0.99) between the dilution and the frequency of the known TCR sequence in the repertoire observed after sequencing. These data confirm the linearity of the amplification and suggest that results obtained using the SEQTR technique are quantitative.


Example 8: Reproducibility of the SEQTR Method

The reproducibility of the method was tested by performing two independent technical replicates starting from the same sample. The frequencies for each V-J rearrangement in the TCR β chains were determined and compared between the two replicates, as illustrated in FIG. 8. Each sphere represents a single V-J rearrangement that was detected in both replicates. Each sphere represents a single V-J rearrangement with the size of a sphere indicating the relative frequency of the specific V-J recombination. Grey spheres represent rearrangements for which the relative frequencies detected in the two replicates differed by less than two-fold. Black spheres represent rearrangements for which the relative frequencies detected in the two replicates differed by more than two-fold. Consistent with common practice in the analysis of gene expression data, differences between replaces of less than 2-fold are not considered significant.


The data show that only 13% of all V-J rearrangements showed a significant frequency difference of more than two-fold between the two technical replicates (see FIG. 8 upper inset). However, as illustrated in FIG. 8, V-J recombinations that were significantly different between the technical replicates were rather poorly expressed, as indicated by the small sizes of the black spheres. Therefore, if the frequencies of the individual V-J rearrangement are taken into consideration, only 0.5% of the sequences showed more than a two-fold difference between the replicates (see FIG. 8 lower inset), demonstrating that the SEQTR method is very reproducible.


Example 9: Sequencing of Example Repertoires Using the SEQTR Method

The SEQTR method was tested on three different type of CD8 positive T-cells:

    • (1) T-cell population 1: CD8 positive T-cells isolated from peripheral blood mononuclear cells (PBMCs).
    • (2) T-cell population 2: CD8 positive T-cells as in population 1 were FACS sorted using tetramers. Tetramers are MHC molecules presenting a specific peptide, linked to fluorescent dye. Tetramers bind T-cell expressing a TCR that specifically recognizes the peptide. The fluorescent dye allows sorting of the the desired T-cells by FACS.
    • (3) T-cell population 3: CD8 positive T-cells as in population 2 that were subsequently expanded in vitro.


The relative frequencies of each V-J rearrangement were determined using the SEQTR method (see FIG. 9). As expected, the naïve TCR repertoire derived from PBMC (population 1) is highly diverse (see FIG. 9A). Almost all the possible V-J rearrangements are represented in the sample, with no single V-J rearrangement exhibiting a frequency of over 11% The repertoire of the tetramer sorted CD8 positive T-cell subset 2 (see FIG. 9B) is less diverse as compared to the naïve one. Not only are fewer V-J rearrangements present in the repertoire overall. Moreover, two V-J rearrangements are clearly dominant, exhibiting frequencies of over 20%. These V-J rearrangements represent the few T-cells that recognize the epitope TEDYMIHII (SEQ ID NO: 236) conjugated to the tetramer and that were enriched during the tetramer purification step. Finally, the rapid clonal expansion (population 3) of the tetramer-purified T-cells enhances the bias of the TCR repertoire towards the T-cell clones already dominating subset 2. Consequently, part of the low frequency V-J rearrangements are lost and not detected anymore (see FIG. 9C). In summary, these data illustrate that the SEQTR method is well suited to differentiate between TCR repertoires with different degrees of diversities.


Example 10: Comparison of the SEQTR Method with Low-Throughput Single Cell Cloning

In order to determine how accurate the TCR repertoire data obtained using the SEQTR method were as compared to the true TCR repertoire present in a given T-cell population, we compared our results to data obtained by single cell sequencing.


Tetramer-specific CD8 were sorted from PBMC by FACS. The recovered cell population was split in two. Half of the cells were subjected to the SEQTR method to sequence the TCR repertoire. For the other half of the cells, individual T-cell clones were isolated and expanded in vitro (single cell cloning). Once the clones were established, the TCR genes of each T-cell clones were amplified and sequenced using classical Sanger sequencing (see FIG. 10A).


Among the 42 individual clones tested using the single cell method, six different TCRs were identified (see FIG. 10B). Using the SEQTR method, 116 different TCR genes were found (the eight most frequently observed V-J rearrangements are shown in FIG. 10C, also see Table 13 and Table 14). Indeed, the five TCRs most frequently observed with the single cell cloning technique also correspond to the five clones most frequently observed when applying the SEQTR method. Overall, all six TCR clones identified with single cell sequencing are represented among the eight TCRs with the highest frequencies observed in the SEQTR method. In summary, these data suggest that the SEQTR method produces a true representation of the actual TCR repertoire of a given T-cell population.









TABLE 13







CDR3 regions of TCR clones identified using


the single cell sequencing method.








SEQ ID NO
CDR3 region





237
CASSRHVGGVPEAFFG





238
CASSIGRGSEQYFG





239
CASSDVLSGEAFFG





240
CASQGHKNTEAFFG





241
CASSLGPGGVKTNEKLFFG





242
CASSLGPGGVKTNEKLFFG
















TABLE 14







Eight most frequently observed V-J


rearrangements of the 116 different TCR genes


identified using the SEQTR method.








SEQ ID NO
CDR3 region





243
CASSDVLSGEAFFG





244
CASQGHKNTEAFFG





245
CASSLGPGGVKTNEKLFFG





246
CASSIGRGSEQYFG





247
CASSRHVGGVPEAFFG





248
CASSASKGQPQHFG





249
CASQGHKNTEAFFG





250
CASSLGPGGVKTNEKLFFG









Example 11: TCR Sequencing Services Offered by Adaptive Biotechnology Provide Sequencing Data that May Reflect Up to 90% Unspecific TCR Amplification

Tumor samples from 16 patients were collected and the tumor cells were separated from the surrounding tissue (stroma). In addition, epitope-specific TIL were sorted by FACS from the tumor samples using tetramer staining (TET). Finally, the tumor cells were engrafted into humanized mice. After some time, the tumor was collected and epitope specific TIL were sorted by FACS.


DNA extraction was performed for each sample. DNA was sent to Adaptive Biotechnology for TCR sequencing (immunoSEQ® method, survey protocol 200,000-300,000 reads per sample).


In 80% of the samples, the immunoSEQ® method failed to generate 200,000 reads per samples, suggesting that the immunoSEQ® method fails to generate TCR repertoires with significant reliability.


Example 12: Amplification of TCR Genes from PBMC and CD4 Positive T-Cells

RNA was isolated from 10{circumflex over ( )}6 PBMC or 10{circumflex over ( )}6 CD4 positive T-cells, respectively, from three independent samples, The RNA was then subjected to steps 2 to 4 of the SEQTR method outlined above (see Detailed Description of the Invention). PCR products were separated on an agarose gel and visualized (see FIG. 12). Only TCR-specific bands are observed, suggesting that the SEQTR method cannot only be used for CD8 positive T-cells (see Example 7), but also for CD4 positive T-cells and even for T-cells that are part of a complex mixture of other PBMCs.


The foregoing examples and description of the embodiments should be taken as illustrating, rather than as limiting the present invention as defined by the claims. As will be readily appreciated, numerous variations and combinations of the features set forth above can be utilized without departing from the present invention as set forth in the claims. Such variations are not regarded as a departure from the scope of the invention, and all such variations are intended to be included within the scope of the following claims. All references cited herein are incorporated by reference herein in their entireties.


As described and claimed herein, including in the accompanying drawings, reference is made to particular features, including method steps. It is to be understood that the disclosure of the invention in this specification includes all possible combinations of such particular features. For example, where a particular feature is disclosed in the context of a particular aspect or embodiment, or a particular claim, that feature can also be used, to the extent possible, in combination with and/or in the context of other particular aspects and embodiments, and in the disclosed methods, systems and kits generally.


Where reference is made herein to a method comprising two or more defined steps, the defined steps can be carried out in any order or simultaneously (except where the context excludes that possibility), and the method can include one or more other steps which are carried out before any of the defined steps, between two of the defined steps, or after all the defined steps (except where the context excludes that possibility).









TABLE 15







TCR α chain V segments and binding sites for primers presented in Table 2 and


Table 9. The sequence for each V segment presented in this table consists


of three parts (listed from 5′ to 3′): Sequence upstream of primer


binding site, sequence of the primer


binding site, sequence downstream of the primer binding site.

















hTRAV






Primer
sequence






binding
downstream


V



site
of primer


segment
Primer
SEQ

within
binding


name
name
ID NO
hTRAV sequence upstream of primer binding site
hTRAV
site















hTRA
hTRA
117
ATGTGGGGAGCTTTCCTTCTCTATGTTTCCATGAAGATGGGAGGCACT
CTTCT
ACTCTGC


V01-1
V01-1

GCAGGACAAAGCCTTGAGCAGCCCTCTGAAGTGACAGCTGTGGAAGGA
ACAGG
CTCTTAC





GCCATTGTCCAGATAAACTGCACGTACCAGACATCTGGGTTTTATGGG
AGCTC
TTCTGCG





CTGTCCTGGTACCAGCAACATGATGGCGGAGCACCCACATTTCTTTCT
CAGAT
CTGTGAG





TACAATGCTCTGGATGGTTTGGAGGAGACAGGTCGTTTTTCTTCATTC
GAAAG
AGA





CTTAGTCGCTCTGATAGTTATGGTTACCTC







hTRA
hTRA
118
ATGTGGGGAGTTTTCCTTCTTTATGTTTCCATGAAGATGGGAGGCACT
CTTTT
ACTCTGC


V01-2
V0 1-2

ACAGGACAAAACATTGACCAGCCCACTGAGATGACAGCTACGGAAGGT
GAAGG
CTCTTAC





GCCATTGTCCAGATCAACTGCACGTACCAGACATCTGGGTTCAACGGG
AGCTC
CTCTGTG





CTGTTCTGGTACCAGCAACATGCTGGCGAAGCACCCACATTTCTGTCT
CAGAT
CTGTGAG





TACAATGTTCTGGATGGTTTGGAGGAGAAAGGTCGTTTTTCTTCATTC
GAAAG
AGA





CTTAGTCGGTCTAAAGGGTACAGTTACCTC







hTRA
hTRA
119
ATGGCTTTGCAGAGCACTCTGGGGGCGGTGTGGCTAGGGCTTCTCCTC
TGCTC
GGCAGAT


V02
V02

AACTCTCTCTGGAAGGTTGCAGAAAGCAAGGACCAAGTGTTTCAGCCT
ATCCT
GCTGCTG





TCCACAGTGGCATCTTCAGAGGGAGCTGTGGTGGAAATCTTCTGTAAT
CCAGG
TTTACTA





CACTCTGTGTCCAATGCTTACAACTTCTTCTGGTACCTTCACTTCCCG
TGCGG
CTGTGCT





GGATGTGCACCAAGACTCCTTGTTAAAGGCTCAAAGCCTTCTCAGCAG
GA
GTGGAGG





GGACGATACAACATGACCTATGAACGGTTCTCTTCATCGC

A





hTRA
hTRA
120
ATGGCCTCTGCACCCATCTCGATGCTTGCGATGCTCTTCACATTGAGT
GAAGA
GCGACTC


V03
V03

GGGCTGAGAGCTCAGTCAGTGGCTCAGCCGGAAGATCAGGTCAACGTT
AACCA
CGCTTTG





GCTGAAGGGAATCCTCTGACTGTGAAATGCACCTATTCAGTCTCTGGA
TCTGC
TACTTCT





AACCCTTATCTTTTTTGGTATGTTCAATACCCCAACCGAGGCCTCCAG
CCTTG
GTGCTGT





TTCCTTCTGAAATACATCACAGGGGATAACCTGGTTAAAGGCAGCTAT
TGA
GAGAGAC





GGCTTTGAAGCTGAATTTAACAAGAGCCAAACCTCCTTCCACCT

A





hTRA
hTRA
121
ATGAGGCAAGTGGCGAGAGTGATCGTGTTCCTGACCCTGAGTACTTTG
CCTGC
ACTGCTG


V04
V04

AGCCTTGCTAAGACCACCCAGCCCATCTCCATGGACTCATATGAAGGA
CCCGG
TGTACTA





CAAGAAGTGAACATAACCTGTAGCCACAACAACATTGCTACAAATGAT
GTTTC
CTGCCTC





TATATCACGTGGTACCAACAGTTTCCCAGCCAAGGACCACGATTTATT
CCTGA
GTGGGTG





ATTCAAGGATACAAGACAAAAGTTACAAACGAAGTGGCCTCCCTGTTT
GCGAC
ACA





ATCCCTGCCGACAGAAAGTCCAGCACTCTGAG







hTRA
hTRA
122
ATGAAGACATTTGCTGGATTTTCGTTCCTGTTTTTGTGGCTGCAGCTG
TCTCT
GACTGGG


V05
V05

GACTGTATGAGTAGAGGAGAGGATGTGGAGCAGAGTCTTTTCCTGAGT
GCGCA
GACTCAG





GTCCGAGAGGGAGACAGCTCCGTTATAAACTGCACTTACACAGACAGC
TTGCA
CTATCTA





TCCTCCACCTACTTATACTGGTATAAGCAAGAACCTGGAGCAGGTCTC
GACAC
CTTCTGT





CAGTTGCTGACGTATATTTTTTCAAATATGGACATGAAACAAGACCAA
CCA
GCAGAGA





AGACTCACTGTTCTATTGAATAAAAAGGATAAACATCTG

GTA





hTRA
hTRA
123
ATGGAGTCATTCCTGGGAGGTGTTTTGCTGATTTTGTGGCTTCAAGTG
TTGTT
GCCTGCA


V06
V06

GACTGGGTGAAGAGCCAAAAGATAGAACAGAATTCCGAGGCCCTGAAC
TCATA
GACTCAG





ATTCAGGAGGGTAAAACGGCCACCCTGACCTGCAACTATACAAACTAT
TCACA
CTACCTA





TCCCCAGCATACTTACAGTGGTACCGACAAGATCCAGGAAGAGGCCCT
GCCTC
CCTCTGT





GTTTTCTTGCTACTCATACGTGAAAATGAGAAAGAAAAAAGGAAAGAA
CCA
GCTCTAG





AGACTGAAGGTCACCTTTGATACCACCCTTAAACAGAGT

ACA





hTRA
hTRA
124
ATGGAGAAGATGCGGAGACCTGTCCTAATTATATTTTGTCTATGTCTT
GCTTG
GCCTGAA


V07
V07

GGCTGGGCAAATGGAGAAAACCAGGTGGAGCACAGCCCTCATTTTCTG
TACAT
GATTCAG





GGACCCCAGCAGGGAGACGTTGCCTCCATGAGCTGCACGTACTCTGTC
TACAG
CCACCTA





AGTCGTTTTAACAATTTGCAGTGGTACAGGCAAAATACAGGGATGGGT
CCGTG
TTTCTGT





CCCAAACACCTATTATCCATGTATTCAGCTGGATATGAGAAGCAGAAA
CA
GCTGTAG





GGAAGACTAAATGCTACATTACTGAAGAATGGAAGCA

ATG





hTRA
hTRA
125
ATGCTCCTGTTGCTCATACCAGTGCTGGGGATGATTTTTGCCCTGAGA
ATCTG
GTGGAGT


V08-1
V08-

GATGCCAGAGCCCAGTCTGTGAGCCAGCATAACCACCACGTAATTCTC
AGGAA
GACACAG



1/08-3

TCTGAAGCAGCCTCACTGGAGTTGGGATGCAACTATTCCTATGGTGGA
ACCCT
CTGAGTA





ACTGTTAATCTCTTCTGGTATGTCCAGTACCCTGGTCAACACCTTCAG
CTGTG
CTTCTGT





CTTCTCCTCAAGTACTTTTCAGGGGATCCACTGGTTAAAGGCATCAAG
CA
GCCGTGA





GGCTTTGAGGCTGAATTTATAAAGAGTAAATTCTCCTTTA

ATGC





hTRA
hTRA
126
ATGCTCCTGCTGCTCGTCCCAGTGCTCGAGGTGATTTTTACTCTGGGA
ACCTG
ATGAGCG


V08-2
V08-

GGAACCAGAGCCCAGTCGGTGACCCAGCTTGACAGCCACGTCTCTGTC
ACGAA
ACGCGGC



2/08-4

TCTGAAGGAACCCCGGTGCTGCTGAGGTGCAACTACTCATCTTCTTAT
ACCCT
TGAGTAC





TCACCATCTCTCTTCTGGTATGTGCAACACCCCAACAAAGGACTCCAG
CAGCC
TTCTGTG





CTTCTCCTGAAGTACACATCAGCGGCCACCCTGGTTAAAGGCATCAAC
CAT
TTGTGAG





GGTTTTGAGGCTGAATTTAAGAAGAGTGAAACCTCCTTCC

TGA





hTRA
hTRA
127
ATGCTCCTGGAGCTTATCCCACTGCTGGGGATACATTTTGTCCTGAGA
ATCTG
TTGGAGT


V08-3
V08-

ACTGCCAGAGCCCAGTCAGTGACCCAGCCTGACATCCACATCACTGTC
AGGAA
GATGCTG



1/08-3

TCTGAAGGAGCCTCACTGGAGTTGAGATGTAACTATTCCTATGGGGCA
ACCCT
CTGAGTA





ACACCTTATCTCTTCTGGTATGTCCAGTCCCCCGGCCAAGGCCTCCAG
CTGTG
CTTCTGT





CTGCTCCTGAAGTACTTTTCAGGAGACACTCTGGTTCAAGGCATTAAA
CA
GCTGTGG





GGCTTTGAGGCTGAATTTAAGAGGAGTCAATCTTCCTTCA

GTGC





hTRA
hTRA
128
ATGCTCCTGCTGCTCGTCCCAGTGCTCGAGGTGATTTTTACCCTGGGA
ACCTG
ATGAGCG


V08-4
V08-

GGAACCAGAGCCCAGTCGGTGACCCAGCTTGGCAGCCACGTCTCTGTC
ACGAA
ACGCGGC



2/08-4

TCTGAAGGAGCCCTGGTTCTGCTGAGGTGCAACTACTCATCGTCTGTT
ACCCT
TGAGTAC





CCACCATATCTCTTCTGGTATGTGCAATACCCCAACCAAGGACTCCAG
CAGCC
TTCTGTG





CTTCTCCTGAAGTACACATCAGCGGCCACCCTGGTTAAAGGCATCAAC
CAT
CTGTGAG





GGTTTTGAGGCTGAATTTAAGAAGAGTGAAACCTCCTTCC

TGACACA





hTRA
hTRA
129
ATGCTCCTGGTGCTCATCCCACTGCTGGGGATACATTTTGTCCTGAGT
CCTAT
TCTTAAT


V08-5
V08-5

GAGAACTGTCAGAGCCCAGTCAGTGACCCAGCCTGACATCCGCATCAC
GCCTG
CCTGTCA





TGTCTCTGAAGGAGCCTCACTGGAGTTGAGATGTAACTATTCCTATGG
TCTTT
GCTGAGG





GGCGATGTTGTGGGAAGTCAGGGACCCCAAACGGAGGGACCGGCTGAA
ACTTT
AGGATGT





GCCATGGCAGAAGAATGTGGATTGTGAAGATTTCATGGACATTTATTA
AATC
ATGTCAC





GTTCCCCAAATTAATACTTTTATAATTTCTTATGCCTCTCTTTACTGC

C





AATCTCTAAACATAAATTGTAAAGATTTCATGGACACTTATCACTTCC







CCAATCAATACCCCTGTGATTT







hTRA
hTRA
130
ATGCTCCTGCTGCTCGTCCCAGCGTTCCAGGTGATTTTTACCCTGGGA
CTTGA
AAGCGAC


V08-6
V08-6

GGAACCAGAGCCCAGTCTGTGACCCAGCTTGACAGCCAAGTCCCTGTC
GGAAA
ACGGCTG





TTTGAAGAAGCCCCTGTGGAGCTGAGGTGCAACTACTCATCGTCTGTT
CCCTC
AGTACTT





TCAGTGTATCTCTTCTGGTATGTGCAATACCCCAACCAAGGACTCCAG
AGTCC
CTGTGCT





CTTCTCCTGAAGTATTTATCAGGATCCACCCTGGTTAAAGGCATCAAC
ATAT
GTGAGTG





GGTTTTGAGGCTGAATTTAACAAGAGTCAAACTTCCTTCCA

A





hTRA
hTRA
131
ATGCTCTTAGTGGTCATTCTGCTGCTTGGAATGTTCTTCACACTGAGA
GAAAC
TGCTGCT


V08-7
V08-7

ACCAGAACCCAGTCGGTGACCCAGCTTGATGGCCACATCACTGTCTCT
CATCA
GAGTACT





GAAGAAGCCCCTCTGGAACTGAAGTGCAACTATTCCTATAGTGGAGTT
ACCCA
TCTGTGC





CCTTCTCTCTTCTGGTATGTCCAATACTCTAGCCAAAGCCTCCAGCTT
TGTGA
TGTGGGT





CTCCTCAAAGACCTAACAGAGGCCACCCAGGTTAAAGGCATCAGAGGT
GTGA
GACAGG





TTTGAGGCTGAATTTAAGAAGAGCGAAACCTCCTTCTACCTGAG







hTRA
hTRA
132
ATGAATTCTTCTCCAGGACCAGCGATTGCACTATTCTTAATGTTTGGG
ACTTG
GAGTCAG


V09-1
V09-1

GGAATCAATGGAGATTCAGTGGTCCAGACAGAAGGCCAAGTGCTCCCC
GAGAA
ACTCCGC





TCTGAAGGGGATTCCCTGATTGTGAACTGCTCCTATGAAACCACACAG
AGACT
TGTGTAC





TACCCTTCCCTTTTTTGGTATGTCCAATATCCTGGAGAAGGTCCACAG
CAGTT
TTCTGTG





CTCCACCTGAAAGCCATGAAGGCCAATGACAAGGGAAGGAACAAAGGT
CAA
CTCTGAG





TTTGAAGCCATGTACCGTAAAGAAACCACTTCTTTCC

TGA





hTRA
hTRA
133
ATGAACTATTCTCCAGGCTTAGTATCTCTGATACTCTTACTGCTTGGA
ACTTG
GTGTCAG


V09-2
V09-2

AGAACCCGTGGAAATTCAGTGACCCAGATGGAAGGGCCAGTGACTCTC
GAGAA
ACTCAGC





TCAGAAGAGGCCTTCCTGACTATAAACTGCACGTACACAGCCACAGGA
AGGCT
GGTGTAC





TACCCTTCCCTTTTCTGGTATGTCCAATATCCTGGAGAAGGTCTACAG
CAGTT
TTCTGTG





CTCCTCCTGAAAGCCACGAAGGCTGATGACAAGGGAAGCAACAAAGGT
CAA
CTCTGAG





TTTGAAGCCACATACCGTAAAGAAACCACTTCTTTCC

TGA





hTRA
hTRA
134
ATGAAAAAGCATCTGACGACCTTCTTGGTGATTTTGTGGCTTTATTTT
CTGCA
GCTCAGC


V10
V10

TATAGGGGGAATGGCAAAAACCAAGTGGAGCAGAGTCCTCAGTCCCTG
CATCA
GATTCAG





ATCATCCTGGAGGGAAAGAACTGCACTCTTCAATGCAATTATACAGTG
CAGCC
CCTCCTA





AGCCCCTTCAGCAACTTAAGGTGGTATAAGCAAGATACTGGGAGAGGT
TCCCA
CATCTGT





CCTGTTTCCCTGACAATCATGACTTTCAGTGAGAACACAAAGTCGAAC

GTGGTGA





GGAAGATATACAGCAACTCTGGATGCAGACACAAAGCAAAGCTCT

GCG





hTRA
hTRA
135
ACGGAGAAGCCCTTGGGAGTTTCATTCTTGATTTCCTCCTGGCAGCTG
GTTTG
CTGGGAG


V11
VII

TGCTGGGTGAATAGACTACATACACTGGAGCAGAGTCCTTCATTCCTG
GAATA
ATTCAGC





AATATTCAGGAGGGAATGCATGCCGTTCTTAATTGTACTTATCAGGAG
TCGCA
CACCTAC





AGAACACTCTTCAATTTCCACTGGTTCCGGCAGGATCCGGGGAGAAGA
GCCTC
TTCTGTG





CTTGTGTCTTTGACCTTAATTCAATCAAGCCAGAAGGAGCAGGGAGAC
TCAT
CTTTGC





AAATATTTTAAAGAACTGCTTGGAAAAGAAAAATTTTATAGT







hTRA
hTRA
136
ATGATATCCTTGAGAGTTTTACTGGTGATCCTGTGGCTTCAGTTAAGC
CCCTG
CTCAGTG


V12-1
V12-1

TGGGTTTGGAGCCAACGGAAGGAGGTGGAGCAGGATCCTGGACCCTTC
CTCAT
ATTCAGC





AATGTTCCAGAGGGAGCCACTGTCGCTTTCAACTGTACTTACAGCAAC
CAGAG
CACCTAC





AGTGCTTCTCAGTCTTTCTTCTGGTACAGACAGGATTGCAGGAAAGAA
ACTCC
CTCTGTG





CCTAAGTTGCTGATGTCCGTATACTCCAGTGGTAATGAAGATGGAAGG
AAG
TGGTGAA





TTTACAGCACAGCTCAATAGAGCCAGCCAGTATATTT

CA





hTRA
hTRA
137
ATGAAATCCTTGAGAGTTTTACTAGTGATCCTGTGGCTTCAGTTGAGC
CTCTG
CCCAGTG


V12-2
V12-2

TGGGTTTGGAGCCAACAGAAGGAGGTGGAGCAGAATTCTGGACCCCTC
CTCAT
ATTCAGC





AGTGTTCCAGAGGGAGCCATTGCCTCTCTCAACTGCACTTACAGTGAC
CAGAG
CACCTAC





CGAGGTTCCCAGTCCTTCTTCTGGTACAGACAATATTCTGGGAAAAGC
ACTCC
CTCTGTG





CCTGAGTTGATAATGTTCATATACTCCAATGGTGACAAAGAAGATGGA
CAG
CCGTGAA





AGGTTTACAGCACAGCTCAATAAAGCCAGCCAGTATGTTT







hTRA
hTRA
138
ATGAAATCCTTGAGAGTTTTACTGGTGATCCTGTGGCTTCAGTTAAGC
CCTTG
CCCAGTG


V12-3
V12-3

TGGGTTTGGAGCCAACAGAAGGAGGTGGAGCAGGATCCTGGACCACTC
TTCAT
ATTCAGC





AGTGTTCCAGAGGGAGCCATTGTTTCTCTCAACTGCACTTACAGCAAC
CAGAG
CACCTAC





AGTGCTTTTCAATACTTCATGTGGTACAGACAGTATTCCAGAAAAGGC
ACTCA
CTCTGTG





CCTGAGTTGCTGATGTACACATACTCCAGTGGTAACAAAGAAGATGGA
CAG
CAATGAG





AGGTTTACAGCACAGGTCGATAAATCCAGCAAGTATATCT

CGCACAG





hTRA
hTRA
139
ATGACATCCATTCGAGCTGTATTTATATTCCTGTGGCTGCAGCTGGAC
TCCCT
CCTGAAG


V13-1
V13-1

TTGGTGAATGGAGAGAATGTGGAGCAGCATCCTTCAACCCTGAGTGTC
GCACA
ACTCGGC





CAGGAGGGAGACAGCGCTGTTATCAAGTGTACTTATTCAGACAGTGCC
TCACA
TGTCTAC





TCAAACTACTTCCCTTGGTATAAGCAAGAACTTGGAAAAGGACCTCAG
GAGAC
TTCTGTG





CTTATTATAGACATTCGTTCAAATGTGGGCGAAAAGAAAGACCAACGA
CCAA
CAGCAAG





ATTGCTGTTACATTGAACAAGACAGCCAAACATTTC

TA





hTRA
hTRA
140
ATGGCAGGCATTCGAGCTTTATTTATGTACTTGTGGCTGCAGCTGGAC
TCTCT
CCTGGAG


V13-2
V13-2

TGGGTGAGCAGAGGAGAGAGTGTGGGGCTGCATCTTCCTACCCTGAGT
GCAAA
ACTCAGC





GTCCAGGAGGGTGACAACTCTATTATCAACTGTGCTTATTCAAACAGC
TTGCA
TGTCTAC





GCCTCAGACTACTTCATTTGGTACAAGCAAGAATCTGGAAAAGGTCCT
GCTAC
TTTTGTG





CAATTCATTATAGACATTCGTTCAAATATGGACAAAAGGCAAGGCCAA
TCAA
CAGAGAA





AGAGTCACCGTTTTATTGAATAAGACAGTGAAACATCTC

TA





hTRA
hTRA
141
ATGTCACTTTCTAGCCTGCTGAAGGTGGTCACAGCTTCACTGTGGCTA
TTGTC
GGGACTC


V14
V14

GGACCTGGCATTGCCCAGAAGATAACTCAAACCCAACCAGGAATGTTC
ATCTC
AGCAATG





GTGCAGGAAAAGGAGGCTGTGACTCTGGACTGCACATATGACACCAGT
CGCTT
TATTTCT





GATCAAAGTTATGGTCTATTCTGGTACAAGCAGCCCAGCAGTGGGGAA
CACAA
GTGCAAT





ATGATTTTTCTTATTTATCAGGGGTCTTATGACGAGCAAAATGCAACA
CTGG
GAGAGAG





GAAGGTCGCTACTCATTGAATTTCCAGAAGGCAAGAAAATCCGCCAAC

GG





C







hTRA
hTRA
142
ATGTATACGTATGTAACAAACCTGCGCGTTGTGCACATGTACCCTAGA
GTTTT
CCTGGAG


V15
V15

ACGGGTGAACAGCCTCCATATTCTGGAGTAGAGTCCTTCATTCATTCC
GAATA
ATTCAGG





TGAGTATCCGGGAGGGAATGCACAACATTCTTAATTGCACTTATGAGG
TGCTG
CACCTAC





AGAGAACGTTCTCTTAACTTCTACTGGTTCTGGCAGGGTCTGGAAAAG
GTCTC
TTCTGTG





GACTTGTGTCTTTGACCTTAATTCAATCAAGCCAGATGGAGGAGGGAG
TCAT
CTTTGAG





ACAAACATTTTAAAGAAGCGCTTGGAAAAGAGAAGTTTTATAGT

G





hTRA
hTRA
143
ATGAAGCCCACCCTCATCTCAGTGCTTGTGATAATATTTATACTCAGA
CCTGA
GGAAGAC


V16
V16

GGAACAAGAGCCCAGAGAGTGACTCAGCCCGAGAAGCTCCTCTCTGTC
AGAAA
TCAGCCA





TTTAAAGGGGCCCCAGTGGAGCTGAAGTGCAACTATTCCTATTCTGGG
CCATT
TGTATTA





AGTCCTGAACTCTTCTGGTATGTCCAGTACTCCAGACAACGCCTCCAG
TGCTC
CTGTGCT





TTACTCTTGAGACACATCTCTAGAGAGAGCATCAAAGGCTTCACTGCT
AAGA
CTAAGTG





GACCTTAACAAAGGCGAGACATCTTTCCA

G





hTRA
hTRA
144
ATGGAAACTCTCCTGGGAGTGTCTTTGGTGATTCTATGGCTTCAACTG
TCCTT
GCAGCAG


V17
V17

GCTAGGGTGAACAGTCAACAGGGAGAAGAGGATCCTCAGGCCTTGAGC
GTTGA
ACACTGC





ATCCAGGAGGGTGAAAATGCCACCATGAACTGCAGTTACAAAACTAGT
TCACG
TTCTTAC





ATAAACAATTTACAGTGGTATAGACAAAATTCAGGTAGAGGCCTTGTC
GCTTC
TTCTGTG





CACCTAATTTTAATACGTTCAAATGAAAGAGAGAAACACAGTGGAAGA
CCGG
CTACGGA





TTAAGAGTCACGCTTGACACTTCCAAGAAAAGCAGT

CG





hTRA
hTRA
145
ATGCTGTCTGCTTCCTGCTCAGGACTTGTGATCTTGTTGATATTCAGA
ACCTG
GCTGTCG


V18
V18

AGGACCAGTGGAGACTCGGTTACCCAGACAGAAGGCCCAGTTACCCTC
GAGAA
GACTCTG





CCTGAGAGGGCAGCTCTGACATTAAACTGCACTTATCAGTCCAGCTAT
GCCCT
CCGTGTA





TCAACTTTTCTATTCTGGTATGTCCAGTATCTAAACAAAGAGCCTGAG
CGGTG
CTACTGC





CTCCTCCTGAAAAGTTCAGAAAACCAGGAGACGGACAGCAGAGGTTTT
CA
GCTCTGA





CAGGCCAGTCCTATCAAGAGTGACAGTTCCTTCC

GA





hTRA
hTRA
146
ATGCTGACTGCCAGCCTGTTGAGGGCAGTCATAGCCTCCATCTGTGTT
CACCA
GGACTCA


V19
V19

GTATCCAGCATGGCTCAGAAGGTAACTCAAGCGCAGACTGAAATTTCT
TCACA
GCAGTAT





GTGGTGGAGAAGGAGGATGTGACCTTGGACTGTGTGTATGAAACCCGT
GCCTC
ACTTCTG





GATACTACTTATTACTTATTCTGGTACAAGCAACCACCAAGTGGAGAA
ACAAG
TGCTCTG





TTGGTTTTCCTTATTCGTCGGAACTCTTTTGATGAGCAAAATGAAATA
TCGT
AGTGAGG





AGTGGTCGGTATTCTTGGAACTTCCAGAAATCCACCAGTTCCTTCAAC

C





TT







hTRA
hTRA
147
ATGGAGAAAATGTTGGAGTGTGCATTCATAGTCTTGTGGCTTCAGCTT
TTTCT
AACCTGA


V20
V20

GGCTGGTTGAGTGGAGAAGACCAGGTGACGCAGAGTCCCGAGGCCCTG
GCACA
AGACTCA





AGACTCCAGGAGGGAGAGAGTAGCAGTCTTAACTGCAGTTACACAGTC
TCACA
GCCACTT





AGCGGTTTAAGAGGGCTGTTCTGGTATAGGCAAGATCCTGGGAAAGGC
GCCCC
ATCTCTG





CCTGAATTCCTCTTCACCCTGTATTCAGCTGGGGAAGAAAAGGAGAAA
TA
TGCTGTG





GAAAGGCTAAAAGCCACATTAACAAAGAAGGAAAGC

CAGG





hTRA
hTRA
148
ATGGAGACCCTCTTGGGCCTGCTTATCCTTTGGCTGCAGCTGCAATGG
CTTTA
TGGTGAC


V21
V21

GTGAGCAGCAAACAGGAGGTGACGCAGATTCCTGCAGCTCTGAGTGTC
TACAT
TCAGCCA





CCAGAAGGAGAAAACTTGGTTCTCAACTGCAGTTTCACTGATAGCGCT
TGCAG
CCTACCT





ATTTACAACCTCCAGTGGTTTAGGCAGGACCCTGGGAAAGGTCTCACA
CTTCT
CTGTGCT





TCTCTGTTGCTTATTCAGTCAAGTCAGAGAGAGCAAACAAGTGGAAGA
CAGCC
GTGAGG





CTTAATGCCTCGCTGGATAAATCATCAGGACGTAGTA







hTRA
hTRA
149
ATGAAGAGGATATTGGGAGCTCTGCTGGGGCTCTTGAGTGCCCAGGTT
GTACA
AGACTCA


V22
V22

TGCTGTGTGAGAGGAATACAAGTGGAGCAGAGTCCTCCAGACCTGATT
TTTCC
GGCGTTT





CTCCAGGAGGGAGCCAATTCCACGCTGCGGTGCAATTTTTCTGACTCT
TCTTC
ATTTCTG





GTGAACAATTTGCAGTGGTTTCATCAAAACCCTTGGGGACAGCTCATC







AACCTGTTTTACATTCCCTCAGGGACAAAACAGAATGGAAGATTAAGC
CCAGA
TGCTGTG





GCCACGACTGTCGCTACGGAACGCTACAGCTTATT
CCAC
GAGC





hTRA
hTRA
150
ATGGACAAGATCTTAGGAGCATCATTTTTAGTTCTGTGGCTTCAACTA
CATTG
CTGGAGA


V23
V23

TGCTGGGTGAGTGGCCAACAGAAGGAGAAAAGTGACCAGCAGCAGGTG
CATAT
CTCAGCC





AAACAAAGTCCTCAATCTTTGATAGTCCAGAAAGGAGGGATTTCAATT
CATGG
ACCTACT





ATAAACTGTGCTTATGAGAACACTGCGTTTGACTACTTTCCATGGTAC
ATTCC
TCTGTGC





CAACAATTCCCTGGGAAAGGCCCTGCATTATTGATAGCCATACGTCCA
CAGC
AGCAAGC





GATGTGAGTGAAAAGAAAGAAGGAAGATTCACAATCTCCTTCAATAAA

A





AGTGCCAAGCAGTTCT







hTRA
hTRA
151
ATGGAGAAGAATCCTTTGGCAGCCCCATTACTAATCCTCTGGTTTCAT
GCTAT
AGCCTGA


V24
V24

CTTGACTGCGTGAGCAGCATACTGAACGTGGAACAAAGTCCTCAGTCA
TTGTA
AGACTCA





CTGCATGTTCAGGAGGGAGACAGCACCAATTTCACCTGCAGCTTCCCT
CATCA
GCCACAT





TCCAGCAATTTTTATGCCTTACACTGGTACAGATGGGAAACTGCAAAA
AAGGA
ACCTCTG





AGCCCCGAGGCCTTGTTTGTAATGACTTTAAATGGGGATGAAAAGAAG
TCCC
TGCCTTT





AAAGGACGAATAAGTGCCACTCTTAATACCAAGGAGGGTTACA

A





hTRA
hTRA
152
ATGCTACTCATCACATCAATGTTGGTCTTATGGATGCAATTGTCACAG
CAGCT
CCCAGAC


V25
V25

GTGAATGGACAACAGGTAATGCAAATTCCTCAGTACCAGCATGTACAA
CCCTG
TACAGAT





GAAGGAGAGGACTTCACCACGTACTGCAATTCCTCAACTACTTTAAGC
CACAT
GTAGGAA





AATATACAGTGGTATAAGCAAAGGCCTGGTGGACATCCCGTTTTTTTG
CACAG
CCTACTT





ATACAGTTAGTGAAGAGTGGAGAAGTGAAGAAGCAGAAAAGACTGACA
CCA
CTGTGCA





TTTCAGTTTGGAGAAGCAAAAAAGAA

GGG





hTRA
hTRA
153
ATGAGGCTGGTGGCAAGAGTAACTGTGTTTCTGACCTTTGGAACTATA
TTGAT
GAGACAC


V26-1
V26-1

ATTGATGCTAAGACCACCCAGCCCCCCTCCATGGATTGCGCTGAAGGA
CCTGC
TGCTGTG





AGAGCTGCAAACCTGCCTTGTAATCACTCTACCATCAGTGGAAATGAG
CCCAC
TACTATT





TATGTGTATTGGTATCGACAGATTCACTCCCAGGGGCCACAGTATATC
GCTAC
GCATCGT





ATTCATGGTCTAAAAAACAATGAAACCAATGAAATGGCCTCTCTGATC
GCTGA
CAGAGTC





ATCACAGAAGACAGAAAGTCCAGCACC

G





hTRA
hTRA
154
ATGAAGTTGGTGACAAGCATTACTGTACTCCTATCTTTGGGTATTATG
TTGAT
GAGATGC


V26-2
V26-2

GGTGATGCTAAGACCACACAGCCAAATTCAATGGAGAGTAACGAAGAA
CCTGC
TGCTGTG





GAGCCTGTTCACTTGCCTTGTAACCACTCCACAATCAGTGGAACTGAT
ACCGT
TACTACT





TACATACATTGGTATCGACAGCTTCCCTCCCAGGGTCCAGAGTACGTG
GCTAC
GCATCCT





ATTCATGGTCTTACAAGCAATGTGAACAACAGAATGGCCTCTCTGGCA
CTTGA
GAGAGAC





ATCGCTGAAGACAGAAAGTCCAGTACC







hTRA
hTRA
155
ATGGTCCTGAAATTCTCCGTGTCCATTCTTTGGATTCAGTTGGCATGG
GTTCT
CAGCCTG


V27
V27

GTGAGCACCCAGCTGCTGGAGCAGAGCCCTCAGTTTCTAAGCATCCAA
CTCCA
GTGATAC





GAGGGAGAAAATCTCACTGTGTACTGCAACTCCTCAAGTGTTTTTTCC
CATCA
AGGCCTC





AGCTTACAATGGTACAGACAGGAGCCTGGGGAAGGTCCTGTCCTCCTG
CTGCA
TACCTCT





GTGACAGTAGTTACGGGTGGAGAAGTGAAGAAGCTGAAGAGACTAACC
GCC
GTGCAGG





TTTCAGTTTGGTGATGCAAGAAAGGACA

AG





hTRA
hTRA
156
ATGAAGGCATTAATAGGAATCTTGCTGGGCTTCCTGTGGATACAGATT
GCCAC
GCCTGAG


V28
V28

TGCTCGCAAATGAAAGTGGAGCAGAGTCCTCAGGTCCTGATCCTCCAA
CTATA
GACTCAG





GAGGGAAGAAATTCATTCCTGGTGTGCAGTTGTTCTATTTACATGATC
CATCA
CTATTTA





CGTGTGCAGTGGTTTCATCAAAAGCCTGGAGGACCCCTCATGTCCTTA
GATTC
CTTCTGT





TTTAACATTAATTCAGGAATACAGCAAAAAAGAAGACTAAAATCCGCA
CCA
GCTGTGG





GTCAAAGCTGAGGAACTTTATG

GGA





hTRA
hTRA
157
ATGGCCATGCTCCTGGGGGCATCAGTGCTGATTCTGTGGCTTCAGCCA
TCTCT
GCCTGGA


V29
V29

GACTGGGTAAACAGTCAACAGAAGAATGATGACCAGCAAGTTAAGCAA
GCACA
GACTCTG





AATTCACCATCCCTGAGCGTCCAGGAAGGAAGAATTTCTATTCTGAAC
TTGTG
CAGTGTA





TGTGACTATACTAACAGCATGTTTGATTATTTCCTATGGTACAAAAAA
CCCTC
CTTCTGT





TACCCTGCTGAAGGTCCTACATTCCTGATATCTATAAGTTCCATTAAG
CCA
GCAGCAA





GATAAAAATGAAGATGGAAGATTCACTGTCTTCTTAAACAAAAGTGCC

GCG





AAGCACCTC







hTRA
hTRA
158
ATGGAGACTCTCCTGAAAGTGCTTTCAGGCACCTTGTTGTGGCAGTTG
CCCTG
CAGTTAC


V30
V30

ACCTGGGTGAGAAGCCAACAACCAGTGCAGAGTCCTCAAGCCGTGATC
TACCT
TCAGGAA





CTCCGAGAAGGGGAAGATGCTGTCATCAACTGCAGTTCCTCCAAGGCT
TACGG
CCTACTT





TTATATTCTGTACACTGGTACAGGCAGAAGCATGGTGAAGCACCCGTC
CCTCC
CTGCGGC





TTCCTGATGATATTACTGAAGGGTGGAGAACAGAAGGGTCATGAAAAA
CAGCT
ACAGAGA





ATATCTGCTTCATTTAATGAAAAAAAGCAGCAAAGCT







hTRA
hTRA
159
ATGACTGTTGGCAGCATATTACGGGCACTCATGGCCTCTGCCTTCCTT
CTTAT
GAAGACC


V31
V31

GCATGTCACAGAGGGTCATTCAATCCCAACCAGCAATATCTACGCAGG
CATAT
TGCAACA





AGGGTGAGACCGTGAAACTGGACTGTGCATACAAAACTAATATTGTAT
CATCA
TATTTCT





ATTACATATTGTATTGGTACAAAAGGTCTCCCAATGGGAAGATTATTT
TCACA
GTTGTCT





TCCTCATTTATCAGCAAACAGATGCAGAAACCAATGCGACACAGGGTC
GCCA
CAAAGAG





AATATTCTGTGAGCTTCCAGAAAACAACTAAAACTATTCAG

CC





hTRA
hTRA
160
ATGGCAAGAAGAATGGAAAAGTCCCTGGGAGCTTTATTCAAATTCAGC
TCCCT
CCAGGAG


V32
V32

TGAAGCTGGCCAAGAAAAGGATGTGATACAGAGTTATTCAAATCTAAA
GCATA
ACTCATT





TGTCTAGGAGAGAGAAATGGCCGTTATTAATGACAGTTATACAGATGG
TTACA
CCTGTAC





AGCTTTGAATTATTTCTGTTGGTACAAGAAGAAAACGGGGAAGGCCCT
GCCAC
TTCTGTG





AATATCTTAATGGAGATTCATTCAAATGTGGATAGAAAACAGGACAGA
CCAA
CAGTGAG





AGGCTCACTGTACTGTTGAATAAAAATGCTAAACATGTC

AACACA





hTRA
hTRA
161
ATGCTCTGCCCTGGCCTGCTGTGGGCATTCGTGGTCCCCTTTGGCTTC
ACCTC
TGACTCA


V33
V33

AGATCCAGCATGGCTCAGAAAGTAACCCAAGTTCAGACCACAGTAACT
ACCAT
GCCAAGT





AGGCAGAAAGGAGTAGCTGTGACCTTGGACTGCATGTTTGAAACCAGA
CAATT
ACTTCTG





TAGAATTCGTACACTTTATACTGGTACAAGCAACAAGCAACCTCCCAG
CCTTA
TGCTCTC





TGAAGAGATGGTTTTCCTTATTCATCAGGGTTATTCTAAGTCAAATGC
AAAC
AGGAATC





AAAGCCTGTGAACTTTGAAAAAAAGAAAAAGTTCATCA

C





hTRA
hTRA
162
ATGGAGACTGTTCTGCAAGTACTCCTAGGGATATTGGGGTTCCAAGCA
TCCCT
CCCAGCC


V34
V34

GCCTGGGTCAGTAGCCAAGAACTGGAGCAGAGTCCTCAGTCCTTGATC
GCATA
ATGCAGG





GTCCAAGAGGGAAAGAATCTCACCATAAACTGCACGTCATCAAAGACG
TCACA
CATCTAC





TTATATGGCTTATACTGGTATAAGCAAAAGTATGGTGAAGGTCTTATC
GCCTC
CTCTGTG





TTCTTGATGATGCTACAGAAAGGTGGGGAAGAGAAAAGTCATGAAAAG
CCAG
GAGCAGA





ATAACTGCCAAGTTGGATGAGAAAAAGCAGCAAAGT

CA





hTRA
hTRA
163
ATGCTCCTTGAACATTTATTAATAATCTTGTGGATGCAGCTGACATGG
CTTCC
ACCTAGT


V35
V35

GTCAGTGGTCAACAGCTGAATCAGAGTCCTCAATCTATGTTTATCCAG
TGAAT
GATGTAG





GAAGGAGAAGATGTCTCCATGAACTGCACTTCTTCAAGCATATTTAAC
ATCTC
GCATCTA





ACCTGGCTATGGTACAAGCAGGAACCTGGGGAAGGTCCTGTCCTCTTG
AGCAT
CTTCTGT





ATAGCCTTATATAAGGCTGGTGAATTGACCTCAAATGGAAGACTGACT
CCAT
GCTGGGC





GCTCAGTTTGGTATAACCAGAAAGGACAG

AG





hTRA
hTRA
164
ATGATGAAGTGTCCACAGGCTTTACTAGCTATCTTTTGGCTTCTACTG
TCCTG
ACCGGAG


V36
V36

AGCTGGGTGAGCAGTGAAGACAAGGTGGTACAAAGCCCTCTATCTCTG
AACAT
ACTCGGC





GTTGTCCACGAGGGAGACACCGTAACTCTCAATTGCAGTTATGAAGTG
CACAG
CATCTAC





ACTAACTTTCGAAGCCTACTATGGTACAAGCAGGAAAAGAAAGCTCCC
CCACC
CTCTGTG





ACATTTCTATTTATGCTAACTTCAAGTGGAATTGAAAAGAAGTCAGGA
CAG
CTGTGGA





AGACTAAGTAGCATATTAGATAAGAAAGAACTTTCCAGCA

GG





hTRA
hTRA
165
ATGGAAACTCCACTGAGCACTCTGCTGCTGCTCCTCTGTGTGCAGCTG
TCCCT
CTCCATG


V37
V37

ACCTGGTCAAATGGACAACTGCCAGTGGAACAGAATGCTCCTTCCCTG
GCACA
ACTCAAC





AAAGTCAAGGAAGGTGACAGCGTCACACTGAACTGCAGTTACAGAGAC
TACAG
CACATTC





AGCCCTTCAGATTTCTTCAGTGGTTCAGGCAGGATCCTGAGGAAGGCC
GATTC
TTCTGCG





TCATTTCCCTGATACAAATGCTATCAACTGTGAGAGAGAAGATCAGTG
CCAG
CAGCAAG





GAAGATTCACAGCCAGGCTTAAAAAAGGAGACCAGCACATT

CA





hTRA
hTRA
166
ATGACACGAGTTAGCTTGCTGTGGGCAGTCGTGGTCTCCACCTGTCTT
CAAGA
GGGACAC


V38-1
V38

GAATCCGGCATGGCCCAGACAGTCACTCAGTCTCAACCAGAGATGTCT
TCTCA
TGCGATG





GTGCAGGAGGCAGAGACTGTGACCCTGAGTTGCACATATGACACCAGT
GACTC
TATTTCT





GAGAATAATTATTATTTGTTCTGGTACAAGCAGCCTCCCAGCAGGCAG
ACAGC
GTGCTTT





ATGATTCTCGTTATTCGCCAAGAAGCTTATAAGCAACAGAATGCAACG
TGG
CATGAAG





GAGAATCGTTTCTCTGTGAACTTCCAGAAAGCAGCCAAATCCTTCAGT

CA





CT







hTRA
hTRA
167
ATGGCATGCCCTGGCTTCCTGTGGGCACTTGTGATCTCCACCTGTCTT
CAAGA
GGGATGC


V38-2
V38

GAATTTAGCATGGCTCAGACAGTCACTCAGTCTCAACCAGAGATGTCT
TCTCA
CGCGATG





GTGCAGGAGGCAGAGACCGTGACCCTGAGCTGCACATATGACACCAGT
GACTC
TATTTCT





GAGAGTGATTATTATTTATTCTGGTACAAGCAGCCTCCCAGCAGGCAG
ACAGC
GTGCTTA





ATGATTCTCGTTATTCGCCAAGAAGCTTATAAGCAACAGAATGCAACA
TGG
TAGGAGC





GAGAATCGTTTCTCTGTGAACTTCCAGAAAGCAGCCAAATCCTTCAGT

G





CT







hTRA
hTRA
168
ATGAAGAAGCTACTAGCAATGATTCTGTGGCTTCAACTAGACCGGTTA
CCGTC
CAGCTGC


V39
V39

AGTGGAGAGCTGAAAGTGGAACAAAACCCTCTGTTCCTGAGCATGCAG
TCAGC
CGTGCAT





GAGGGAAAAAACTATACCATCTACTGCAATTATTCAACCACTTCAGAC
ACCCT
GACCTCT





AGACTGTATTGGTACAGGCAGGATCCTGGGAAAAGTCTGGAATCTCTG
CCACA
CTGCCAC





TTTGTGTTGCTATCAAATGGAGCAGTGAAGCAGGAGGGACGATTAATG
TCA
CTACTTC





GCCTCACTTGATACCAAAGC

TGTGCCG







TGGACA





hTRA
hTRA
169
ATGAACTCCTCTCTGGACTTTCTAATTCTGATCTTAATGTTTGGAGGA
CCATT
TATCAGA


V40
V40

ACCAGCAGCAATTCAGTCAAGCAGACGGGCCAAATAACCGTCTCGGAG
GTGAA
CTCAGCC





GGAGCATCTGTGACTATGAACTGCACATACACATCCACGGGGTACCCT
ATATT
GTGTACT





ACCCTTTTCTGGTATGTGGAATACCCCAGCAAACCTCTGCAGCTTCTT
CAGTC
ACTGTCT





CAGAGAGAGACAATGGAAAACAGCAAAAACTTCGGAGGCGGAAATATT
CAGG
TCTGGGA





AAAGACAAAAACTCCC

GA





hTRA
hTRA
170
ATGGTGAAGATCCGGCAATTTTTGTTGGCTATTTTGTGGCTTCAGCTA
CTGCA
TCCCAGA


V41
V10

AGCTGTGTAAGTGCCGCCAAAAATGAAGTGGAGCAGAGTCCTCAGAAC
CATCA
GACTCTG





CTGACTGCCCAGGAAGGAGAATTTATCACAATCAACTGCAGTTACTCG
CAGCC
CCGTCTA





GTAGGAATAAGTGCCTTACACTGGCTGCAACAGCATCCAGGAGGAGGC
TCCCA
CATCTGT





ATTGTTTCCTTGTTTATGCTGAGCTCAGGGAAGAAGAAGCATGGAAGA

GCTGTCA





TTAATTGCCACAATAAACATACAGGAAAAGCACAGCTCC

GA
















TABLE 16







TCR β chain V segments and binding sites for primers presented in Table 4 and


Table 10. The sequence for each V segments presented in this table


consists of three parts (listed from 5′ to 3′): Sequence


upstream of primer binding site, sequence of the primer


binding site and sequence downstream of the primer binding site.

















hTRBV






Primer
sequence






binding
downstream


V



site
of primer


segment
Primer
SEQ

within
binding


name
name
ID NO
hTRBV sequence upstream of primer binding site
hTRBV
site















hTRB
hTRB
171
ATGGGCTGAAGTCTCCACTGTGGTGTGGTCCATTGTCTCAGGCTCCAT
GTGGT
CTCAGCT


V01
V01

GGATACTGGAATTACCCAGACACCAAAATACCTGGTCACAGCAATGGG
CGCAC
GCGTATC





GAGTAAAAGGACAATGAAACGTGAGCATCTGGGACATGATTCTATGTA
TGCAG
TCTGCAC





TTGGTACAGACAGAAAGCTAAGAAATCCCTGGAGTTCATGTTTTACTA
CAAGA
CAGCAGC





CAACTGTAAGGAATTCATTGAAAACAAGACTGTGCCAAATCACTTCAC
AGA
CAAGA





ACCTGAATGCCCTGACAGCTCTCGCTTATACCTTCAT







hTRB
hTRB
172
ATGGATACCTGGCTCGTATGCTGGGCAATTTTTAGTCTCTTGAAAGCA
GATCC
CTCAGCC


V02
V02

GGACTCACAGAACCTGAAGTCACCCAGACTCCCAGCCATCAGGTCACA
GGTCC
ATGTACT





CAGATGGGACAGGAAGTGATCTTGCGCTGTGTCCCCATCTCTAATCAC
ACAAA
TCTGTGC





TTATACTTCTATTGGTACAGACAAATCTTGGGGCAGAAAGTCGAGTTT
GCTGG
CAGCAGT





CTGGTTTCCTTTTATAATAATGAAATCTCAGAGAAGTCTGAAATATTC
AGGA
GAAGC





GATGATCAATTCTCAGTTGAAAGGCCTGATGGATCAAATTTCACTCTG







AA







hTRB
hTRB
173
ATGGGCTGCAGGCTCCTCTGCTGTGTGGTCTTCTGCCTCCTCCAAGCA
CATCA
CTCTGCT


V03-1
V03-1

GGTCCCTTGGACACAGCTGTTTCCCAGACTCCAAAATACCTGGTCACA
ATTCC
GTGTATT





CAGATGGGAAACGACAAGTCCATTAAATGTGAACAAAATCTGGGCCAT
CTGGA
TCTGTGC





GATACTATGTATTGGTATAAACAGGACTCTAAGAAATTTCTGAAGATA
GCTTG
CAGCAGC





ATGTTTAGCTACAATAATAAGGAGCTCATTATAAATGAAACAGTTCCA
GTGA
CAAGA





AATCGCTTCTCACCTAAATCTCCAGACAAAGCTCACTTAAATCTTCA







hTRB
hTRB
174
ATGGGCTGCAGGCTCCTCTGCTATGTGGCCCTCTGCCTCCTGCAAGCA
CATCA
CTCTGCT


V03-2
V03-1

GGATCCACTGGACACAGCCGTTTCCCAGACTCCAAAATACCTGGTCAC
ATTCC
GTGTATT





ACAGATGGGAAAAAAGGAGTCTCTTAAATGAGAACAAAATCTGGGCCA
CTGGA
TCTGTGC





TAATGCTATGTATTGGTATAAACAGGACTCTAAGAAATTTCTGAAGAC
GCTTG
CAGCAGC





AATGTTTATCTACAGTAACAAGGAGCCAATTTTAAATGAAACAGTTCC
GTGA
CAAGA





AAATCGCTTCTCACCTGACTCTCCAGACAAAGCTCATTTAAATCTTCA







hTRB
hTRB
175
ATGGGCTGCAGGCTGCTCTGCTGTGCGGTTCTCTGTCTCCTGGGAGCA
TTCAC
AAGACTC


V04-1
V04-1

GTTCCCATAGACACTGAAGTTACCCAGACACCAAAACACCTGGTCATG
CTACA
AGCCCTG





GGAATGACAAATAAGAAGTCTTTGAAATGTGAACAACATATGGGGCAC
CGCCC
TATCTCT





AGGGCTATGTATTGGTACAAGCAGAAAGCTAAGAAGCCACCGGAGCTC
TGCAG
GCGCCAG





ATGTTTGTCTACAGCTATGAGAAACTCTCTATAAATGAAAGTGTGCCA
CCAG
CAGCCAA





AGTCGCTTCTCACCTGAATGCCCCAACAGCTCTCTCTTAAACC

GA





hTRB
hTRB
176
ATGGGCTGCAGGCTGCTCTGCTGTGCGGTTCTCTGTCTCCTGGGAGCG
TTCAC
AAGACTC


V04-2
V04-2

GTCCCCATGGAAACGGGAGTTACGCAGACACCAAGACACCTGGTCATG
CTACA
GGCCCTG





GGAATGACAAATAAGAAGTCTTTGAAATGTGAACAACATCTGGGGCAT
CACCC
TATCTCT





AACGCTATGTATTGGTACAAGCAAAGTGCTAAGAAGCCACTGGAGCTC
TGCAG
GTGCCAG





ATGTTTGTCTACAACTTTAAAGAACAGACTGAAAACAACAGTGTGCCA
CCAG
CAGCCAA





AGTCGCTTCTCACCTGAATGCCCCAACAGCTCTCACTTATTCC

GA





hTRB
hTRB
177
ATGGGCTGCAGGCTGCTCTGCTGTGCGGTTCTCTGTCTCCTGGGAGCG
TTCAC
AAGACTC


V04-3
V04-2

GGTGAGTTGGTCCCCATGGAAACGGGAGTTACGCAGACACCAAGACAC
CTACA
GGCCCTG





CTGGTCATGGGAATGACAAATAAGAAGTCTTTGAAATGTGAACAACAT
CACCC
TATCTCT





CTGGGTCATAACGCTATGTATTGGTACAAGCAAAGTGCTAAGAAGCCA
TGCAG
GCGCCAG





CTGGAGCTCATGTTTGTCTACAGTCTTGAAGAACGGGTTGAAAACAAC
CCAG
CAGCCAA





AGTGTGCCAAGTCGCTTCTCACCTGAATGCCCCAACAGCTCTCACTTA

GA





TTCC







hTRB
hTRB
178
ATGGGCTCCAGGCTGCTCTGTTGGGTGCTGCTTTGTCTCCTGGGAGCA
GAATG
GGGACTC


V05-1
V05-1

GGCCCAGTAAAGGCTGGAGTCACTCAAACTCCAAGATATCTGATCAAA
TGAGC
GGCCCTT





ACGAGAGGACAGCAAGTGACACTGAGCTGCTCCCCTATCTCTGGGCAT
ACCTT
TATCTTT





AGGAGTGTATCCTGGTACCAACAGACCCCAGGACAGGGCCTTCAGTTC
GGAGC
GCGCCAG





CTCTTTGAATACTTCAGTGAGACACAGAGAAACAAAGGAAACTTCCCT
TGG
CAGCTTG





GGTCGATTCTCAGGGCGCCAGTTCTCTAACTCTCGCTCTGAGAT

G





hTRB
hTRB
179
ATGGGCTCCGGACTCCTCTGCTGGACGCTGCTTTGTTTCCTGGGAGCA
TACTG
GGACTCA


V05-2
V05-2

GGCCCAGTGGAGGCTGGAATCACCCAAGCTCCAAGACACCTGATCAAA
AGTCA
GCCCTGT





ACAAGAGACCAGCAAGTGACACTGAGATGCTCCCCTGCCTCTGGGCAT
AACAC
ATCTCTG





AACTGTGTGTCCTGGTACCTACGAACTCCAAGTCAGCCCCTCTAGTTA







TTGTTACAATATTGTAATAGGTTACAAAGAGCAAAAGGAAACTTGCCT
GGAGC
TGCCAGC





AATTGATTCTCAGCTCACCACGTCCATAACTAT
TAGG
AACTTG





hTRB
hTRB
180
ATGGGCCCCGGGCTCCTCTGCTGGGAACTGCTTTATCTCCTGGGAGCA
GCTCT
TGGAGCT


V05-3
V05-3

GGCCCAGTGGAGGCTGGAGTCACCCAAAGTCCCACACACCTGATCAAA
GAGAT
GGGGGAC





ACGAGAGGACAGCAAGTGACTCTGAGATGCTCTCCTATCTCTGGGCAC
GAATG
TCGGCCC





AGCAGTGTGTCCTGGTACCAACAGGCCCCGGGTCAGGGGCCCCAGTTT
TGAGT
TGTATCT





ATCTTTGAATATGCTAATGAGTTAAGGAGATCAGAAGGAAACTTCCCT
GCCT
CTGTGCC





AATCGATTCTCAGGGCGCCAGTTCCATGACTGTT

AGAAGCT







TGG





hTRB
hTRB
181
ATGGGCCCTGGGCTCCTCTGCTGGGTGCTGCTTTGTCTCCTGGGAGCA
CTGAG
GGAGCTG


V05-4
V05-4

GGCTCAGTGGAGACTGGAGTCACCCAAAGTCCCACACACCTGATCAAA
CTGAA
GACGACT





ACGAGAGGACAGCAAGTGACTCTGAGATGCTCTTCTCAGTCTGGGCAC
TGTGA
CGGCCCT





AACACTGTGTCCTGGTACCAACAGGCCCTGGGTCAGGGGCCCCAGTTT
ACGCC
GTATCTC





ATCTTTCAGTATTATAGGGAGGAAGAGAATGGCAGAGGAAACTTCCCT
TT
TGTGCCA





CCTAGATTCTCAGGTCTCCAGTTCCCTAATTATAGCT

GCAGCTT







GG





hTRB
hTRB
182
ATGGGCCCTGGGCTCCTCTGCTGGGTGCTGCTTTGTCTCCTGGGAGCA
CTGAG
GTTGCTG


V05-5
V05-4

GGCCCAGTGGACGCTGGAGTCACCCAAAGTCCCACACACCTGATCAAA
CTGAA
GGGGACT





ACGAGAGGACAGCAAGTGACTCTGAGATGCTCTCCTATCTCTGGGCAC
TGTGA
CGGCCCT





AAGAGTGTGTCCTGGTACCAACAGGTCCTGGGTCAGGGGCCCCAGTTT
ACGCC
GTATCTC





ATCTTTCAGTATTATGAGAAAGAAGAGAGAGGAAGAGGAAACTTCCCT
TT
TGTGCCA





GATCGATTCTCAGCTCGCCAGTTCCCTAACTATAGCT

GCAGCTT







GG





hTRB
hTRB
183
ATGGGCCCCGGGCTCCTCTGCTGGGCACTGCTTTGTCTCCTGGGAGCA
CTGAG
GTTGCTG


V05-6
V05-4

GGCTTAGTGGACGCTGGAGTCACCCAAAGTCCCACACACCTGATCAAA
CTGAA
GGGGACT





ACGAGAGGACAGCAAGTGACTCTGAGATGCTCTCCTAAGTCTGGGCAT
TGTGA
CGGCCCT





GACACTGTGTCCTGGTACCAACAGGCCCTGGGTCAGGGGCCCCAGTTT
ACGCC
CTATCTC





ATCTTTCAGTATTATGAGGAGGAAGAGAGACAGAGAGGCAACTTCCCT
TT
TGTGCCA





GATCGATTCTCAGGTCACCAGTTCCCTAACTATAGCT

GCAGCTT







GG





hTRB
hTRB
184
ATGGGCCCCGGGCTCCTCTGCTGGGTGCTGCTTTGTCCCCTAGGAGAA
CTGAG
GTTGCTA


V05-7
V05-4

GGCCCAGTGGACGCTGGAGTCACCCAAAGTCCCACACACCTGATCAAA
CTGAA
GGGGACT





ACGAGAGGACAGCACGTGACTCTGAGATGCTCTCCTATCTCTGGGCAC
TGTGA
CGGCCCT





ACCAGTGTGTCCTCGTACCAACAGGCCCTGGGTCAGGGGCCCCAGTTT
ACGCC
CTATCTC





ATCTTTCAGTATTATGAGAAAGAAGAGAGAGGAAGAGGAAACTTCCCT
TT
TGTGCCA





GATCAATTCTCAGGTCACCAGTTCCCTAACTATAGCT

GCAGCTT







GG





hTRB
hTRB
185
ATGGGACCCAGGCTCCTCTTCTGGGCACTGCTTTGTCTCCTCGGAACA
CTGAG
GGAGCTG


V05-8
V05-4

GGCCCAGTGGAGGCTGGAGTCACACAAAGTCCCACACACCTGATCAAA
CTGAA
GAGGACT





ACGAGAGGACAGCAAGCGACTCTGAGATGCTCTCCTATCTCTGGGCAC
TGTGA
CGGCCCT





ACCAGTGTGTACTGGTACCAACAGGCCCTGGGTCTGGGCCTCCAGTTC
ACGCC
GTATCTC





CTCCTTTGGTATGACGAGGGTGAAGAGAGAAACAGAGGAAACTTCCCT
TT
TGTGCCA





CCTAGATTTTCAGGTCGCCAGTTCCCTAATTATAGCT

GCAGCTT







GG





hTRB
hTRB
186
ATGAGCATCGGGCTCCTGTGCTGTGTGGCCTTTTCTCTCCTGTGGGCA
GAGTT
CGGCTGC


V06-1
V06-1

AGTCCAGTGAATGCTGGTGTCACTCAGACCCCAAAATTCCAGGTCCTG
CTCGC
TCCCTCC





AAGACAGGACAGAGCATGACACTGCAGTGTGCCCAGGATATGAACCAT
TCAGG
CAGACAT





AACTCCATGTACTGGTATCGACAAGACCCAGGCATGGGACTGAGGCTG
CTGGA
CTGTGTA





ATTTATTACTCAGCTTCTGAGGGTACCACTGACAAAGGAGAAGTCCCC
GT
CTTCTGT





AATGGCTACAATGTCTCCAGATTAAACAAACGG

GCCAGCA







GTGAAGC





hTRB
hTRB
187
ATGAGCCTCGGGCTCCTGTGCTGTGGGGCCTTTTCTCTCCTGTGGGCA
CTGGG
CCTCCCA


V06-2
V06-2

GGTCCAGTGAATGCTGGTGTCACTCAGACCCCAAAATTCCGGGTCCTG
GTTGG
AACATCT





AAGACAGGACAGAGCATGACACTGCTGTGTGCCCAGGATATGAACCAT
AGTCG
GTGTACT





GAATACATGTACTGGTATCGACAAGACCCAGGCATGGGGCTGAGGCTG
GCTGC
TCTGTGC





ATTCATTACTCAGTTGGTGAGGGTACAACTGCCAAAGGAGAGGTCCCT
TC
CAGCAGT





GATGGCTACAATGTCTCCAGATTAAAAAAACAGAATTTCCTG

TACTC





hTRB
hTRB
188
ATGAGCCTCGGGCTCCTGTGCTGTGGGGCCTTTTCTCTCCTGTGGGCA
CTGGG
CCTCCCA


V06-3
V06-2

GGTCCAGTGAATGCTGGTGTCACTCAGACCCCAAAATTCCGGGTCCTG
GTTGG
AACATCT





AAGACAGGACAGAGCATGACACTGCTGTGTGCCCAGGATATGAACCAT
AGTCG
GTGTACT





GAATACATGTACTGGTATCGACAAGACCCAGGCATGGGGCTGAGGCTG
GCTGC
TCTGTGC





ATTCATTACTCAGTTGGTGAGGGTACAACTGCCAAAGGAGAGGTCCCT
TC
CAGCAGT





GATGGCTACAATGTCTCCAGATTAAAAAAACAGAATTTCCTG

TACTC





hTRB
hTRB
189
ATGAGAATCAGGCTCCTGTGCTGTGTGGCCTTTTCTCTCCTGTGGGCA
CCCCT
TACCCTC


V06-4
V06-4

GGTCCAGTGATTGCTGGGATCACCCAGGCACCAACATCTCAGATCCTG
CACGT
TCAGACA





GCAGCAGGACGGCGCATGACACTGAGATGTACCCAGGATATGAGACAT
TGGCG
TCTGTGT





AATGCCATGTACTGGTATAGACAAGATCTAGGACTGGGGCTAAGGCTC
TCTGC
ACTTCTG





ATCCATTATTCAAATACTGCAGGTACCACTGGCAAAGGAGAAGTCCCT
TG
TGCCAGC





GATGGTTATAGTGTCTCCAGAGCAAACACAGATGATTTC

AGTGACT







C





hTRB
hTRB
190
ATGAGCATCGGCCTCCTGTGCTGTGCAGCCTTGTCTCTCCTGTGGGCA
TCCCG
TGCTCCC


V06-5
V06-5

GGTCCAGTGAATGCTGGTGTCACTCAGACCCCAAAATTCCAGGTCCTG
CTCAG
TCCCAGA





AAGACAGGACAGAGCATGACACTGCAGTGTGCCCAGGATATGAACCAT
GCTGC
CATCTGT





GAATACATGTCCTGGTATCGACAAGACCCAGGCATGGGGCTGAGGCTG
TGTCG
GTACTTC





ATTCATTACTCAGTTGGTGCTGGTATCACTGACCAAGGAGAAGTCCCC
GC
TGTGCCA





AATGGCTACAATGTCTCCAGATCAACCACAGAGGATT

GCAGTTA







CTC





hTRB
hTRB
191
ATGAGCATCAGCCTCCTGTGCTGTGCAGCCTTTCCTCTCCTGTGGGCA
GATTT
TGGCTGC


V06-6
V06-6

GGTCCAGTGAATGCTGGTGTCACTCAGACCCCAAAATTCCGCATCCTG
CCCGC
TCCCTCC





AAGATAGGACAGAGCATGACACTGCAGTGTACCCAGGATATGAACCAT
TCAGG
CAGACAT





AACTACATGTACTGGTATCGACAAGACCCAGGCATGGGGCTGAAGCTG
CTGGA
CTGTGTA





ATTTATTATTCAGTTGGTGCTGGTATCACTGATAAAGGAGAAGTCCCG
GT
CTTCTGT





AATGGCTACAACGTCTCCAGATCAACCACAGAG

GCCAGCA







GTTACTC





hTRB
hTRB
192
ATGAGCCTCGGGCTCCTGTGCTGTGTGGCCTTTTCTCTCCTGTGGGCA
TCCCC
GCTCCCT


V06-7
V06-7

GGTCCAATGAATGCTGGTGTCACTCAGACCCCAAAATTCCACGTCCTG
CTCAA
CTCAGAC





AAGACAGGACAGAGCATGACTCTGCTGTGTGCCCAGGATATGAACCAT
GCTGG
TTCTGTTT





GAATACATGTATCGGTATCGACAAGACCCAGGCAAGGGGCTGAGGCTG
AGTCA
ACTTCTG





ATTTACTACTCAGTTGCTGCTGCTCTCACTGACAAAGGAGAAGTTCCC
GCT
TGCCAGC





AATGGCTACAATGTCTCCAGATCAAACACAGAGGATT

AGTTACT







C





hTRB
hTRB
193
ATGAGCCTCGGGCTCCTGTGCTGTGCGGCCTTTTCTCTCCTGTGGGCA
TCCCA
TGCTCCC


V06-8
V06-8

GGTCCCGTGAATGCTGGTGTCACTCAGACCCCAAAATTCCACATCCTG
CTCAG
TCCCAGA





AAGACAGGACAGAGCATGACACTGCAGTGTGCCCAGGATATGAACCAT
GCTGG
CATCTGT





GGATACATGTCCTGGTATCGACAAGACCCAGGCATGGGGCTGAGACTG
TGTCG
GTACTTG





ATTTACTACTCAGCTGCTGCTGGTACTACTGACAAAGAAGTCCCCAAT
GC
TGTGCCA





GGCTACAATGTCTCTAGATTAAACACAGAGGATT

GCAGTTA







CTC





hTRB
hTRB
194
ATGAGCATCGGGCTCCTGTGCTGTGTGGCCTTTTCTCTCCTGTGGGAG
GATTT
CAGCTGC


V06-9
V06-6

GGTCCAGTGAATGCTGGTGTCACTCAGACCCCAAAATTCCACATCCTG
CCCGC
TCCCTCC





AAGACAGGACAGAGCATGACACTGCAGTGTGCCCAGGATATGAACCAT
TCAGG
CAGACAT





GGATACTTGTCCTGGTATCGACAAGACCCAGGCATGGGGCTGAGGCGC
CTGGA
CTGTATA





ATTCATTACTCAGTTGCTGCTGGTATCACTGACAAAGGAGAAGTCCCC
GT
CTTCTGT





GATGGCTACAATGTATCCAGATCAAACACAGAG

GCCAGCA







GTTATTC





hTRB
hTRB
195
ATGGGCACAAGGCTCCTCTGCTGGGCAGCCATATGTCTCCTGGGGGCA
CTCTG
GCAGGGG


V07-1
V07-1

GATCACACAGGTGCTGGAGTCTCCCAGTCCCTGAGACACAAGGTAGCA
AAGTT
GACTTGG





AAGAAGGGAAAGGATGTAGCTCTCAGATATGATCCAATTTCAGGTCAT
CCAGC
CTGTGTA





AATGCCCTTTATTGGTACCGACAGAGCCTGGGGCAGGGCCTGGAGTTT
GCACA
TCTCTGT





CCAATTTACTTCCAAGGCAAGGATGCAGCAGACAAATCGGGGCTTCCC
CA
GCCAGCA





CGTGATCGGTTCTCTGCACAGAGGTCTGAGGGATCCATCTCCA

GCTCAGC





hTRB
hTRB
196
ATGGGCACCAGGCTCCTCTTCTGGGTGGCCTTCTGTCTCCTGGGGGCA
GATCC
GACTCGG


V07-2
V07-2

GATCACACAGGAGCTGGAGTCTCCCAGTCCCCCAGTAACAAGGTCACA
AGCGC
CCGTGTA





GAGAAGGGAAAGGATGTAGAGCTCAGGTGTGATCCAATTTCAGGTCAT
ACACA
TCTCTGT





ACTGCCCTTTACTGGTACCGACAGAGCCTGGGGCAGGGCCTGGAGTTT
GCAGG
GCCAGCA





TTAATTTACTTCCAAGGCAACAGTGCACCAGACAAATCAGGGCTGCCC
AG
GCTTAGC





AGTGATCGCTTCTCTGCAGAGAGGACTGGGGGATCCGTCTCCACTCTG







AC







hTRB
hTRB
197
ATGGGCACCAGGCTCCTCTGCTGGGCAGCCCTGTGCCTCCTGGGGGCA
ACTCT
GCGGGGG


V07-3
V07-5

GATCACACAGGTGCTGGAGTCTCCCAGACCCCCAGTAACAAGGTCACA
GAAGA
GACTCAG





GAGAAGGGAAAATATGTAGAGCTCAGGTGTGATCCAATTTCAGGTCAT
TCCAG
CCGTGTA





ACTGCCCTTTACTGGTACCGACAAAGCCTGGGGCAGGGCCCAGAGTTT
CGCAC
TCTCTGT





CTAATTTACTTCCAAGGCACGGGTGCGGCAGATGACTCAGGGCTGCCC
AGA
GCCAGCA





AACGATCGGTTCTTTGCAGTCAGGCCTGAGGGATCCGTCTCT

GCTTAAC





hTRB
hTRB
198
ATGGGCACCAGGCTCCTCTGCTGGGTGGTCCTGGGTTTCCTAGGGACA
ACTCT
GCAGGGG


V07-4
V07-5

GATCACACAGGTGCTGGAGTCTCCCAGTCCCCAAGGTACAAAGTCGCA
GAAGA
GACTCAG





AAGAGGGGACGGGATGTAGCTCTCAGGTGTGATTCAATTTCGGGTCAT
TCCAG
CTGTGTA





GTAACCCTTTATTGGTACCGACAGACCCTGGGGCAGGGCTCAGAGGTT
CGCAC
TCTCTGT





CTGACTTACTCCCAGAGTGATGCTCAACGAGACAAATCAGGGCGGCCC
AGA
GCCAGCA





AGTGGTCGGTTCTCTGCAGAGAGGCCTGAGAGATCCGTCTCC

GCTTAGC





hTRB
hTRB
199
ATGGGCACCAGGCTCCTCTGCTGGGTGGTCCTGGGTTTCCTAGGGACA
AGATC
GCGACTC


V07-5
V07-5

GATCACACAGGTGCTGGAGTCTCCCAGTCCCCAAGGTACGAAGTCACA
CAGCG
GGCTGTG





CAGAGGGGACAGGATGTAGCTCCCAGGTGTGATCCAATTTCGGGTCAG
CACAG
TATCTCT





GTAACCCTTTATTGGTACCGACAGACCCTGGGGCAGGGCCAAGAGTTT
AGCAA
GTGCCAG





CTGACTTCCTTCCAGGATGAAACTCAACAAGATAAATCAGGGCTGCTC
GG
AAGCTTA





AGTGATCAATTCTCCACAGAGAGGTCTGAGGATCTTTCTCCACCTGA

G





hTRB
hTRB
200
ATGGGCACCAGTCTCCTATGCTGGGTGGTCCTGGGTTTCCTAGGGACA
CAGCG
CGGCCAT


V07-6
V07-6

GATCACACAGGTGCTGGAGTCTCCCAGTCTCCCAGGTACAAAGTCACA
CACAG
GTATCGC





AAGAGGGGACAGGATGTAGCTCTCAGGTGTGATCCAATTTCGGGTCAT
AGCAG
TGTGCCA





GTATCCCTTTATTGGTACCGACAGGCCCTGGGGCAGGGCCCAGAGTTT
CGGGA
GCAGCTT





CTGACTTACTTCAATTATGAAGCCCAACAAGACAAATCAGGGCTGCCC
CT
AGC





AATGATCGGTTCTCTGCAGAGAGGCCTGAGGGATCCATCTCCACTCTG







ACGATC







hTRB
hTRB
201
ATGGGTACCAGTCTCCTATGCTGGGTGGTCCTGGGTTTCCTAGGGACA
CAGCG
CAGCCAT


V07-7
V07-6

GATCACACAGGTGCTGGAGTCTCCCAGTCTCCCAGGTACAAAGTCACA
CACAG
GTATCGC





AAGAGGGGACAGGATGTAACTCTCAGGTGTGATCCAATTTCGAGTCAT
AGCAG
TGTGCCA





GCAACCCTTTATTGGTATCAACAGGCCCTGGGGCAGGGCCCAGAGTTT
CGGGA
GCAGCTT





CTGACTTACTTCAATTATGAAGCTCAACCAGACAAATCAGGGCTGCCC
CT
AGC





AGTGATCGGTTCTCTGCAGAGAGGCCTGAGGGATCCATCTCCACTCTG







ACGATT







hTRB
hTRB
202
ATGGGCACCAGGCTCCTCTGCTGGGTGGTCCTGGGTTTCCTAGGGACA
GATCC
GACTCCG


V07-8
V07-2

GATCACACAGGTGCTGGAGTCTCCCAGTCCCCTAGGTACAAAGTCGCA
AGCGC
CCGTGTA





AAGAGAGGACAGGATGTAGCTCTCAGGTGTGATCCAATTTCGGGTCAT
ACACA
TCTCTGT





GTATCCCTTTTTTGGTACCAACAGGCCCTGGGGCAGGGGCCAGAGTTT
GCAGG
GCCAGCA





CTGACTTATTTCCAGAATGAAGCTCAACTAGACAAATCGGGGCTGCCC
AG
GCTTAGC





AGTGATCGCTTCTTTGCAGAAAGGCCTGAGGGATCCGTCTCCACTCTG







AA







hTRB
hTRB
203
ATGGGCACCAGCCTCCTCTGCTGGATGGCCCTGTGTCTCCTGGGGGCA
GAGAT
GGGACTC


V07-9
V07-9

GATCACGCAGATACTGGAGTCTCCCAGAACCCCAGACACAAGATCACA
CCAGC
GGCCATG





AAGAGGGGACAGAATGTAACTTTCAGGTGTGATCCAATTTCTGAACAC
GCACA
TATCTCT





AACCGCCTTTATTGGTACCGACAGACCCTGGGGCAGGGCCCAGAGTTT
GAGCA
GTGCCAG





CTGACTTACTTCCAGAATGAAGCTCAACTAGAAAAATCAAGGCTGCTC
GG
CAGCTTA





AGTGATCGGTTCTCTGCAGAGAGGCCTAAGGGATCTTTCTCCACCTTG

GC





hTRB
hTRB
204
GAGGCAGGGATCAGCCAGATACCAAGATATCACAGACACACAGGGAAA
CCCTC
GCACCAG


V08-1
V08-1

AAGATCATCCTGAAATATGCTCAGATTAGGAACCATTATTCAGTGTTC
AACCC
CCAGACC





TGTTATCAATAAGACCAAGAATAGGGGCTGAGGCTGATCCATTATTCA
TGGAG
TCTGTAC





GGTAGTATTGGCAGCATGACCAAAGGCGGTGCCAAGGAAGGGTACAAT
TCTAC
CTCTGTG





GTCTCTGGAAACAAGCTCAAGCATTTT
TA
GCAGTGC







ATC





hTRB
hTRB
205
ATGAACCCCAAACTCTTCTGTGTGACCCTTTGTCTCCTGGGAGCAGGC
TCCCC
GCACCAG


V08-2
V08-2

TCTATTGATGCTGGGATCACCCAGATGCCAAGATATCACATTGTACAG
AATCC
CCAGACC





AAGAAAGAGATGATCCTGGAATGTGCTCAGGTTAGGAACAGTGTTCTG
TGGCA
TATCTGT





ATATCGACAGGACCCAAGACGGGGGCTGAAGCTTATCCACTATTCAGG
TCCAC
ACCACTG





CAGTGGTCACAGCAGGACCAAAGTTGATGTCACAGAGGGGTACTGTGT
CA
TGGCAGC





TTCTTGAAACAAGCTTGAGCATT

ACATC





hTRB
hTRB
206
ATGGGCTTCAGGCTCCTCTGCTGTGTGGCCTTTTGTCTCCTGGGAGCA
CTAAA
GGGGGAC


V09
V09

GGCCCAGTGGATTCTGGAGTCACACAAACCCCAAAGCACCTGATCACA
CCTGA
TCAGCTT





GCAACTGGACAGCGAGTGACGCTGAGATGCTCCCCTAGGTCTGGAGAC
GCTCT
TGTATTT





CTCTCTGTGTACTGGTACCAACAGAGCCTGGACCAGGGCCTCCAGTTC
CTGGA
CTGTGCC





CTCATTCAGTATTATAATGGAGAAGAGAGAGCAAAAGGAAACATTCTT
GCT
AGCAGCG





GAACGATTCTCCGCACAACAGTTCCCTGACTTGCACTCTGAA

TAG





hTRB
hTRB
207
ATGGGCACGAGGCTCTTCTTCTATGTGGCCCTTTGTCTGCTGTGGGCA
CCCTC
CTCCTCC


V10-1
V10-1

GGACACAGGGATGCTGAAATCACCCAGAGCCCAAGACACAAGATCACA
ACTCT
CAGACAT





GAGACAGGAAGGCAGGTGACCTTGGCGTGTCACCAGACTTGGAACCAC
GGAGT
CTGTATA





AACAATATGTTCTGGTATCGACAAGACCTGGGACATGGGCTGAGGCTG
CTGCT
TTTCTGC





ATCCATTACTCATATGGTGTTCAAGACACTAACAAAGGAGAAGTCTCA
GC
GCCAGCA





GATGGCTACAGTGTCTCTAGATCAAACACAGAGGACCTCC

GTGAGTC





hTRB
hTRB
208
ATGGGCACCAGGCTCTTCTTCTATGTGGCCCTTTGTCTGCTGTGGGCA
CCCTC
CCGCTCC


V10-2
V10-2

GGACACAGGGATGCTGGAATCACCCAGAGCCCAAGATACAAGATCACA
ACTCT
CAGACAT





GAGACAGGAAGGCAGGTGACCTTGATGTGTCACCAGACTTGGAGCCAC
GGAGT
CTGTGTA





AGCTATATGTTCTGGTATCGACAAGACCTGGGACATGGGCTGAGGCTG
CAGCT
TTTCTGC





ATCTATTACTCAGCAGCTGCTGATATTACAGATAAAGGAGAAGTCCCC
AC
GCCAGCA





GATGGCTATGTTGTCTCCAGATCCAAGACAGAGAATTTCC

GTGAGTC





hTRB
hTRB
209
ATGGGCACAAGGTTGTTCTTCTATGTGGCCCTTTGTCTCCTGTGGACA
TCCTC
CAGCTCC


V10-3
V10-3

GGACACATGGATGCTGGAATCACCCAGAGCCCAAGACACAAGGTCACA
ACTCT
CAGACAT





GAGACAGGAACACCAGTGACTCTGAGATGTCACCAGACTGAGAACCAC
GGAGT
CTGTGTA





CGCTATATGTACTGGTATCGACAAGACCCGGGGCATGGGCTGAGGCTG
CCGCT
CTTCTGT





ATCCATTACTCATATGGTGTTAAAGATACTGACAAAGGAGAAGTCTCA
AC
GCCATCA





GATGGCTATAGTGTCTCTAGATCAAAGACAGAGGATTTCC

GTGAGTC





hTRB
hTRB
210
ATGAGCACCAGGCTTCTCTGCTGGATGGCCCTCTGTCTCCTGGGGGCA
CCACT
GAGCTTG


V11-1
V11-1

GAACTCTCAGAAGCTGAAGTTGCCCAGTCCCCCAGATATAAGATTACA
CTCAA
GGGACTC





GAGAAAAGCCAGGCTGTGGCTTTTTGGTGTGATCCTATTTCTGGCCAT
GATCC
GGCCATG





GCTACCCTTTACTGGTACCGGCAGATCCTGGGACAGGGCCCGGAGCTT
AGCCT
TATCTCT





CTGGTTCAATTTCAGGATGAGAGTGTAGTAGATGATTCACAGTTGCCT
GCA
GTGCCAG





AAGGATCGATTTTCTGCAGAGAGGCTCAAAGGAGTAGACT

CAGCTTA







GC





hTRB
hTRB
211
ATGGGCACCAGGCTCCTCTGCTGGGCGGCCCTCTGTCTCCTGGGAGCA
CCACT
AAGCTTG


V11-2
V11-1

GAACTCACAGAAGCTGGAGTTGCCCAGTCTCCCAGATATAAGATTATA
CTCAA
AGGACTC





GAGAAAAGGCAGAGTGTGGCTTTTTGGTGCAATCCTATATCTGGCCAT
GATCC
GGCCGTG





GCTACCCTTTACTGGTACCAGCAGATCCTGGGACAGGGCCCAAAGCTT
AGCCT
TATCTCT





CTGATTCAGTTTCAGAATAACGGTGTAGTGGATGATTCACAGTTGCCT
GCA
GTGCCAG





AAGGATCGATTTTCTGCAGAGAGGCTCAAAGGAGTAGACT

CAGCTTA







GA





hTRB
hTRB
212
ATGGGTACCAGGCTCCTCTGCTGGGTGGCCTTCTGTCTCCTGGTGGAA
CCACT
GAGCTTG


V11-3
V11-1

GAACTCATAGAAGCTGGAGTGGTTCAGTCTCCCAGATATAAGATTATA
CTCAA
GGGACTC





GAGAAAAAACAGCCTGTGGCTTTTTGGTGCAATCCTATTTCTGGCCAC
GATCC
GGCCGTG





AATACCCTTTACTGGTACCTGCAGAACTTGGGACAGGGCCCGGAGCTT
AGCCT
TATCTCT





CTGATTCGATATGAGAATGAGGAAGCAGTAGACGATTCACAGTTGCCT
GCA
GTGCCAG





AAGGATCGATTTTCTGCAGAGAGGCTCAAAGGAGTAGACT

CAGCTTA







GA





hTRB
hTRB
213
ATGGGCTCTTGGACCCTCTGTGTGTCCCTTTATATCCTGGTAGCGACA
GAGGA
GGGACTT


V12-1
V12-1

CACACAGATGCTGGTGTTATCCAGTCACCCAGGCACAAAGTGACAGAG
TCCAG
GGGCCTA





ATGGGACAATCAGTAACTCTGAGATGCGAACCAATTTCAGGCCACAAT
CCCAT
TATTTCT





GATCTTCTCTGGTACAGACAGACCTTTGTGCAGGGACTGGAATTGCTG
GGAAC
GTGCCAG





AATTACTTCTGCAGCTGGACCCTCGTAGATGACTCAGGAGTGTCCAAG
CCA
CAGCTTT





GATTGATTCTCAGCACAGATGCCTGATGTATCATTCTCCACTCT

GC





hTRB
hTRB
214
ATGGACTCCTGGACCCTCTGTGTGTCCCTTTGTATCCTGGTAGCGACA
CTGAA
AGGGGGA


V12-2
V12-2

TGCACAGATGCTGGCATTATCCAGTCACCCAAGCATGAGGTGACAGAA
GATCC
CTCGGCC





ATGGGACAAACAGTGACTCTGAGATGTGAGCCAATTTTTGGCCACAAT
AGCCT
GTGTATG





TTCCTTTTCTGGTACAGAGATACCTTCGTGCAGGGACTGGAATTGCTG
GCAGA
TCTGTGC





AGTTACTTCCGGAGCTGATCTATTATAGATAATGCAGGTATGCCCACA
GC
AAGTCGC





GAGCGATTCTCAGCTGAGAGGCCTGATGGATCATTCTCTACT

TTAGC





hTRB
hTRB
215
ATGGACTCCTGGACCTTCTGCTGTGTGTCCCTTTGCATCCTGGTAGCG
CAGCC
CAGCTGT


V12-3
V12-3

AAGCATACAGATGCTGGAGTTATCCAGTCACCCCGCCATGAGGTGACA
CTCAG
GTACTTC





GAGATGGGACAAGAAGTGACTCTGAGATGTAAACCAATTTCAGGCCAC
AACCC
TGTGCCA





AACTCCCTTTTCTGGTACAGACAGACCATGATGCGGGGACTGGAGTTG
AGGGA
GCAGTTT





CTCATTTACTTTAACAACAACGTTCCGATAGATGATTCAGGGATGCCC
CT
AGC





GAGGATCGATTCTCAGCTAAGATGCCTAATGCATCATTCTCCACTCTG







AAGATC







hTRB
hTRB
216
ATGGGCTCCTGGACCCTCTGCTGTGTGTCCCTTTGCATCCTGGTAGCA
CAGCC
CAGCTGT


V12-4
V12-3

AAGCACACAGATGCTGGAGTTATCCAGTCACCCCGGCACGAGGTGACA
CTCAG
GTACTTC





GAGATGGGACAAGAAGTGACTCTGAGATGTAAACCAATTTCAGGACAC
AACCC
TGTGCCA





GACTACCTTTTCTGGTACAGACAGACCATGATGCGGGGACTGGAGTTG
AGGGA
GCAGTTT





CTCATTTACTTTAACAACAACGTTCCGATAGATGATTCAGGGATGCCC
CT
AGC





GAGGATCGATTCTCAGCTAAGATGCCTAATGCATCATTCTCCACTCTG







AAGATC







hTRB
hTRB
217
ATGGCCACCAGGCTCCTCTGCTGTGTGGTTCTTTGTCTCCTGGGAGAA
CAGCC
CAGCTGT


V12-5
V12-3

GAGCTTATAGATGCTAGAGTCACCCAGACACCAAGGCACAAGGTGACA
CTCAG
GTATTTT





GAGATGGGACAAGAAGTAACAATGAGATGTCAGCCAATTTTAGGCCAC
AACCC
TGTGCTA





AATACTGTTTTCTGGTACAGACAGACCATGATGCAAGGACTGGAGTTG
AGGGA
GTGGTTT





CTGGCTTACTTCCGCAACCGGGCTCCTCTAGATGATTCGGGGATGCCG
CT
GGT





AAGGATCGATTCTCAGCAGAGATGCCTGATGCAACTTTAGCCACTCTG







AAGATC







hTRB
hTRB
218
ATGCTTAGTCCTGACCTGCCTGACTCTGCCTGGAACACCAGGCTCCTC
GAGCT
CAGCCCT


V13
V13

TGCCATGTCATGCTTTGTCTCCTGGGAGCAGTTTCAGTGGCTGCTGGA
CCTTG
GTACTTC





GTCATCCAGTCCCCAAGACATCTGATCAAAGAAAAGAGGGAAACAGCC
GAGCT
TGTGCCA





ACTCTGAAATGCTATCCTATCCCTAGACACGACACTGTCTACTGGTAC
GGGGG
GCAGCTT





CAGCAGGGTCCAGGTCAGGACCCCCAGTTCCTCATTTCGTTTTATGAA
ACT
AGG





AAGATGCAGAGCGATAAAGGAAGCATCCCTGATCGATTCTCAGCTCAA







CAGTTCAGTGACTATCATTCTGAACTGAACAT







hTRB
hTRB
219
ATGGTTTCCAGGCTTCTCAGTTTAGTGTCCCTTTGTCTCCTGGGAGCA
GGTGC
GATTCTG


V14
V14

AAGCACATAGAAGCTGGAGTTACTCAGTTCCCCAGCCACAGCGTAATA
AGCCT
GAGTTTA





GAGAAGGGCCAGACTGTGACTCTGAGATGTGACCCAATTTCTGGACAT
GCAGA
TTTCTGT





GATAATCTTTATTGGTATCGACGTGTTATGGGAAAAGAAATAAAATTT
ACTGG
GCCAGCA





CTGTTACATTTTGTGAAAGAGTCTAAACAGGATGAGTCCGGTATGCCC
AG
GCCAAGA





AACAATCGATTCTTAGCTGAAAGGACTGGAGGGACGTATTCTACTCTG







AA







hTRB
hTRB
220
ATGGGTCCTGGGCTTCTCCACTGGATGGCCCTTTGTCTCCTTGGAACA
GACAT
GGGACAC


V15
V15

GGTCATGGGGATGCCATGGTCATCCAGAACCCAAGATACCAGGTTACC
CCGCT
AGCCATG





CAGTTTGGAAAGCCAGTGACCCTGAGTTGTTCTCAGACTTTGAACCAT
CACCA
TACCTGT





AACGTCATGTACTGGTACCAGCAGAAGTCAAGTCAGGCCCCAAAGCTG
GGCCT
GTGCCAC





CTGTTCCACTACTATGACAAAGATTTTAACAATGAAGCAGACACCCCT
GG
CAGCAGA





GATAACTTCCAATCCAGGAGGCCGAACACTTCTTTCTGCTTTCTT

GA





hTRB
hTRB
221
ATGAGCCCAATATTCACCTGCATCACAATCCTTTGTCTGCTGGCTGCA
TGAGA
GAGGATT


V16
V16

GGTTCTCCTGGTGAAGAAGTCGCCCAGACTCCAAAACATCTTGTCAGA
TCCAG
CAGCAGT





GGGGAAGGACAGAAAGCAAAATTATATTGTGCCCCAATAAAAGGACAC
GCTAC
GTATTTT





AGTTATGTTTTTTGGTACCAACAGGTCCTGAAAAACGAGTTCAAGTTC
GAAGC
TGTGCCA





TTGATTTCCTTCCAGAATGAAAATGTCTTTGATGAAACAGGTATGCCC
TT
GCAGCCA





AAGGAAAGATTTTCAGCTAAGTGCCTCCCAAATTCACCCTGTAGCCT

ATC





hTRB
hTRB
222
ATGGATATCTGGCTCCTCTGCTGGGTGACCCTGTGTCTCTTGGCGGCA
GAAGA
AGGGACT


V17
V17

GGACACTCGGAGCCTGGAGTCAGCCAGACCCCCAGACACAAGGTCACC
TCCAT
CAGCCGT





AACATGGGACAGGAGGTGATTCTGAGGTGCGATCCATCTTCTGGTCAC
CCCGC
GTATCTC





ATGTTTGTTCACTGGTACCGACAGAATCTGAGGCAAGAAATGAAGTTG
AGAGC
TACAGTA





CTGATTTCCTTCCAGTACCAAAACATTGCAGTTGATTCAGGGATGCCC
CG
GCGGTGG





AAGGAACGATTCACAGCTGAAAGACCTAACGGAACGTCTTCCACGCT







hTRB
hTRB
223
ATGGACACCAGAGTACTCTGCTGTGCGGTCATCTGTCTTCTGGGGGCA
GGATC
AGATTCG


V18
V18

GGTCTCTCAAATGCCGGCGTCATGCAGAACCCAAGACACCTGGTCAGG
CAGCA
GCAGCTT





AGGAGGGGACAGGAGGCAAGACTGAGATGCAGCCCAATGAAAGGACAC
GGTAG
ATTTCTG





AGTCATGTTTACTGGTATCGGCAGCTCCCAGAGGAAGGTCTGAAATTC
TGCGA
TGCCAGC





ATGGTTTATCTCCAGAAAGAAAATATCATAGATGAGTCAGGAATGCCA
GG
TCACCAC





AAGGAACGATTTTCTGCTGAATTTCCCAAAGAGGGCCCCAGCATCCTG

C





A







hTRB
hTRB
224
ATGAGCAACCAGGTGCTCTGCTGTGTGGTCCTTTGTTTCCTGGGAGCA
CACTG
AACCCGA


V19
V19

AACACCGTGGATGGTGGAATCACTCAGTCCCCAAAGTACCTGTTCAGA
TGACA
CAGCTTT





AAGGAAGGACAGAATGTGACCCTGAGTTGTGAACAGAATTTGAACCAC
TCGGC
CTATCTC





GATGCCATGTACTGGTACCGACAGGACCCAGGGCAAGGGCTGAGATTG
CCAAA
TGTGCCA





ATCTACTACTCACAGATAGTAAATGACTTTCAGAAAGGAGATATAGCT
AG
GTAGTAT





GAAGGGTACAGCGTCTCTCGGGAGAAGAAGGAATCCTTTCCTCT

AGA





hTRB
hTRB
225
ATGCTGCTGCTTCTGCTGCTTCTGGGGCCAGGTATAAGCCTCCTTCTA
CTGAC
CTGAAGA


V20
V20

CCTGGGAGCTTGGCAGGCTCCGGGCTTGGTGCTGTCGTCTCTCAACAT
AGTGA
CAGCAGC





CCGAGCTGGGTTATCTGTAAGAGTGGAACCTCTGTGAAGATCGAGTGC
CCAGT
TTCTACA





CGTTCCCTGGACTTTCAGGCCACAACTATGTTTTGGTATCGTCAGTTC
GCCCA
TCTGCAG





CCGAAACAGAGTCTCATGCTGATGGCAACTTCCAATGAGGGCTCCAAG
TC
TGCTAGA





GCCACATACGAGCAAGGCGTCGAGAAGGACAAGTTTCTCATCAACCAT

GA





GCAAGCCTGACCTTGTCCACT







hTRB
hTRB
226
ATGTGCCTCAGACTTCTCTGCTGTGTGGCCATTTCTTTCTGGGGAGCC
GAGAT
GGGACAC


V21
V21

AGGCTCCACGGACACCAAGGTCACCCAGAGACCTAGACTTCTGGTCAA
CCAGT
AGCACTG





AGCAAGTGAACAGAAAGCAAAGATGGATTGTGTTCCTATAAAAGCACA
CCACG
TATTTCT





TAGTTATGTTTACTGGTATCGTAAGAAGCTGGAAGAAGAGCTCAAGTT
GAGTC
GTGCCAG





TTTGGTTTACTTTCAGAATGAAGAACTTATTCAGAAAGCAGAAATAAT
AG
CAGCAAA





CAATGAGCGATTTTTAGCCCAATGCTCCAAAAACTCATCCTGTACCTT

GC





G







hTRB
hTRB
227
ATGGGGAGCTGGGTCCTCTGCTATGTGACCCTGTGTCTCCTGGGAGCA
GTGAA
AACAGCT


V22
V22

GGACCCTTGGATGCTGACATCTATCAGATGCCATTCCAGCTCACTGGG
GTTGG
TTGTACT





GCTGGATGGGATGTGACTCTGGAGTGGAAACGGAATTTGAGACACAAT
CCCAC
TCTGTCC





GACATGTACTGCTACTGGTACTGGCAGGACCCAAAGCAAAATCTGAGA
ACCAG
TGGGAGC





CTGATCTATTACTCAAGGGTTGAAAAGGATATTCAGAGAGGAGATCTA
CCA
GCAC





ACTGAAGGCTACGTGTCTGCCAAGAGGAGAAGGGGCTATTTCTTCTCA







GG







hTRB
hTRB
228
ATGGGCACCAGGCTCCTCGGCTGTGCAGCCCTGTGTCTCCTGGCAGCA
CCTGG
CCGGGAG


V23
V23

GACTCTTTTCATGCCAAAGTCACACAGACTCCAGGACATTTGGTCAAA
CAATC
ACACGGC





GGAAAAGGACAGAAAACAAAGATGGATTGTACCCCCGAAAAAGGACAT
CTGTC
ACTGTAT





ACTTTTGTTTATTGGTATCAACAGAATCAGAATAAAGAGTTTATGCTT
CTCAG
CTCTGCG





TTGATTTCCTTTCAGAATGAACAAGTTCTTCAAGAAACGGAGATGCAC
AA
CCAGCAG





AAGAAGCGATTCTCATCTCAATGCCCCAAGAACGCACCCTGCAG

TCAATC





hTRB
hTRB
229
ATGGCCTCCCTGCTCTTCTTCTGTGGGGCCTTTTATCTCCTGGGAACA
GAGTC
CAGCTCT


V24
V24

GGGTCCATGGATGCTGATGTTACCCAGACCCCAAGGAATAGGATCACA
TGCCA
TTACTTC





AAGACAGGAAAGAGGATTATGCTGGAATGTTCTCAGACTAAGGGTCAT
TCCCC
TGTGCCA





GATAGAATGTACTGGTATCGACAAGACCCAGGACTGGGCCTACGGTTG
AACCA
CCAGTGA





ATCTATTACTCCTTTGATGTCAAAGATATAAACAAAGGAGAGATCTCT
GA
TTTG





GATGGATACAGTGTCTCTCGACAGGCACAGGCTAAATTCTCCCTGTCC







CTA







hTRB
hTRB
230
ATGACTATCAGGCTCCTCTGCTACATGGGCTTTTATTTTCTGGGGGCA
GGAGT
TACCTCT


V25
V25

GGCCTCATGGAAGCTGACATCTACCAGACCCCAAGATACCTTGTTATA
CTGCC
CAGTACC





GGGACAGGAAAGAAGATCACTCTGGAATGTTCTCAAACCATGGGCCAT
AGGCC
TCTGTGC





GACAAAATGTACTGGTATCAACAAGATCCAGGAATGGAACTACACCTC
CTCAC
CAGCAGT





ATCCACTATTCCTATGGAGTTAATTCCACAGAGAAGGGAGATCTTTCC
A
GAATA





TCTGAGTCAACAGTCTCCAGAATAAGGACGGAGCATTTTCCCCTGACC







CT







hTRB
hTRB
231
ATGAGCAACAGGCTTCTCTGCTGTGTGATCATTTGTCTCCTAAGAGCA
GAAGT
ACATCTG


V26
V26

GGCCTCAAGGATGCTGTAGTTACACAATTCCCAAGACACAGAATCATT
CTGCC
TGTATCT





GGGACAGGAAAGGAATTCATTCTACAGTGTTCCCAGAATATGAATCAT
AGCAC
CTATGCC





GTTACAATGTACTGGTATCGACAGGACCCAGGACTTGGACTGAAGCTG
CAACC
AGCAGTT





GTCTATTATTCACCTGGCACTGGGAGCACTGAAAAAGGAGATATCTCT
AG
CATC





GAGGGGTATCATGTTTCTTGAAATACTATAGCATCTTTTCCCCTGACC







CT







hTRB
hTRB
232
ATGGGCCCCCAGCTCCTTGGCTATGTGGTCCTTTGCCTTCTAGGAGCA
GGAGT
ACCTCTC


V27
V27

GGCCCCCTGGAAGCCCAAGTGACCCAGAACCCAAGATACCTCATCACA
CGCCC
TGTACTT





GTGACTGGAAAGAAGTTAACAGTGACTTGTTCTCAGAATATGAACCAT
AGCCC
CTGTGCC





GAGTATATGTCCTGGTATCGACAAGACCCAGGGCTGGGCTTAAGGCAG
CAACC
AGCAGTT





ATCTACTATTCAATGAATGTTGAGGTGACTGATAAGGGAGATGTTCCT
AG
TATC





GAAGGGTACAAAGTCTCTCGAAAAGAGAAGAGGAATTTCCCCCTGATC







CT







hTRB
hTRB
233
ATGGGAATCAGGCTCCTGTGTCGTGTGGCCTTTTGTTTCCTGGCTGTA
GGAGT
ACATCTA


V28
V28

GGCCTCGTAGATGTGAAAGTAACCCAGAGCTCGAGATATCTAGTCAAA
CCGCC
TGTACCT





AGGACGGGAGAGAAAGTTTTTCTGGAATGTGTCCAGGATATGGACCAT
AGCAC
CTGTGCC





GAAAATATGTTCTGGTATCGACAAGACCCAGGTCTGGGGCTACGGCTG
CAACC
AGCAGTT





ATCTATTTCTCATATGATGTTAAAATGAAAGAAAAAGGAGATATTCCT
AG
TATG





GAGGGGTACAGTGTCTCTAGAGAGAAGAAGGAGCGCTTCTCCCTGATT







CT







hTRB
hTRB
234
ATGCTGAGTCTTCTGCTCCTTCTCCTGGGACTAGGCTCTGTGTTCAGT
GTGAG
CAGCAGC


V29
V29

GCTGTCATCTCTCAAAAGCCAAGCAGGGATATCTGTCAACGTGGAACC
CAACA
ATATATC





TCCCTGACGATCCAGTGTCAAGTCGATAGCCAAGTCACCATGATGTTC
TGAGC
TCTGCAG





TGGTACCGTCAGCAACCTGGACAGAGCCTGACACTGATCGCAACTGCA
CCTGA
CGTTGAA





AATCAGGGCTCTGAGGCCACATATGAGAGTGGATTTGTCATTGACAAG
AGA
GA





TTTCCCATCAGCCGCCCAAACCTAACATTCTCAACTCTGACT







hTRB
hTRB
235
ATGCTCTGCTCTCTCCTTGCCCTTCTCCTGGGCACTTTCTTTGGGGTC
GAGTT
GTGACTC


V30
V30

AGATCTCAGACTATTCATCAATGGCCAGCGACCCTGGTGCAGCCTGTG
CTAAG
TGGCTTC





GGCAGCCCGCTCTCTCTGGAGTGCACTGTGGAGGGAACATCAAACCCC
AAGCT
TATCTCT





AACCTATACTGGTACCGACAGGCTGCAGGCAGGGGCCTCCAGCTGCTC
CCTTC
GTGCCTG





TTCTACTCCGTTGGTATTGGCCAGATCAGCTCTGAGGTGCCCCAGAAT
TCA
GAGTGT





CTCTCAGCCTCCAGACCCCAGGACCGGCAGTTCATCCT








Claims
  • 1.-30. (canceled)
  • 31. A method for sequencing immune cell receptor genes, comprising providing RNA from immune cells; (a) (1) transcribing the RNA into complementary RNA (cRNA), using one or more primers wherein the cRNA is produced by transcription; (2) reverse transcribing the cRNA into single strand DNA (ssDNA), using one or more primers that comprise a 5′ adapter sequence, wherein each 5′ end of the ssDNA produced by reverse transcription contains the 5′ adapter sequence;or(b) (1) transcribing the RNA into complementary RNA (cRNA), using one or more primers that comprise a 3′ adapter sequence, wherein each 3′ end of the cRNA produced by transcription contains the 3′ adapter sequence; (2) reverse transcribing the cRNA into single strand DNA (ssDNA), using one or more primers that comprise a 5′ adapter sequence, wherein each 5′ end of the ssDNA produced by reverse transcription contains the 5′ adapter sequence and wherein each 3′ end of the ssDNA produced by reverse transcription contains the 3′ adapter sequence;amplifying the ssDNA to produce a first amplification product using a first primer pair comprising a first primer that hybridizes to the 5′ adapter sequence and a second primer that hybridizes to a constant region of immune cell receptor gene or to the 3′ adapter sequence;amplifying the first amplification product to produce a second amplification product using a second primer pair, in which i. a first primer of the second primer pair binds to the adapter sequence at the 5′ end of the first amplification product,ii. the second primer of the second primer pair binds to the constant region of immune cell receptor gene in the first amplification product, andiii. the first and second primers comprise adapter sequences for sequencing; and sequencing the second amplification product.
  • 32. The method according to claim 31, wherein the reverse transcription step results in PCR products ranging from 150-600 bp.
  • 33. The method according to claim 31, wherein the immune cell receptor genes are T-cell receptor (TCR) genes or B-cell receptor (BCR) genes.
  • 34. The method according to claim 31, wherein the one or more primers used for reverse transcription hybridize to TCR α chain V segments, optionally wherein the one or more primers used for reverse transcription comprise one or more of SEQ ID NOs: 1-50; or wherein the one or more primers used for reverse transcription hybridize to TCR β chain V segments, optionally wherein the one or more primers used for reverse transcription comprise one or more of SEQ ID NOs: 51-100; orwherein the one or more primers used for reverse transcription hybridize to TCR γ chain V segments; orwherein the one or more primers used for reverse transcription hybridize to TCR β chain V segments; orwherein the one or more primers used for reverse transcription hybridize to BCR heavy chain V segments; orwherein the one or more primers used for reverse transcription hybridize to BCR light chain V segments.
  • 35. The method according to claim 31, wherein the one or more primers used for reverse transcription contain a nucleotide barcode sequence; optionally wherein the nucleotide barcode comprises 6 to 20 nucleotides.
  • 36. The method according to claim 35, wherein the nucleotide barcode consists of 9 nucleotides; optionally wherein the nucleotide barcode consists of the sequence NNNNTNNNN, NNNNANNNN or HHHHHNNNN.
  • 37. The method according to claim 31, wherein the 5′ adapter sequence of the one or more primers used for the reverse transcription comprises a T7 adapter.
  • 38. The method according to claim 31, wherein the immune cells are T-cells and wherein the second primer of the first pair of primers hybridizes to the constant region of a TCR gene.
  • 39. The method according to claim 31, wherein the immune cells are B-cells and wherein the second primer of the first pair of primers hybridizes to the constant region of a BCR gene.
  • 40. The method according to claim 31, wherein the sequencing is next generation sequencing.
  • 41. The method according to claim 31, wherein the RNA from the immune cells is obtained by mixing immune cells with carrier cells before RNA extraction.
  • 42. The method according to claim 31, wherein the immune cells are tumor-infiltrating lymphocytes.
  • 43. The method according to claim 31, wherein the immune cells are CD4 or CD8 positive T-cells.
  • 44. The method according to claim 31, wherein the immune cells are purified from peripheral blood mononuclear cells (PBMC) before RNA extraction.
  • 45. The method according to claim 31, wherein the immune cells are part of a mixture of peripheral blood mononuclear cells (PBMC).
  • 46. The method according to claim 31, wherein the immune cells are derived from a mammal; optionally wherein the mammal is a human or a mouse.
  • 47. A kit for sequencing of T-cell receptors (TCRs), comprising: (a) at least one primer which comprises a TCR α chain V segment and a barcode sequence; or(b) at least one primer which comprises a TCR β chain V segment and a barcode sequence.
  • 48. The kit according to claim 47, (a) wherein the at least one primer which comprises a TCR α chain V segment and a barcode sequence comprises any one of SEQ ID NOs: 1-50 or SEQ ID NOs: 261-310; or(b) wherein the at least one primer which comprises a TCR β chain V segment and a barcode sequence comprises any one of SEQ ID NOs: 51-100 or SEQ ID NOs: 311-360.
  • 49. The kit according to claim 48, wherein the kit comprises at least one primer which comprises a sequence of any one of SEQ ID NOs: 1-50 or SEQ ID NOs: 261-310.
  • 50. The kit according to claim 48, wherein the kit comprises at least one primer which comprises a sequence of any one of SEQ ID NOs: 51-100 or SEQ ID NOs: 311-360.
RELATED APPLICATIONS

This application is a divisional of U.S. application Ser. No. 16/481,936, filed Jul. 30, 2019, which is a national stage filing under 35 U.S.C. 371 of International Patent Application Serial No. PCT/US2018/015819, filed Jan. 30, 2018, which claims priority under 35 U.S.C. § 119(e) to U.S. provisional patent application Ser. No. 62/452,409, filed Jan. 31, 2017, the entire contents of each of which are incorporated herein by reference.

Provisional Applications (1)
Number Date Country
62452409 Jan 2017 US
Divisions (1)
Number Date Country
Parent 16481936 Jul 2019 US
Child 17718412 US