Enhanced key structure with combined keycap for a mobile computing device

Information

  • Patent Grant
  • 7525053
  • Patent Number
    7,525,053
  • Date Filed
    Tuesday, July 3, 2007
    16 years ago
  • Date Issued
    Tuesday, April 28, 2009
    15 years ago
Abstract
A key structure assembly is provided for a mobile computing device. The key structure assembly includes a keycap having at least a first segment and a second segment. A first actuation member extends inward into the housing from the first segment of the keycap, and a second actuation member extends inward from the second segment of the key cap. A substrate including a plurality of electrical connects, including a first electrical contact aligned underneath the first actuation member, and a second electrical contact aligned underneath the second actuation member. The keycap is moveable inward to direct either the first actuation member into contact with the first electrical contact, or the second actuation member into contact with the second electrical contact. One or more sections of material are positioned above the first electrical contact and the second electrical contact. The material for the one or more sections is formed from a material that deforms with inward movement of either the first segment or the second segment of the keycap. A layer formed by a thickness of the one or more sections of material extending over the first electrical contact and the second electrical contact is non-uniform in either dimension or amount of material.
Description
TECHNICAL FIELD

The disclosed embodiments relate to an enhanced combination key for use on a mobile computing device.


BACKGROUND

Over the last several years, the growth of cell phones and messaging devices has increased the need for keypads and button/key sets that are small and tightly spaced. In particular, small form-factor keyboards, including QWERTY layouts, have become smaller and more tightly spaced. With decreasing overall size, there has been greater focus on efforts to make individual keys more usable to a user. For example, keyboard design considers how readily the user can select or click (“clickability”) individual key structures of keyboard. The clickability may be affected by various factors, such as the individual key structure size and shape, as well as the spacing between key structures and the tactile response of individual key structures.


With the growth of small form-factor devices, such as cell phones and wireless messaging devices, design parameters may provide for smaller functional keypads, particularly with respect to keypads that provide character entry. For example, keyboard layouts have been designed using button structures and individual key orientations that reduce the overall surface area of the keypad. Such designs have often focused on QWERTY keyboard layouts, which normally require at least 26-50 individual keys.


In addition to a keyboard, mobile computing devices and other electronic devices typically incorporate numerous buttons to perform specific functions. These buttons may be dedicated to launching applications, short cuts, or special tasks such as answering or dropping phone calls. The configuration, orientation and positioning of such buttons is often a matter of concern, particularly when devices are smaller.


In addition to keypad design, the shape and design of the device housing is also of interest. Along with the display, button sets and/or the keypad are typically one of the limiting factors in the size of a device housing. Consideration is often needed for the geometry and size of the area of the housing that is to accommodate the various button sets (or vice-versa). Various factors and influences may affect the desired housing shape. For example, the shape of the device housing can be made contoured to better fit the user's hand, or to create a distinctive and identifiable shape. Concerns such as the overall thickness or length of the device often play an important role in the overall shape of the housing design.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A is a side sectional view of a key structure assembly, according to an embodiment of the invention.



FIG. 1B and FIG. 1C illustrate the key structure assembly of FIG. 1 in each of two possible actuated states.



FIG. 2A-FIG. 2D illustrate assembly of a key set comprising a plurality of key caps for use with a mobile computing device, under an embodiment of the invention.



FIG. 3A is a top view of an asymmetric key cap, under an embodiment of the invention.



FIG. 3B is a side view of a key structure assembly that provided the combined key cap, under an embodiment of the invention.



FIG. 4 is an exploded view of a mobile computing device equipped according to one or more embodiments of the invention.





DETAILED DESCRIPTION

Embodiments described herein include features for enhancing the use and usability of key structures that include combined key caps. Key structures with combined key caps include toggle keys, or other keys that can be moved in more than one direction to have multiple actuated states. According to various embodiments, numerous features are described by which a key structure with a combined key cap is included in one or more locations of the housing of a mobile computing device.


As used herein, a key cap is a portion of a key structure that provides one or more contact surfaces for receiving a finger or object. In a conventional key construction, key caps are formed from a matrix of material such as polycarbonate material (e.g. through injection molding techniques). The key caps may be formed from such material into desired shapes. Multiple key caps may be formed from and reside over a single matrix. In many cases, key caps are separated from one another by a void over the matrix. When key caps are part of an assembled device (e.g. mobile computing device or other small-form factor device), individual key caps are often separated by a thin walls formed from the device housing. A typical key cap may be bulbous in shape, and extend a thickness that extends outward from the surface of a device. While such key cap design may be typical, embodiments described herein may apply to alternative key cap designs, such as flush or sunken key caps.


A key structure refers to vertical and unitarily formed elements that extend inward from the key cap. In one embodiment, the key structure includes a key cap and a plunger or actuation member that extends inward from a bottom surface of the key cap or its matrix.


A key structure assembly corresponds to a stack of elements that support and enable operation of individual key caps.


As used herein, the term “inward”, as used in the context of a computing device, means in a direction that is towards an interior of a housing of the device.


As used herein, a combined key cap corresponds to a key structure that has a keycap that can be pushed downward at two or more locations to provide separate inputs for each of the two or more locations. A toggle key is a type of combined key, characterized by the keycap being able to pivot or toggle about a reference. When the keycap of a toggle key is toggled or moved one way, one of the key segments pivots or moves inward to cause one electrical contact element of an underlying substrate to trigger an input. When the keycap is moved another way, another of the key segments pivots or moves inward to cause another electrical contact element of the underlying substrate to trigger another input.


One alternative to a key structure with a combined key cap is the use of multiple key caps (or key structures) that are independent of other key caps or structures. As will be described, in many cases the use of a combined key cap (e.g. toggle key cap) can provide many advantages over such a conventional approach. For example, conventional key caps normally need separation and support from the housing. When space is a consideration, manufacturing considerations can limit the size and shape of a keycap, particularly since housing walls that separate adjacent key caps can be difficult to form past a certain point of minimized thickness. In contrast, a toggle key or other combined key cap structure enables easier construction of housing apertures that provide such key caps, considering that the need for a dividing wall in the housing is eliminated.


However, conventional toggle keys and combined key cap structures are prone to misuse. Because toggle keys pivot, they lack the tactile feel of independent keys, and as such, are more prone to generate mis-hits. Moreover, the design of conventional toggle keys and combined key caps often have to take into account the positioning of the key caps over electrical contacts that are triggered by movement of the key caps into an actuated state. These design considerations have, in the past, limited the ability to vary the dimension or shape of combined key cap structures.


As will be described, one or more embodiments provide features for use in combined key cap structures to enhance use and usability of the corresponding key structure. In one embodiment, a shaped layer of dampening material is provided underneath opposing segments of a combined key cap structure to enhance tactile, independent feel of each segment as a separate key.


According to an embodiment, the key structure that provides a combined key structure includes a separate plunger (alternatively referred as actuation members) for each key structure. Insertion of one segment of the combined key cap directs the plunger of that segment (but not of the other segment) inward into contact with an electrical contact, thus triggering the electrical contact to register an electrical signal. In such an embodiment, silicon rubber or other material that can be characterized as elastic, deformable, or cushion-like (e.g. foam) may be provided underneath the key caps. As well be described, the thickness of the material provided may be varied over a region to enhance tactile feel.


In another embodiment, the segments of the key cap are asymmetrical with respect to one another, so that the centerline of one or more both segments are off center with respect to the position of the actuation member extending inward from that segment. In such a design, it is contemplated that a user who intends to press the one of the two key caps contacts the intended key segment off center, so that the hit is near the smaller segment. If, for example, the intended key is the larger of the two keys, there is the potential that the plunger of the smaller key makes contact with the underlying electrical contact. To avoid falsely recording such mis-hits, one or more embodiments provide that the characteristic actuation force of the electrical contact (i.e. the minimum force necessary to actuate the electrical contact) underlying one key segment is different than the characteristic actuation force of the electrical contact underlying the other key segment. In one embodiment, the characteristic actuation force of the electrical contact underlying the larger of the two key segments is less than the characteristic actuation force of the electrical contact underlying the smaller of the key segments. This makes the larger key segment easier to move into an actuated state, while maintaining the smaller segment in a non-actuated state, even when the user-contact is off-center and near the smaller key segment.


Implementing features for combined key structures in accordance with one or more embodiments described herein further enables more freedom to design key structures with combined key caps. Considerations for sizing, and shaping key segments to align center points with actuation members are minimized, if not eliminated, by altering the characteristic actuation force of the electrical contact. Moreover, combined key caps can be provided to feel and look like separate and independent key caps.


Embodiments described herein may be implemented on any type of small form-factor device that incorporates or uses buttons and/or key. An example of the type of devices that can be used with one or more embodiments include: (i) cellular devices, including telephony and messaging devices, (ii) media players (music and video), (iii) Global Positioning System (GPS) devices, and (iv) digital cameras and video recorders.


Moreover, embodiments described herein may be implemented with various kinds of keys and key structures. For example, navigation buttons (2-way, 4-way and 8-way), application buttons, and key pads may be incorporated with features of one or more embodiments. As an example of an embodiment implemented on a key board, individual keys that comprise the key board may be part of a toggle key pair. As another example, one or more embodiments may be implemented on a key or button set that includes a designated function or application key. Such keys may be actuated to cause an application to execute, or to cause a dedicated function such as a call answer or hang up to be performed. In the case of a combined key cap, one segment of the key cap may be used to perform one designated function (e.g. launch a first application), and another segment of the key cap may be used to perform another function (e.g. launch another application).


According to an embodiment, key structure assembly is provided for a mobile computing device. The key structure assembly includes a keycap having at least a first segment and a second segment. A first actuation member extends inward into the housing from the first segment of the keycap, and a second actuation member extends inward from the second segment of the key cap. A substrate including a plurality of electrical connects, including a first electrical contact aligned underneath the first actuation member, and a second electrical contact aligned underneath the second actuation member. The keycap is moveable inward to direct either the first actuation member into contact with the first electrical contact, or the second actuation member into contact with the second electrical contact. One or more sections of material are positioned above the first electrical contact and the second electrical contact. The one or more sections may be formed from a material that deforms with inward (into the housing) movement of either the first segment or the second segment of the keycap. A layer formed by a thickness of the one or more sections of material extending over the first electrical contact and the second electrical contact is non-uniform in either dimension or amount of material.


Overview



FIG. 1A is a side sectional view of a key structure assembly, according to an embodiment of the invention. A key structure assembly such as shown may be incorporated into any one of many kinds of electronic devices, including mobile computing devices such as cellular devices and audio/video media players.


In an embodiment such as shown by FIG. 1A, a key structure assembly 100 includes a key cap 110, actuation members 120 and 122, and a substrate 130. The plungers 120, 122 are aligned over electrical contacts 132, 132 of the substrate 130, so that inward movement of the key cap 110 causes one of the actuation members to move and make contact with an aligned electrical contact 132. In one implementation, the electrical contacts 132 are metal snap domes, which collapse with application of a force that exceeds a characteristic actuation force. The actuation members 120, 122 may actuate or trigger the corresponding, aligned electrical contacts 132 by inward direction of the key cap 110. Specifically, key cap 110 may include a first segment 112 and a second segment 114. A recess 115 or other delineating formation may separate the first segment 112 from the second segment 114. The recess 115 may be designed to enhance the appearance that the first segment 112 and second segment 114 are separate keys are button. In this way, recess 115 may provide a visual delineation of the individual key segments. In one implementation, the entire key cap 110 is formed from a matrix of material, such as polycarbonate, in a manufacturing process that may result in the formation of other key caps not shown. As such, the key cap 110 may reside on a matrix (not shown) that is shared by one or more other key structures.


The actuation members 120, 122 extend from segments 112, 114 respectively. The key cap 110 may be moved inward by user-contact at one of the segments 112, 114. With such contact, one of the actuation member 120, 122 extending from that segment 112, 114 of the keycap 110 is moved inward into contact with the aligned electrical contact 132, 132. In an implementation shown by FIG. 1, the actuation members 120, 122 are unitarily formed with the key cap, so as to extend inward from an underside of the corresponding segment 112, 114. Manufacturing of such actuation members may be accomplished through use of a molding tool tat can unitarily form the actuation members as extensions from the key caps. However, in another implementation, the actuation members may be provided as a separate and independent layer from the matrix and/or key cap 110.


According to an embodiment, one or more layers of material may be provided to occupy a thickness or dimension between the substrate 130 and the underside of the key caps 110. In one embodiment, one such intermediate layer 140 is formed from polysilicon rubber (or other elastic or deformable material such as foam), or alternatively other material that has a dampening affect on the movement of the actuation members 122, 124 and/or key cap 110. The layer 140 may be provided to enhance a tactile, independent feel of each segment 112, 114 of the key cap 110.


Under one embodiment, the layer 140 is provided as a non-uniform thickness in an area that spans underneath segments 112, 114 of the key cap 110. In one embodiment, the layer 140 is configured to include raised formations 142, 142 underneath each of the first segment 112 and second segment 114 of key cap 110. The raised formations 142, 144 may have a thickness T1. A gap formation 145 is provided between raised formations 142, 144 having a thickness T2, such that T1 is greater than T2. The effect of providing the layer 140 with the nonuniform thickness is that raised portions 142, 144 support respective segments 112, 114 of the key cap 110. Inward direction of the key cap 110 at one of the segments 112, 114 results in the layer biasing towards having the other of the non-contacted segments 112, 114 maintaining its position. In this way, the segment 112, 114 of the key cap 110 receives the contact to move inward, while the other of the raised ends biases and supports the other non-contacted segment in substantially the original position. The gap thickness 145 enables one raised portion 142, 144 to deform, compress and/or move inward more freely of movement/deformation of the other raised portion 142, 144. The effect is to enhance tactile, independent feel of the movement of each segment 112, 114 of the key cap 110 when that segment is contacted by, for example, a user's finger.


As an alternative to having the gap thickness 145 having reduced thickness, one or more embodiments contemplate the gap thickness 145 as having no thickness (e.g. T2=0). Such an implementation would have similar affect of having raised portions 142, 144 of the layer 140 support respective segments 112, 114.


While an embodiment such as shown by FIG. 1A provides for the layer 140 to be formed separately from the key cap and/or key cap matrix, alternative variations are possible. In one embodiment, a separate layer includes the actuation members 122, 124, interconnected by a matrix that is formed from the dampening material. Still further, while an embodiment such as shown by FIG. 1 illustrates actuation members 122, 124 piercing or extending through the layer 140, other embodiments may provide for the layer 140 to physically separate the actuation members from the corresponding electrical contacts 132, 134.



FIG. 1A provides an illustration of a combined key cap, in that key cap 110 of the key structure 100 is moveable in multiple directions (inward about segment 112 or inward about right segment 114) to have multiple actuated states. FIG. 1B and FIG. 1C illustrate the key structure assembly 100 in each of two possible actuated states. In FIG. 1B, a finger 160 presses down on first segment 112 of key cap 110, causing (i) actuation member 122 to move inward and (ii) the raised portion 142 of the layer 140 to deform and move inward underneath the first segment 112. Under an embodiment, while the entire key cap 110 may tilt slightly, the second segment 114 may be substantially unmoved. As mentioned, the raised portion 144 underneath the second segment 114 of the key cap 110 supports the second segment 114 from translating inward or pivoting about an end proximate to the first segment 112.


In FIG. 1C, finger 160 presses down on second segment 114 of key cap 110. This causes the actuation member 124 to move inward. Also, the raised portion 144 of the layer 140 may deform and move inward underneath the first segment 112 of the key cap 110. At the same time, the raised portion 142 underneath the first segment 112 of the key cap 110 supports the first segment 112 from translating inward or pivoting about an end proximate to the second segment 114.


As described below, another feature to distinguish one segment of a combined key cap over another is to provide that each segment has a different characteristic or minimum insertion force necessary to actuate a corresponding underlying electrical contact. The variation in the minimum insertion force needed may be provided through any one of various mechanisms. In one implementation, the actuation member of one segment of a key cap may be less rigid than the actuation member of the other segment of the key cap, so that more force is required to cause the less rigid member to collapse a snap dome contact. Resistance in the form of biasing material may also be provided between the segments of the key cap and the underlying substrate of the electrical contacts. For example, the raised portions 142,144 of the dampening material may be thicker or provide more resistance under one of the segments, meaning that segment would need more force to cause the actuation member to move inward sufficiently to trigger the electrical contact. Still further, as described with an embodiment of FIG. 3B, for example, the characteristic actuation force of the individual electrical contacts may vary from one segment of the key cap to another. For example, the electrical contacts may correspond to snap-dome contacts, and the minimum force needed to cause one dome to collapse may differ from the minimum amount needed to cause the other dome to collapse.



FIG. 2A-FIG. 2D illustrate assembly of a key set comprising a plurality of key caps for use with a mobile computing device, under an embodiment of the invention. A key set 200 such as described with FIG. 2A-FIG. 2D may correspond to a plurality of key structures and/or key caps. In one embodiment, the key set 200 provide application and navigation keys for a mobile computing device, such as described elsewhere in this application.



FIG. 2A illustrates a set of key caps for the key set 200. The set of key caps include a plurality of dedicated function key caps 202, 204 and a navigation key cap 205. The dedicated function key caps 202, 204 may correspond to a combined or toggle key cap, having a first segment 207 and second segment 209. The navigation key cap 205 may be multi-directional when implemented (e.g. 4-way or 8-way). In this respect, the navigation key cap 205 provides another form of a combined key cap. In one implementation, dedicated function key caps 202, 204 and the navigation key caps 205 are formed as independent structured. Various surface structures may be integrated to form each the key caps individually. For example, metallic caps may be used to provide one or more of the applications key caps 202, 204 and/or navigation key cap 205.



FIG. 2B illustrates a light-shielding matrix 220 to shield light from reaching or escaping from between the various key structures. The shield may be formed from opaque material, or alternatively light diffusing material to diffuse light from underneath the key caps.


In FIG. 2C, a layer 230 of dampening material is provided to support the key caps over the substrate of electrical contacts (not shown). In one implementation, the material may be formed from silicon rubber. Both the support matrix 220 and the dampening layer 230 are shaped as pieces that conform to the overall shape of the key set. The dampening layer 230 may be provided as a one-piece component, although other embodiments contemplate a multi-piece component. The dampening layer 230 includes gap formations 232, separating raised portions 234. As mentioned with FIG. 1A-FIG. 1C, the raised formations 234 are sized and positioned to support individual key caps 202, 204, 205. The gap formations 232 separate adjacent raised portions 234. The layer 240 may also include apertures 242, for which actuation members (not shown in FIG. 2A-FIG. 2D) may extend through. In one implementation, the actuation members are unitarily formed on undersides of individual key caps 202, 204, and 205. The combined key caps (the designated function key caps 504 and the navigation key cap 205) may include multiple actuation members (i.e. one actuation member for each actuated state).



FIG. 2D shows the key set 250 in assembled form, under an embodiment of the invention. The support structure 220 may provide rigid lateral support to retain the individually formed key caps in position. The dampening layer 240 provides dampening and vertical support, facilitating combined key caps (e.g. dedicated function key caps 504) to feel as independent and separately formed keys.


Asymmetric Combined Key Caps


One or more embodiments described herein contemplate use of combined key caps that have segments that vary in dimension. An example of such an asymmetric key cap is shown by designated function key cap 204FIG. 2A. One issue that could be presented by asymmetric key caps under a conventional construction is that the larger of the two segments can dominate the other segments. Specifically, the tactile feel of the combined key cap may favor the larger key. In contrast, embodiments such as described with FIG. 1A-FIG. 1C provide dampening materials with non-uniform thickness to enhance independent feel of segments that comprise the combined key cap.



FIG. 3A is a top view of an asymmetric key cap, under an embodiment of the invention. In FIG. 3A, a key cap 310 includes a large segment 312 and a small segment 314. While the large and small segments 312, 314 are shown to be similar in shape, embodiments described herein contemplate use of non-rectangular or asymmetrical shaped segments. Thus, the particular shape of the segments 312,314 may be one of design choice.


In an embodiment, the positioning of one or both actuation members (not shown in FIG. 3A and FIG. 3B) is offset from corresponding centerlines 315, 317 of each key segment 312, 314. In one embodiment, the centerline 315 of the large segment 312 is offset from the positioning of the actuation member 325 underneath the key cap 312. Such an offset may occur because the actuation members need to be aligned with corresponding electrical contacts on an underlying substrate. However, the key cap 310 may be independently designed, without regard to the positioning of the electrical contacts. Thus, the substrate with the electrical contacts may not be designed to accommodate the particular shape of the key cap 310. Moreover, the shape, size and overall design of the key cap 310 may be made to be independent of the positioning of the electrical contacts of the substrate.


In one embodiment, an underlying key assembly of the key cap 310 is configured to accommodate offset key strikes from falsely registering the wrong segment of the key cap, under an embodiment of the invention. In particular, a finger or other object may strike the large segment 312 of the key cap 310 at or near the centerline 315, as users typically focus on the center of the perceived key (i.e. the center of the key cap). Absent features described herein, if the strike is sufficiently close to the small segment 314, as opposed to the position of the actuation member 325 under the large segment 312, the small segment may insert and actuate its aligned electrical contact. This may occur even if the large segment 314 was struck, because the centerline 315 and actuation member position are offset.



FIG. 3B is a side view of a key structure assembly that provided the combined key cap 310, under an embodiment of the invention. In FIG. 3B, a key structure assembly 350 is configured to reduce or eliminate the possibility that an offset key strikes that can falsely registers the wrong segment of the key cap 310. In FIG. 3B, actuation member 372 extends inward from the large segment 312, and actuation member 374 extends inward from the small segment 314. The position of the actuation member 372 under the large segment 312 is shown by reference position 325, which is offset from the centerline 315 of that segment. The position of the actuation member 374 under the small segment 314 may coincide with the centerline 317 of that key cap. As described with one or more other embodiments, the actuation members 372, 374 align to strike corresponding contact elements 382, 384 of an underlying substrate 380. The contact elements 382, 384 may be in the form of snap dome contacts. As described with other embodiments, an optional layer 360 of dampening material may be provided to enhance independent tactile feel of each segment of the key cap 310.


As described with FIG. 3A, users tend to focus on the centerline of each segment 312, 314 of the key cap 310. An accidental key strike that is distal to the actuation member position 325 and offset from the centerline 315 may cause both actuation members 372, 374 to move inward. In order to avoid the wrong actuation member (i.e. actuation member 374 of the small segment) from falsely actuating its aligned electrical element, one or more embodiments provide that the electrical elements 382, 384 have different characteristic actuation forces. In the case of snap dome connectors, this corresponds to the amount of force necessary to cause the snap dome to collapse and trigger. In the situation described by FIG. 3A and FIG. 3B, it is more likely for an intentional strike on large segment 312 to cause inward movement of small segment 314. Accordingly, the minimum or characteristic actuation force of electrical element 382 may be designed to be less than minimum or characteristic actuation force of electrical element. For example, a force of 120-130 grams/force may be needed to actuate the electrical element 382 under the large segment 312, while a more substantial force of 180-190 grams/force is needed to actuate the electrical element 384 under the smaller segment. Such a configuration as shown with FIG. 3B reduces the likelihood that an offset strike of the large segment proximate to the smaller segment 314 would result in the smaller segment being falsely actuated.


As described with other embodiments, variation to the characteristic force of the electrical contacts 382, 384 is just one way for varying the minimum insertion force needed at a given segment of the key pad. As an alternative, other forms of resistance, such as firmer material in the 340 may be used.



FIG. 4 is an exploded view of a mobile computing device equipped according to one or more embodiments of the invention. In FIG. 4, a mobile computing device 400 includes a housing 410, one or more substrates 420 for supporting key structures, and a printed circuit board 430. The flex printed circuit board 430 and the substrates 420 are contained within the housing 410. The printed circuit board 430 may include components such as processor 432 and memory for the device 400. Other components for forming the computing device that are not shown include, for example, a back face and a display assembly.


Device 400 may include one or more key sets. In an embodiment shown, the key sets of the device 400 include a keyboard 440 and a key set 450 of navigation and dedicated function keys. Either or both the keyboard 440 and/or the key set 450 may incorporate features described with one or more embodiments of the invention. Accordingly, keys in either the keyboard 440 or the key set 450 may include combined key caps (e.g. toggle keys), Furthermore, a layer of dampening material, such as silicon rubber may be provided between the keyboard 440 and the substrate 420, and/or the key set 450 and the substrate 420. As described with FIG. 1A-FIG. 1C, for example, the thickness of such a dampening layer may be non-uniform, with gap recesses formed between keys, and more particularly between segments of structures with combined key caps, such as toggle keys.


In addition, one or more embodiments provide that the characteristic actuation forces of some or all of the electrical contacts 442 on the substrate 420 may vary. For example, similar to an embodiment of FIG. 3A and FIG. 3B, the electrical contacts of one combined key cap may have different characteristic actuation forces to provide tactile and operative distinction between the segments of the combined keys.


The substrate 420 may be equipped with additional features, including lighting design. In one embodiment, the lighting design includes discrete and bright light sources, such as white Light Emitting Diodes. Other implementations may utilize electroluminescent pads on the substrate 420. Other combinations and variations are also contemplated.


In one embodiment, substrate 420 is a stock item, meaning the positioning of the electrical contacts on the substrate 420 are set and not subject to design alterations. In such an environment, embodiments described herein still enable key structure design for combined keys, as issues of asymmetry and offset centerline/actuation member positioning can be accommodated with features described herein.


Although illustrative embodiments of the invention have been described in detail herein with reference to the accompanying drawings, it is to be understood that the invention is not limited to those precise embodiments. As such, many modifications and variations will be apparent to practitioners skilled in this art. Accordingly, it is intended that the scope of the invention be defined by the following claims and their equivalents. Furthermore, it is contemplated that a particular feature described either individually or as part of an embodiment can be combined with other individually described features, or parts of other embodiments, even if the other features and embodiments make no mention of the particular feature. This, the absence of describing combinations should not preclude the inventor from claiming rights to such combinations.

Claims
  • 1. A mobile computing device comprising: a housing containing a plurality of internal components, including one or more processors;a keyboard including a plurality of keys that are provided on a surface of the housing, wherein at least some of the keys of the keyboard are provided by one or more key structure assemblies that individually include: a toggle keycap having at least a first segment and a second segment;a first actuation member extending inward into the housing and aligned under the first segment of the toggle keycap;a second actuation member extending inward into the housing and aligned under the second segment of the toggle keycap;a substrate including a plurality of electrical contacts, including a first electrical contact aligned underneath the first actuation member, and a second electrical contact aligned underneath the second actuation member;wherein the toggle keycap is pivotable inward to direct either the first actuation member into contact with the first electrical contact, or the second actuation member into contact with the second electrical contact; andwherein a minimum force needed to pivot the first actuation member to actuate the first electrical contact is different than a minimum force needed to pivot the second actuation member to actuate the second electrical contact.
  • 2. The mobile computing device of claim 1, wherein a characteristic actuation force of the first electrical contact is different than a characteristic actuation force of the second electrical contact.
  • 3. The mobile computing device of claim 1, wherein a mid-point of the first segment aligns substantially with the first actuation member, and wherein a mid-point of the second segment is offset from the second actuation member.
  • 4. The mobile computing device of claim 3, wherein a distance between the mid-point of the first segment and the mid-point of the second segment is less than a distance between the first actuation member and the second actuation member.
  • 5. The mobile computing device of claim 3, wherein one of the first segment or second segment is larger in size than the other of the first segment or second segment.
  • 6. The mobile computing device of claim 5, wherein the first segment is larger than the second segment, and wherein the minimum force needed to pivot the first actuation member to actuate the first electrical contact is less than the minimum force needed to pivot the second actuation member to actuate the second electrical contact.
  • 7. The mobile computing device of claim 1, further comprising one or more sections of material that are positioned above the first electrical contact and the second electrical contact, wherein the material for the one or more sections is formed from a material that deforms with inward pivoting of either the first segment or the second segment of the keycap.
  • 8. The mobile computing device of claim 7, wherein a firmness of the material positioned above the first electrical contact is different than a firmness of the material positioned above the second electrical contact.
  • 9. The mobile computing device of claim 7, wherein a layer formed by a thickness of the one or more sections of material extending over the first electrical contact and the second electrical contact is non-uniform in dimension or amount of material.
  • 10. The mobile computing device of claim 9, wherein the layer formed by the thickness of the one or more sections includes a gap in the thickness of the material underneath a portion of the keycap between the first segment and the second segment.
  • 11. The mobile computing device of claim 10, wherein the gap in thickness of the material is formed by the thickness of the material being reduced underneath the portion of the keycap between the first segment and the second segment.
  • 12. The mobile computing device of claim 10, wherein the gap in thickness of the material is formed by an absence of the material provided underneath the portion of the keycap between the first segment and the second segment.
  • 13. The mobile computing device of claim 1, wherein at least some of the keys are arranged in a QWERTY type layout.
  • 14. A mobile computing device comprising: a housing containing a plurality of internal components, including one or more processors;a keyboard including a plurality of keys that are provided on a surface of the housing, wherein at least some of the keys of the keyboard are provided by one or more key structure assemblies that individually include: a toggle keycap having at least a first segment and a second segment;a first actuation member extending inward into the housing and aligned under the first segment of the toggle keycap;a second actuation member extending inward into the housing and aligned under the second segment of the toggle keycap;a substrate including a plurality of electrical contacts, including a first electrical contact aligned underneath the first actuation member, and a second electrical contact aligned underneath the second actuation member;wherein the toggle keycap is pivotable inward, about a reference, to direct either the first actuation member into contact with the first electrical contact, or the second actuation member into contact with the second electrical contact; andwherein a mid-point of the first segment aligns substantially with the first actuation member, and wherein a mid-point of the second segment is offset from the second actuation member.
  • 15. The mobile computing device of claim 14, wherein a distance between the mid-point of the first segment and the mid-point of the second segment is less than a distance between the first actuation member and the second actuation member.
  • 16. The mobile computing device of claim 14, wherein one of the first segment or second segment is larger in size than the other of the first segment or second segment.
  • 17. The mobile computing device of claim 16, wherein the first segment is larger than the second segment, and wherein the minimum force needed to pivot the first actuation member to actuate the first electrical contact is less than the minimum force needed to pivot the second actuation member to actuate the second electrical contact.
  • 18. The mobile computing device of claim 14, wherein a minimum force needed to pivot the first actuation member to actuate the first electrical contact is different than a minimum force needed to pivot the second actuation member to actuate the second electrical contact.
  • 19. The mobile computing device of claim 18, wherein a characteristic actuation force of the first electrical contact is different than a characteristic actuation force of the second electrical contact.
  • 20. The mobile computing device of claim 18, further comprising one or more sections of material that are positioned above the first electrical contact and the second electrical contact, wherein the material for the one or more sections is formed from a material that deforms with inward pivoting of either the first segment or the second segment of the keycap, and wherein a firmness of the material positioned above the first electrical contact is different than a firmness of the material positioned above the second electrical contact.
  • 21. The mobile computing device of claim 14, wherein at least some of the plurality of keys are arranged in a QWERTY type layout.
  • 22. A mobile computing device comprising: a housing containing a plurality of internal components, including one or more processors;a keyboard including a plurality of keys that are provided on a surface of the housing, wherein at least some of the keys of the keyboard are provided by one or more key structure assemblies that individually include: a toggle keycap having at least a first segment and a second segment;a first actuation member extending inward into the housing and aligned under the first segment of the toggle keycap;a second actuation member extending inward into the housing and aligned under the second segment of the toggle keycap, the second actuation member having a characteristic actuation force that is different than a characteristic actuation force of the first actuation member;a substrate including a plurality of electrical contacts, including a first electrical contact aligned underneath the first actuation member, and a second electrical contact aligned underneath the second actuation member;wherein the toggle keycap is pivotable inward, about a reference, to direct either the first actuation member into contact with the first electrical contact, or the second actuation member into contact with the second electrical contact.
RELATED APPLICATION INFORMATION

This application is a Continuation of U.S. patent application Ser. No. 11/530,380 filed Sep. 8, 2006, now U.S. Pat. No. 7,259,339 entitled ENHANCED KEY STRUCTURE WITH COMBINED KEYCAP FOR A MOBILE COMPUTING DEVICE, which is hereby incorporated by reference in its entirety.

US Referenced Citations (213)
Number Name Date Kind
3744034 Paul Jul 1973 A
3937952 Ripley et al. Feb 1976 A
4022993 Shattuck May 1977 A
4359612 Rooney Nov 1982 A
4359613 Rooney Nov 1982 A
4401864 Ichikawa Aug 1983 A
4559705 Hodge et al. Dec 1985 A
4564751 Alley et al. Jan 1986 A
RE32419 Rooney May 1987 E
4679951 King et al. Jul 1987 A
4762227 Paterson Aug 1988 A
4802210 Spencer et al. Jan 1989 A
4839474 Hayes-Pankhurst et al. Jun 1989 A
4847798 Kurashima Jul 1989 A
4860372 Kuzunuki et al. Aug 1989 A
4916441 Gombrich Apr 1990 A
4972496 Sklarew Nov 1990 A
D312628 Yokoi et al. Dec 1990 S
D313401 Tanabe Jan 1991 S
D313413 Langton Jan 1991 S
5002184 Lloyd Mar 1991 A
5040296 Yerger Aug 1991 A
5049862 Dao et al. Sep 1991 A
5067573 Uchida Nov 1991 A
5128829 Loew Jul 1992 A
5165415 Wallace et al. Nov 1992 A
5180891 Trumbo Jan 1993 A
5181029 Kim Jan 1993 A
5205017 Wang Apr 1993 A
5231381 Duwaer Jul 1993 A
5253142 Weng Oct 1993 A
5266949 Rossi Nov 1993 A
5274371 Yang et al. Dec 1993 A
5280283 Raasch et al. Jan 1994 A
5283862 Lund Feb 1994 A
5305394 Tanaka Apr 1994 A
D355165 Sakaguchi et al. Feb 1995 S
5389745 Sakamoto Feb 1995 A
5401917 Yoshida et al. Mar 1995 A
5401927 Lundell et al. Mar 1995 A
5410141 Koenck et al. Apr 1995 A
5426449 Danziger Jun 1995 A
D359920 Sakamoto Jul 1995 S
5430248 Levy Jul 1995 A
5434929 Beernink et al. Jul 1995 A
D361562 Beltz Aug 1995 S
5444192 Shetye et al. Aug 1995 A
5448433 Morehouse et al. Sep 1995 A
5452371 Bozinovic et al. Sep 1995 A
5457454 Sugano Oct 1995 A
D366463 Ive et al. Jan 1996 S
5489924 Shima et al. Feb 1996 A
D368079 Ive et al. Mar 1996 S
5500643 Grant Mar 1996 A
5506749 Matsuda Apr 1996 A
5510584 Norris Apr 1996 A
5515045 Tak et al. May 1996 A
5528743 Tou et al. Jun 1996 A
5530234 Loh et al. Jun 1996 A
5534892 Tagawa Jul 1996 A
5548477 Kumar et al. Aug 1996 A
5550715 Hawkins Aug 1996 A
5555157 Moller et al. Sep 1996 A
5563631 Masunaga Oct 1996 A
5564850 Nagaoka Oct 1996 A
5576502 Fukushima et al. Nov 1996 A
5606712 Hidaka Feb 1997 A
5611031 Hertzfeld et al. Mar 1997 A
5615284 Rhyne et al. Mar 1997 A
5621817 Bozinovic et al. Apr 1997 A
5622789 Young Apr 1997 A
5630148 Norris May 1997 A
5635682 Cherdak et al. Jun 1997 A
5638257 Kumar et al. Jun 1997 A
5642110 Raasch et al. Jun 1997 A
D381021 Williams et al. Jul 1997 S
5646649 Iwata et al. Jul 1997 A
5657459 Yanagisawa et al. Aug 1997 A
5661641 Shinto Aug 1997 A
D383756 Henderson et al. Sep 1997 S
5682182 Tsubodaka Oct 1997 A
5698822 Haneda et al. Dec 1997 A
D390509 Antzinas et al. Feb 1998 S
5717565 Raasch Feb 1998 A
D392968 Johansson Mar 1998 S
5737183 Kobayashi et al. Apr 1998 A
D394449 Shimizu May 1998 S
5757681 Suzuki et al. May 1998 A
5760347 Notarianni et al. Jun 1998 A
5786061 Banfield Jul 1998 A
D398307 Collins Sep 1998 S
5810461 Ive et al. Sep 1998 A
5818437 Grover et al. Oct 1998 A
5821510 Cohen et al. Oct 1998 A
5825353 Will Oct 1998 A
5831555 Yu et al. Nov 1998 A
5831613 Johnson et al. Nov 1998 A
5841901 Arai et al. Nov 1998 A
D402572 Han Dec 1998 S
5848298 Steere, Jr. et al. Dec 1998 A
5889512 Moller et al. Mar 1999 A
D408021 Haitami et al. Apr 1999 S
5892503 Kim Apr 1999 A
D411179 Toyosato Jun 1999 S
D411181 Tamaki et al. Jun 1999 S
5913629 Hazzard Jun 1999 A
5914708 LaGrange et al. Jun 1999 A
5915228 Kunihiro et al. Jun 1999 A
5941648 Robinson et al. Aug 1999 A
5942177 Banfield Aug 1999 A
5949408 Kang et al. Sep 1999 A
5953205 Kambayashi et al. Sep 1999 A
D416001 Tal et al. Nov 1999 S
D416256 Griffin et al. Nov 1999 S
5975711 Parker et al. Nov 1999 A
5995026 Sellers Nov 1999 A
D417657 Matsumoto Dec 1999 S
6014009 Wierzbicki et al. Jan 2000 A
D420351 Waldner Feb 2000 S
D420987 Miyahara et al. Feb 2000 S
6023779 Fullan et al. Feb 2000 A
6034685 Kuriyama et al. Mar 2000 A
D422271 Kawashima Apr 2000 S
D423468 Jenkins Apr 2000 S
6046730 Bowen et al. Apr 2000 A
6049796 Siitonen et al. Apr 2000 A
6050735 Hazzard Apr 2000 A
6052070 Kivela et al. Apr 2000 A
6052279 Friend et al. Apr 2000 A
D424533 Kandalepas May 2000 S
D426236 Kim et al. Jun 2000 S
6091956 Hollenberg Jul 2000 A
6094197 Buxton et al. Jul 2000 A
6100875 Goodman et al. Aug 2000 A
6102594 Strom Aug 2000 A
6102721 Seto et al. Aug 2000 A
6103979 Motoyama et al. Aug 2000 A
6107997 Ure Aug 2000 A
6108200 Fullerton Aug 2000 A
6115248 Canova et al. Sep 2000 A
D432511 Eckholm Oct 2000 S
D433017 Martinez Oct 2000 S
6129430 Wu Oct 2000 A
6148261 Obradovich et al. Nov 2000 A
6151012 Bullister Nov 2000 A
6151206 Kato et al. Nov 2000 A
6157323 Tso et al. Dec 2000 A
D436591 Abston et al. Jan 2001 S
D436963 Kim et al. Jan 2001 S
6170024 Wakeland et al. Jan 2001 B1
6178087 Cho et al. Jan 2001 B1
6181284 Madsen et al. Jan 2001 B1
6195589 Ketcham Feb 2001 B1
D440542 Hawkins et al. Apr 2001 S
6212412 Rogers et al. Apr 2001 B1
D441733 Do et al. May 2001 S
6239968 Kim et al. May 2001 B1
6243789 Hasbun et al. Jun 2001 B1
6249276 Ohno Jun 2001 B1
6266240 Urban et al. Jul 2001 B1
6278442 Griffin et al. Aug 2001 B1
6283777 Canova et al. Sep 2001 B1
D451079 Ali Nov 2001 S
6346973 Shibamoto et al. Feb 2002 B1
D454349 Makidera et al. Mar 2002 S
D454849 Eckholm Mar 2002 S
6355891 Ikunami Mar 2002 B1
6356442 Lunsford Mar 2002 B1
6374277 Vong et al. Apr 2002 B2
D456794 Laverick et al. May 2002 S
6396482 Griffin et al. May 2002 B1
D458239 Shim et al. Jun 2002 S
D459327 Ali Jun 2002 S
D460068 Lanaro et al. Jul 2002 S
6423918 King et al. Jul 2002 B1
6452588 Griffin et al. Sep 2002 B2
6459968 Kochie Oct 2002 B1
6489950 Griffin et al. Dec 2002 B1
6507336 Lunsford Jan 2003 B1
6535199 Canova, Jr. et al. Mar 2003 B1
D472551 Griffin Apr 2003 S
D473226 Griffin Apr 2003 S
D476985 Griffin Jul 2003 S
D478585 Griffin Aug 2003 S
6609805 Nelson Aug 2003 B1
6611254 Griffin et al. Aug 2003 B1
6611255 Griffin et al. Aug 2003 B2
6626551 Funamoto et al. Sep 2003 B2
6641315 King et al. Nov 2003 B2
6677931 Chi et al. Jan 2004 B2
6679613 Mabuchi Jan 2004 B2
6717083 Chen et al. Apr 2004 B2
D490076 Griffin May 2004 S
6786661 King et al. Sep 2004 B2
6788285 Paolucci et al. Sep 2004 B2
6808325 King et al. Oct 2004 B2
D497907 Griffin Nov 2004 S
6867763 Griffin et al. Mar 2005 B2
6873317 Griffin et al. Mar 2005 B1
6891529 Ladouceur et al. May 2005 B2
6918707 King et al. Jul 2005 B2
6919879 Griffin et al. Jul 2005 B2
6921221 King et al. Jul 2005 B2
6923583 King et al. Aug 2005 B2
6940490 Kim et al. Sep 2005 B1
6981791 Higashiyama Jan 2006 B2
20020021562 Tholin et al. Feb 2002 A1
20020196618 Douzono et al. Dec 2002 A1
20030112620 Prindle Jun 2003 A1
20040165924 Griffin Aug 2004 A1
20050248537 Kim et al. Nov 2005 A1
20060118400 Chyc et al. Jun 2006 A1
20070200828 Skillman Aug 2007 A1
Foreign Referenced Citations (23)
Number Date Country
3235752 Mar 1984 DE
10203400 Jun 2003 DE
0760291 Mar 1997 EP
1143327 Oct 2001 EP
1172989 Jan 2002 EP
1197835 Jan 2002 EP
1265261 Dec 2002 EP
1507189 Feb 2005 EP
1523021 Apr 2005 EP
1569070 Aug 2005 EP
1569077 Aug 2005 EP
1575069 Sep 2005 EP
1585153 Oct 2005 EP
1619705 Jan 2006 EP
1619860 Jan 2006 EP
1696448 Aug 2006 EP
2001126588 May 2001 JP
WO9801876 Jan 1998 WO
WO9937025 Jul 1999 WO
WO0030381 May 2000 WO
WO03007582 Jan 2003 WO
WO2004001578 Dec 2003 WO
WO2004059955 Jul 2004 WO
Related Publications (1)
Number Date Country
20080060928 A1 Mar 2008 US
Continuations (1)
Number Date Country
Parent 11530380 Sep 2006 US
Child 11773326 US