Claims
- 1. In a flux source of the type having a substantially annular enclosed cavity wherein a magnetic field is sustained, the improvement comprising:
- said flux source being fabricated of magnetically rigid material in a plurality of magnetized segments to sustain said magnetic field with uniform density and enhanced magnitude in some desired direction relative to the annular axis of said cavity, and said magnetized segments being configured and arranged to construct inner and outer cylinders, as well as closures extending between the ends of both said cylinders.
- 2. The flux source of claim 1 wherein said magnetized segments are further configured and arranged to be interfitting within said flux source.
- 3. The flux source of 1 wherein said cavity is bound by some said magnetized segment and not bound by other said magnetized segments.
- 4. The flux source of claim 3 wherein each said closure is interfaced with said cylinders along a boundary between at least one said non-bounding magnetized segment in said closure and at least one said non-bounding magnetized segment in said cylinders.
- 5. The flux source of claim 4 wherein the magnetic orientations of said cavity bounding magnetized segments are aligned parallel to said magnetic field with those in said cylinders being oppositely directed relative to those in said closures, each said non-bounding magnetized segment being interfaced with at least one other non-bounding magnetized segment along one of said boundaries and having its magnetic orientation aligned perpendicularly relative to the magnetic orientation of those other said non-bounding magnetized segments, and the directions of the magnetic orientations for said magnetized segments in said cylinders and said closures are determined in accordance with the desired direction of said magnetic field relative to the annular axis of said cavity.
- 6. The flux source of claim 5 wherein the magnetic orientations of said cavity bounding magnetized segments in said cylinders are directed at an angle of 180 degrees relative to said magnetic field, the magnetic orientations of said cavity bounding magnetized segments in said closures are directed at an angle of 0 degrees relative to said magnetic field, the magnetic orientation of each said non-bounding magnetized segment in said cylinders is directed generally opposite to said magnetic field and perpendicular to said boundary along which that segment interfaces with said non-bounding magnetized segments in said closures, and the magnetic orientation of each said non-bounding magnetized segment in said closures is directed generally the same as said magnetic field and parallel to said boundary along which that segment interfaces with said non-bounding magnetized segments in said cylinders.
- 7. The flux source of claim 4 wherein the magnetic orientations of said cavity bounding magnetized segments in said cylinders are directed at an angle of 0 degrees relative to said magnetic field, the magnetic orientations of said cavity bounding magnetized segments in said closures are directed at an angle of 180 degrees relative to said magnetic field, the magnetic orientation of each said non-bounding magnetized segment in said cylinders is directed generally the same as said magnetic field and parallel to said boundary along which that segment interfaces with said non-bounding magnetized segments in said closures, and the magnetic orientation of each said non-bounding magnetized segment in said closures is directed generally opposite to said magnetic field and perpendicular to said boundary along which that segment interfaces with said non-bounding magnetized segment in said cylinders.
- 8. In a flux source of the type having a substantially annular enclosed cavity wherein a magnetic field is sustained, the improvement comprising:
- said flux source being fabricated of magnetically rigid material in a plurality of magnetized segments to sustain said magnetic field with uniform density and enhanced magnitude in some desired direction relative to the annular axis of said cavity, said magnetized segments being configured and arranged to construct inner and outer cylinders, as well as closures extending between the ends of both said cylinders and the configuration of each said magnetized segment being substantially circular.
- 9. The flux source of claim 8 wherein the substantially circular configuration of each said magnetized segment is substantially annular.
- 10. The flux source of claim 8 wherein the cross-sectional configuration of said magnetized segments is substantially triangular.
- 11. In a flux source of the type having a substantially annular enclosed cavity wherein a magnetic field is sustained, the improvement comprising:
- said flux source being fabricated of magnetically rigid material to sustain said magnetic field with uniform density and enhanced magnitude in some desired direction relative to the annular axis of said cavity, and said magnetically rigid material is disposed in a plurality of nested layers.
- 12. The flux source of claim 11 wherein a plurality of magnetized segments fabricated from said magnetically rigid material are configured and arranged in each said layer to construct coaxial inner and outer cylinders, as well as closures extending between the ends of both said cylinders.
- 13. The flux source of claim 12 wherein the configuration of each said magnetized segment is substantially circular.
- 14. The flux source of claim 13 wherein the substantially circular configuration of each said magnetized segment is substantially annular.
- 15. The flux source of claim 12 wherein said magnetized segments are further configured and arranged to be interfitting within each said layer.
- 16. The flux source of claim 15 wherein the cross-sectional configuration of said magnetized segments is substantially triangular.
- 17. The flux source of claim 12 wherein each said layer includes a near plane and a far plane relative to said cavity, with said near plane being bound by some said magnetized segments and said far plane being bound by other said magnetized segments.
- 18. The flux source of claim 17 wherein each said layer is structured with its said closures being individually interfaced with its said cylinders along a boundary between at least one said far plane magnetized segment in said closure and at least one said far plane magnetized segment in said cylinder.
- 19. The flux source of claim 18 wherein each said layer has the magnetic orientations of its said inner plane magnetized segments aligned parallel to said magnetic field with those in its said cylinders being oppositely directed relative to those in its said closures, while each of its said far plane magnetized segments is interfaced with at least one other far plane magnetized segment along one of said boundaries with the magnetic orientations of such interfacing segments being aligned perpendicularly relative to each other, and the directions of the magnetic orientations for said magnetized segments in its said cylinders and said closures are determined in accordance with the desired direction of said magnetic field relative to the annular axis of said cavity.
- 20. The flux source of claim 19 wherein each said layer has the magnetic orientations of said near plane magnetized segments in its said cylinders directed at an angle of 180 degrees relative to said magnetic field, the magnetic orientations of said near plane magnetized segments in its said closures directed at an angle of 0 degrees relative to said magnetic field, the magnetic orientation of each said far plane magnetized segment in its said cylinders directed generally opposite to said magnetic field and perpendicular to said boundary along which that segment interfaces with said far plane magnetized segments in said closures, and the magnetic orientation of each said far plane magnetized segment in its said closures directed generally the same as said magnetic field and parallel to said boundary along which that segment interfaces with said far plane magnetized segments in said cylinders.
- 21. The flux source of claim 19 wherein each said layer has the magnetic orientations of said near plane magnetized segments in its said cylinders directed at an angle of 0 degrees relative to said magnetic field, the magnetic orientations of said near plane magnetized segments in its said closures directed at an angle of 180 degrees relative to said magnetic field, the magnetic orientation of each said far plane magnetized segment in its said cylinders directed generally the same as said magnetic field and parallel to said boundary along which that segment interfaces with said far plane magnetized segments in said closures, and the magnetic orientation of each said far plane magnetized segment in its said closures directed generally opposite to said magnetic field and perpendicular to said boundary along which that segment interfaces with said far plane magnetized segments in said cylinders.
Government Interests
The invention described herein may be manufactured, used, and licensed by or for the United States Government for governmental purposes without the payment to us of any royalties thereon.
US Referenced Citations (3)
Foreign Referenced Citations (1)
Number |
Date |
Country |
750193 |
Jun 1956 |
GBX |