This invention relates to cooling features for an electric motor. More particularly, this invention relates to features for air cooling an electric motor.
An electric motor includes a stator and a rotor. Heat generated by operation is controlled by directing air flow over and through a plurality of cooling fins disposed on an exterior surface of the stator. The cooling fins typically comprise a plurality of aligned fins about the exterior surface of the stator. Air flows through and over the fins to dissipate heat. Increases in loads and desired power generation increases heat produced by the motor and therefore require improved methods and structures for removing heat.
An example electric motor assembly includes a stator heat exchanger that includes a plurality of fins that define cooling flow paths through which cooling air flows. Each of the disclosed example cooling flow paths includes an offset plate that disrupts cooling air flow.
The example heat exchanger includes a plurality of fins that are disposed on the outer surface of the stator assembly. The stator includes a plurality of plates stacked against each other. Each of the plates includes a plurality of fins disposed about an outer perimeter that are matched with fins from adjacent plates to define cooling air passages. At least one plate includes a fin that is offset relative to the other fins to extend into the flow path and disrupt cooling airflow. The example stator provides improved heat removal capacity by including features that disrupt airflow through each of the cooling air passages.
These and other features of the present invention can be best understood from the following specification and drawings, the following of which is a brief description.
Referring to
Referring to
Referring to
Referring to
Air flow over a surface or between enclosed walls includes a boundary layer region that is next to the solid surface and a core region that is adjacent to the boundary layer region. The boundary layer is where heat is transferred from a solid surface to a cooling fluid flow. The transferred heat to the cooling fluid flow is then moved away by the faster moving air in the core. Thinner boundary layers provide greater heat transfer from the solid to the cooling fluid flow relative to thicker boundary layers. Accordingly, cooling air flow removes heat best when associated with a thinner boundary layer along the surface of the flow passage formed by the fins 26.
The example cooling air passages 36 include at least one plate 48 incremented in position relative to the other of the plates 28 to disrupt air flowing through the air passage 36, thereby disrupting the boundary layer 38 such that the effect of the boundary layer 38 on the effective heat transfer capacity is reduced.
The air flow passages 36 extend longitudinally along the outer perimeter of the core 16 and substantially parallel to the axis of rotation 20. The axially extending air flow passages 36 provide an efficient flow path from the inlet 30 to the outlet 34. Further, the axial orientation of the flow passages 36 simplifies assembly.
In the example illustrated in
The fins 42 that are offset arcuately relative to the corresponding adjacent fins 26 are part of the plate 48 that includes common features and configurations with adjacent features, except that the fins 42 are incremented arcuately relative to the fins 26 of adjacent plates. The plates 48 include the same inner surface features that correspond to the windings 22 and rotor 18 so as to not disrupt symmetrical features that are part of the magnetic circuit. The plate 48 is similar to the adjacent plates with the fins 42 being incremented arcuately the distance 25 to extend into the flow passage 36.
Along with the interruption provided by the fin 42 extending into the air passage 36, a back side of each of the fins 42 defines a recess 44. Each fin 42 that extends into the air flow passage 36 also defines the recess 44 in the adjacent passage. Accordingly, each of the fins 42 that extend into the air flow passage 36 is disposed directly across a recess 44. The recess 44 also disrupts formation of boundary layers in progressive increments along the axial length of each of the flow paths 36.
Referring to
The many small boundaries increase the opportunities for the transfer of heat into the cooling air flow 32. Each of the groups 52,54 are disposed in an offset manner relative to the immediately adjacent groups and are separated by the plate 56 that does not include any fins. The entire first group of fins 52 is disposed at a common angular position relative to the entire second group of fins 54. The consistent position of each of the first groups of fins 52 relative to the second groups of fins 54 provides stepped passages that disrupt air flow and limit boundary layer formation.
In the example flow passage 50, the first group 52, disposed at a first angular position comprises four plates 28 that include fins 58. The second group 54, disposed at a second angular position different than the first angular position includes four plates 28 with fins 58. The difference in angular position between the first group 52 and the second group 54 is determined to provide the desired disruption of air flow 32. Although each of the example first and second groups 52, 54 include four plates, other numbers of plates are within the contemplation of this invention. Further, although the example includes a single finless plate 56 between each of the groups, other numbers of finless plates between each of the groups 52, 54 could also be utilized.
Accordingly, the example electric motor assembly includes a stator with heat exchanger that includes fins sequentially and angularly offset to produce and increase heat transfer capability by limiting the creation of boundary layers through each of the cooling air passages.
Although a preferred embodiment of this invention has been disclosed, a worker of ordinary skill in this art would recognize that certain modifications would come within the scope of this invention. For that reason, the following claims should be studied to determine the true scope and content of this invention.
Number | Name | Date | Kind |
---|---|---|---|
890577 | Name not available | Jun 1908 | A |
996927 | Name not available | Jul 1911 | A |
1487221 | Ehrmann | Mar 1924 | A |
2818515 | Anton Dolenc | Dec 1957 | A |
3436579 | Elgar Everett C et al. | Apr 1969 | A |
3684906 | Lenz | Aug 1972 | A |
4301386 | Schweder et al. | Nov 1981 | A |
4341966 | Pangburn | Jul 1982 | A |
4365178 | Lenz | Dec 1982 | A |
5173629 | Peters | Dec 1992 | A |
5331238 | Johnsen | Jul 1994 | A |
5491371 | Ooi | Feb 1996 | A |
5859483 | Kliman et al. | Jan 1999 | A |
5982071 | Ehrick | Nov 1999 | A |
6114784 | Nakano | Sep 2000 | A |
6204580 | Kazmierczak | Mar 2001 | B1 |
6727609 | Johnsen | Apr 2004 | B2 |
6982506 | Johnsen | Jan 2006 | B1 |
7119461 | Dooley | Oct 2006 | B2 |
7122923 | Lafontaine et al. | Oct 2006 | B2 |
RE39416 | Shin et al. | Dec 2006 | E |
7633194 | Dawsey et al. | Dec 2009 | B2 |
Number | Date | Country |
---|---|---|
437176 | Jul 1974 | SU |
2005022718 | Mar 2005 | WO |
WO 2005022718 | Mar 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20090121564 A1 | May 2009 | US |