Enhanced object detection for autonomous vehicles based on field view

Information

  • Patent Grant
  • 11908171
  • Patent Number
    11,908,171
  • Date Filed
    Thursday, December 22, 2022
    2 years ago
  • Date Issued
    Tuesday, February 20, 2024
    10 months ago
Abstract
Systems and methods for enhanced object detection for autonomous vehicles based on field of view. An example method includes obtaining an image from an image sensor of one or more image sensors positioned about a vehicle. A field of view for the image is determined, with the field of view being associated with a vanishing line. A crop portion corresponding to the field of view is generated from the image, with a remaining portion of the image being downsampled. Information associated with detected objects depicted in the image is outputted based on a convolutional neural network, with detecting objects being based on performing a forward pass through the convolutional neural network of the crop portion and the remaining portion.
Description
INCORPORATION BY REFERENCE TO ANY PRIORITY APPLICATIONS

Any and all applications for which a foreign or domestic priority claim is identified in the Application Data Sheet as filed with the present application are hereby incorporated by reference under 37 CFR 1.57.


BACKGROUND
Field of the Disclosure

This application relates generally to the machine vision field, and more specifically to enhanced objection detection from a vehicle.


Description of the Related Art

In the field of machine vision for autonomous vehicles, object detection is a computationally intensive task. Typically, the resolution of an image is sent as input to a detector, and the detector consistently detects pixel size. Most detectors have a minimum number of pixels that are required as input for a detector to detect objects within the image. For example, many detectors require at least forty pixels in the image in order to detect objects. The computational complexity required for a detector scales directly with the number of pixels being fed into the detector. If twice the number of pixels are fed into the detector as input, then the detector will typically take twice as long to produce an output.


Out of necessity and lack of computational resources within autonomous vehicles, in order to address this high computational requirement, object detectors nearly always perform their processing tasks using downsampled images as input. Downsampling of high resolution images is a technique that lowers the high computational requirement for image processing by creating an access image that is a miniaturized duplicate of the optical resolution master image, typically outputted from an automotive camera. While computational requirements are lowered, downsampling these images reduces the range, or distance, of detections due to the fewer number of pixels that are acted upon by the detector. For width and height, for example, the detector may process the image four times as fast, but objects such as cars will be smaller in the downsized image and will need to be twice as close in the camera for them to be the same pixel size, depending on the camera and its field of view (hereinafter “FOV”).


As a result, accurate detectors are slower than is typically desirable due to the high computational requirements, while faster detectors using downsampled images are not as accurate as typically desired.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic representation of the object detection system.



FIG. 2 is a flowchart representation of the object detection method.



FIG. 3 is an illustration of an example of cropped objects in bounding boxes, according to an embodiment of the object detection method.



FIG. 4 is a schematic representation of an example of the method.



FIG. 5A illustrates a block diagram of an example technique for object detection.



FIG. 5B illustrates a block diagram of another example technique for object detection.





DETAILED DESCRIPTION

Although some embodiments described throughout generally relate to systems and methods for object detection, it will be appreciated by those skilled in the art that the systems and methods described can be implemented and/or adapted for a variety of purposes within the machine vision field, including but not limited to: semantic segmentation, depth estimation, three-dimensional bounding box detection, object re-identification, pose estimation, action classification, simulation environment generation, and sensor fusion.


Embodiments relate to techniques for increasing accuracy of object detection within particular fields of view. As described herein, one or more image sensors (e.g., cameras) may be positioned about a vehicle. For example, there may be 4, 6, 9, and so on, image sensors positioned at different locations on the vehicle. Certain image sensors, such as forward facing image sensors, may thus obtain images of a real-world location towards which the vehicle is heading. It may be appreciated that a portion of these images may tend to depict pedestrians, vehicles, obstacles, and so on that are important in applications such as autonomous vehicle navigation. For example, a portion along a road on which the vehicle is driving may tend to depict other vehicles. As another example, a portion associated with a horizon line or vanishing line may tend to depict other vehicles on a road. As will be described, this portion may be determined by a system. As an example, a particular field of view corresponding to this portion may be determined.


Upon determination, the particular field of view may be cropped from an input image. A remaining portion of the input image may then be downsampled. The relatively high resolution cropped portion of the input image and the lower resolution downsampled portion of the input image may then be analyzed by an object detector (e.g., a convolutional neural network). In this way, the object detector may expend greater computational resources analyzing the higher resolution particular field of view at the vanishing line which is more likely to have important features. Additionally, with the greater detail in the cropped portion the system may more reliably detect objects, avoid false positives, and so on.


Overview


In one embodiment, a method for object detection includes: receiving one or more pieces of data relating to a high resolution image; determining a field of view (FOV) based on the pieces of data; cropping the FOV to generate a high resolution crop of the image; downsampling the rest of the image to the size of the cropped region to generate a low resolution image; sending a batch of the high resolution crop and the low resolution image to a detector; and processing the images via the detector to generate an output of detected objects.


The method may function to provide a deep learning based image processing and object detection system that determines a field of view and combines a cropped field of view image with a downsampled image to perform object detection on an image that is both low compute and long range. By processing a batched image of a cropped field of view and a non-cropped, downsampled image, the object detector can detect and identify faraway objects in the narrow field of vision of the cropped image, and also identify closer objects in the wider field of vision of the downsampled, non-cropped image. The detected objects and/or parameters thereof (e.g., distance, dimensions, pose, classification, etc.) can be used in: navigation, mapping, or otherwise used. The method can be applied to: every frame, every N frames (e.g., where N can be predetermined or dynamically determined), a randomly selected set of frames, or any other suitable set of frames. The method is preferably performed in real time (e.g., as the vehicle is driving), but can alternatively be performed asynchronously with vehicle operation or at any suitable time.


In one variation, the method uses inertial measurement unit (“IMU”) data or gyroscope data to determine a horizon line, then uses map data and compass data to determine a vehicle heading and future road direction. Once an image is received, it is cropped according to where the road or vehicle is expected to be at some predefined distance (e.g., 100 m, 200 m, etc.) or a predefined time (e.g., 30 seconds, 1 minute, etc.). The cropped image and a downsampled version of the original image are batched and run through the detector, and the boxes of both are combined by scaling them. Object detection is performed on the resulting image.


Additionally, in some embodiments a horizon line, or other field of view, may be assigned as a center third portion of an image. For example, along a vertical direction a center third of the image may be cropped. In this example, the cropped image may thus extend from a left to a right of the image along a horizontal axis and represent a central third of the image. Optionally, the cropped image may extend a threshold distance along the horizontal axis. For example, a portion of the image which depicts a road may be identified. In this example, the cropped image may thus extend along a horizontal axis for portions of the image depicting the road or a portion thereof (e.g., one or more lanes along a direction a travel). While a third is described above, it may be appreciated that the percentage of the image cropped may be adjusted. For example, a central fourth of the image may be taken. As another example, a machine learning model may be used to identify a particular strip along a horizontal axis of the image which corresponds to a horizon or other vanishing line. In some embodiments, map data may be used. For example, using map data it may be determined that a road on which a vehicle is driving may turn. Thus, as the road turns the cropped images may represent the turning road. As an example, an offset left or right, or up or down for an incline or decline, may be used based on the map data.


All or portions of the method can be performed at a predetermined frequency, performed upon occurrence of an execution event (e.g., upon an autonomous vehicle engaging in driving), or performed at any suitable time. All or portions of the method are preferably performed on-board the vehicle (e.g., at an on-board processing system, such as an embedded processor, microprocessor, CPU, GPU, etc.), but can additionally or alternatively be performed in a remote computing system, at a user device, or at any other suitable computing system. For example, low latency processes (e.g., object detection) can be performed on-board the vehicle, while high latency processes (e.g., model training) can be performed at the remote computing system. However, the system processes can be otherwise determined.


System


As shown in FIG. 1, the image processing system 100 can include: an image processing network 102 an image database 108, a heuristics database 110, and a client device or devices 112. In some embodiments, the image processing network 102 includes one or more deep neural networks, more preferably convolutional neural networks (CNNs) but can alternatively include recurrent neural networks (RNN) or any other suitable method, that process images in conjunction with an image processor. In some embodiments, processing images includes one or more of image classification, object detection, and object tracking.


In some embodiments, the image processing network 102 includes an object detector. In some embodiments, the image processing network 102 receives images in the form of a series of video or image frames from a camera. In some embodiments, the camera is an automotive camera placed within an autonomous vehicle for machine vision purposes (e.g., an exterior or interior of the vehicle), such as detecting objects on the road, or other real-world area, during the car's operation and predicting locations of objects in future frames based on the locations of the objects in current and past frames.


Image database 108 stores the frames from the camera as they are outputted from the camera and sent to the image processing system 100. Image database 108 may be located on-board the vehicle, but can alternatively or additionally be located or replicated in a remote computing system. Image database 108 can be a circular buffer, a relational database, a table, or have any other suitable data structure.


Heuristics database 110 stores one or more heuristics for determining a field of view for a given image. However, the system can additionally or alternatively include databases or modules that leverage other methodologies for priority field-of view determination (e.g., classifiers such as Baysean classifiers, support vector machines, etc.).


In one variation, the priority field of view (priority FOV) is the portion of the image representing the road section located a predetermined distance away from the vehicle or image sampling device (e.g., one or more cameras), wherein the heuristics database stores a set of heuristics (e.g., rules, algorithms) to identify the desired field of view. The FOV may also be associated with a horizon line or vanishing line. The horizon line or vanishing line may be depicted in the image, or may be inferred in the image. For example, the horizon or vanishing line may identified based on projecting in the image a road or surface on which the vehicle is being driven. The priority FOV preferably has a predetermined dimension (e.g., 640×360 px; 360×360 px; 640×640 px; etc.), but can alternatively or additionally have dimensions that are dynamically adjusted based on vehicle operation parameters (e.g., location, kinematics, ambient light conditions, weather, etc.). The priority FOV is preferably a section of the sampled image, wherein the section location on the image is selected using the priority FOV image region selection methods stored by the heuristics database, but can be otherwise located.


Examples of priority FOV image region selection methods that can be used include: storing a database of predetermined image regions for each of a combination of horizon locations, vehicle headings, and future road directions and selecting the priority FOV image region from the database; storing a predetermined image region for each of a plurality of geographic vehicle locations, wherein the priority FOV image region is selected based on the vehicle location; storing an equation for determining or adjusting the priority FOV image region (e.g., within the larger image) based on vehicle heading and/or kinematics; or other image selection methods. However, the priority FOV image region can be selected or identified using image-only based rules, attention-based networks, or a combination of the above, or otherwise selected.


In this example, the heuristics database can optionally include: horizon detection method(s); vehicle heading determination methods; future road direction determination methods; and/or any other suitable methods.


Examples of horizon detection methods that can be used include: edge detectors (e.g., applied to a predetermined section of the image), a database mapping the vehicle location to an expected horizon location within the image (e.g., wherein the database can be specific to the extrinsic and/or intrinsic camera parameters), or any other suitable horizon detector.


Examples of vehicle heading determination methods that can be used include: on-board compass interpretation, odometry, or any other suitable set of determination methods.


Examples of future road direction determination methods that can be used include: identifying the pose of a road section located a predetermined distance away from the vehicle based on a predetermined map (e.g., from OpenStreetMaps, a crowdsourced map, etc.), vehicle navigation instructions or historic vehicle routes, the vehicle location (e.g., determined using GPS, dead reckoning, etc.), and/or vehicle kinematic data (e.g., IMU data, vehicle velocity, vehicle acceleration, etc.); determining the road direction using a neural network (e.g., a DNN, etc.); or otherwise determining the future road direction.


In one embodiment, the client device(s) 112 are devices that send information to the image processing network 102, receive information from the image processing network 102, or both. A client device may include, for example, one or more components of an autonomous vehicle, or a computer device associated with one or more users, organizations, or other entities.


Method



FIG. 2 is a flowchart representation of one embodiment of an object detection method.


At step 202, system 100 receives a high resolution image and one or more pieces of data relating to the image (e.g., as illustrated in FIG. 4). In some embodiments, the high resolution image is a frame or image generated as the output of a camera. In some embodiments, the camera is an automotive camera on an autonomous vehicle configured to be used for object detection tasks, such as detecting the presence of cars or other objects on the road during the autonomous vehicle's operation. The camera can be a CCD sensor, CMOS sensor, or any other suitable image sensor. The camera is preferably a monocular camera, but can alternatively be a stereoscopic system or be any other suitable camera. The high resolution image of any size can be any sufficiently high resolution for an image given technology available (e.g., a resolution greater than a threshold). For example, a 1920×1080 image may be sufficiently large enough and/or have sufficiently high resolution for many applications relating to autonomous vehicles currently.


In some embodiments, the one or more pieces of data relating to the image can include data from an inertial measurement unit (IMU) or gyroscope data relating to the image, map data and compass data relating to the image, location data, camera type, image resolution, image dimensions, number of pixels in the image, and other conceivable data and/or metadata relating to the image. In some embodiments, the pieces of data relate to the field of view of the image. In some embodiments, the pieces of data are generated by multiple sensors. For example, an autonomous vehicle can have multiple sensors generated a wide variety of data on the vehicle's location, orientation, projected direction, and more.


At step 204, system 100 determines a priority field of view (FOV) of the image based on the received pieces of data (example shown in FIG. 4). In some embodiments, system 100 determines the field of view based on a set of heuristics for determining field of view (e.g., selected from the heuristics database; determined using one or more priority FOV image region selection methods; etc.). The heuristics can constitute a set of rules, an executable method, algorithm, or other process that is followed by system 100 to determine the field of view. In varying embodiments, system 100 determines the field of view using probabilities, offline or online map data, sensor data such as IMU or gyroscope data, image-based rules, attention networks, or some combination thereof. In one embodiment, system 100 determines the horizon line in the image using one or more pieces of data relating to the image, then uses the horizon line location providing vertical orientation of the field of view to determine where objects, such as cars will be. System 100 can use car velocity, map data about lanes on roads, and/or other information to determine vertical orientation of the field of view. In some embodiments, radar and/or LIDAR data can be used for determining the field of view. In some embodiments, historical data on previous determinations of field of view can be used to determine the field of view of the current image. For example, if previous determinations showed areas more likely to have cars, then the presence of cars may be given weight in determining the field of view.


In some embodiments, system 100 determines a priority field of vision to predict where faraway objects, such as faraway cars on a road, are going to be located in the field of vision of the image (example shown in FIG. 4). In some embodiments, system 100 can determine the priority field of vision in a naive fashion, by taking the center of the image and classifying it as a priority field of vision. In other embodiments, system 100 determines the priority field of vision using other sensors in the autonomous vehicle, or using map data that provides information that the autonomous vehicle is driving on a curved road at a certain angle. In one example, the y-position of the priority FOV can be determined as a pixel distance, measured from the horizon or from the image bottom, corresponding to a road segment located a predetermined geographical distance away from the vehicle (e.g., wherein the pixel distance can be determined based on vehicle velocity). In this example, the x-position of the priority FOV can be determined based on the vehicle heading and the future road direction (e.g., wherein the x-position of the priority FOV encompasses the image representation of the road segment or other physical volume that the vehicle will travel through). However, the priority FOV position in the image can be otherwise determined.


At step 206, system 100 crops the priority FOV to generate a high resolution crop of the image (example shown in FIG. 4). As used herein, a “crop” is a predetermined segment or portion of the image. In some embodiments, system 100 crops, or removes outer areas from, the FOV to focus on the field of view in a higher resolution. In some embodiments, both horizontal field of view and vertical field of view are captured in the crop of the image. The high resolution crop preferably has the same resolution as the raw image, but can alternatively have a different resolution (e.g., be downsampled). The high resolution crop preferably has a high resolution, such as 300 DPI or above, but can alternatively or additionally be a crop saved in a non-lossy file format or a low compression format, or have any suitable set of characteristics.


At step 208, system 100 downsamples the rest of the image that was not part of the cropped portion. In some embodiments, the downsampled image may be set according to the size of the cropped region to generate a low resolution image (example shown in FIG. 4). In various embodiments, a wide variety of downsampling techniques and methods can be used to downsample the image, including but not limited to methods involving decimation, bilinear interpolation, Fourier transform, and neural networks. The two images generated at this point are a high resolution crop of the original image with a low field of vision, and a low resolution version of the original image with a large, downsampled field of vision. In some embodiments, the system 100 may assign a cropped portion of the image as depicting the field of view. Remaining portions of the image may be downsampled, such that one image may result. This one image may then be analyzed by a detector, as described below.


At step 210, system 100 sends a batched output of the high resolution crop and the low resolution image to a detector (e.g., running a deep learning neural network) (example shown in FIG. 4). For example, a forward pass through layers of the detector may be performed. In some embodiments, the detector is capable of one or more image processing tasks, such as object detection, object classification, and object location prediction. For example, the detector may classify objects, determine bounding boxes surrounding classified objects, determine location information for the classified objects (e.g., pixels forming the objects), and so on. In some embodiments, the two input images are of the same dimensions. In some embodiments, system 100 concatenates the two images along a fourth axis. This can be performed by multiplying large matrices representing the images. In some embodiments, the resulting output of the batching is a four-dimensional tensor. In some embodiments, the resulting output of the batching is fed into one or more neural networks, such as a deep convolutional neural network associated with the image processor, and used to train a data model for an image processing task or tasks, such as object detection and object location prediction.


At step 212, system 100 combines the batched output via the detector to generate a combined output of detected objects for each input image (e.g., each of the high resolution crop and the low resolution image) (example shown in FIG. 4). The output may be usable by the system 100, or another system of one or more processors, to drive, and/or otherwise control operation of, an autonomous vehicle. Any suitable set of object detectors can be used. The images (e.g., for the same frame) can be fed into the same detector, two parallel instances of the same detector, different detectors (e.g., one for the high-resolution crop, one for the low-resolution full image), or otherwise processed. The output may include a set of labeled boxes (windows) surrounding objects detected in each image (e.g., optionally labeled with the object class, object pose, or other object parameter), but can additionally or alternatively output: a 3D point cloud of objects, a set of pixels labeled with the object class (or otherwise associated with the object parameters), or output any other suitable output. In some embodiments, a neural network, such as a deep convolutional neural network associated with the image processor or another neural network, processes the batched inputs by using them as data for an image processing task or tasks, such as object detection and object location prediction. Neural networks are commonly designed to process batched inputs in order to generate batched outputs. In some embodiments, this processing is optimized such that the processing is performed faster than performing the detection twice on the two separate images. In some embodiments, only one set of weights for the neural network needs to be loaded into the neural network, resulting in increased speed and efficiency. In some embodiments, one or more techniques related to parallelism are employed in processing the batched input.


The method can optionally include: combining the outputs associated with each image (example shown in FIG. 4), which functions to generate a composite output with high object detection fidelity in the region corresponding to the priority FOV.


In one variation, combining the outputs includes combining the detected objects from the high-resolution image and the low-resolution image into one representation (e.g., virtual representation, 3D point cloud, matrix, image, etc.). In one embodiment of this variation, combining the detected objects includes: scaling the detected objects; and removing duplicate detections. However, the detected objects can be otherwise combined.


Scaling the detected object can include: identifying a detected object; determining a predetermined size (e.g., box size) associated with the detected object's classification; and scaling the detected object to the predetermined size. Alternatively, scaling the detected object can include: determining the physical or image location of the detected object (e.g., the y-location of the detected object); determining a predetermined size associated with the detected object location, and scaling the detected object to the predetermined size. Alternatively, scaling the detected objects can include: scaling the high-resolution crop's detected objects down (or the low-resolution image's detected objects up) based on the scaling factor between the high-resolution crop (priority FOV) and the full image. However, the detected objects can be otherwise scaled.


This embodiment can optionally include aligning the output from the high-resolution crop with the output of the low-resolution image during output combination. The outputs are preferably aligned based on the location of the high-resolution crop (priority FOV) relative to the full image, but can be otherwise aligned. The outputs are preferably aligned after scaling and before duplicate removal, but can alternatively be aligned before scaling, after duplicate removal, or at any suitable time.


Duplicate detections may be removed or merged from the combined, scaled output, but can alternatively or additionally be removed from the individual outputs (e.g., wherein the duplicate-removed outputs are subsequently combined), or be removed at any other suitable stage. Removing duplicate detections can include: applying non-maximum suppression (NMS) to the combined outputs (e.g., based on clustering, such as greedy clustering with a fixed distance threshold, mean-shift clustering, agglomerative clustering, affinity propagation clustering, etc.); matching pixels (e.g., using Hough voting); using co-occurrence methods; by identifying and consolidating overlapping detections; using unique object identifiers (e.g., considering a first and second vehicle—sharing a common license plate, color, or other set of parameters—detected in the high-resolution crop and the low-resolution image as the same vehicle); based a score or probability (e.g., calculated by a second neural network or other model); or otherwise identifying and merging duplicate detections.


As illustrated in FIG. 4, a first bounding box is positioned around a vehicle in the crop and a second bounding box is positioned around a vehicle in the full image. As described above, the system may determine that the first bounding box and second bounding box are positioned around a same real-world object (e.g., the vehicle). Since the first bounding box may, as an example, more closely adhere to a contour of the vehicle, the second bounding box may be removed as a duplicate. That is, an accuracy associated with detecting objects, assigning bounding boxes or other location information, and so on, may be greater for the crop.


In some embodiments, the batched image includes the cropped image combined into the larger downsampled image, resulting in potential situations in which bounding boxes for objects appearing at the edge of the frame (in the cropped image). In some embodiments, the detector (e.g., object detector used to detect objects in the high-resolution cropped image and/or the low-resolution full image) is trained on a set of images in which bounding boxes at the edge of the frame require guessing as to the full extent of the objects inside of them. In some variants, detection algorithms which predict the box to the edge of the frame can be insufficient, as such algorithms would lead to incorrect results when used in this fashion. For example, in some embodiments, the cropped image may include a car that has been cropped in half; an estimate or determination of the full extent of the car can be needed to properly match, merge, and/or de-duplicate said car from the cropped image with the same car detected in the full image. In some embodiments, the neural network is trained to predict the full extent of the car, based on a training set of objects such as other cars that have been cropped in half.



FIG. 3 is an illustration of an example of cropped objects in bounding boxes, according to an embodiment of the object detection method. The image 300 depicts a cropped field of view. The car object at the lower left edge of the frame is cropped such that it does not show the full car, and likewise for the car object art the right edge of the frame.


In some embodiments, the neural network is trained on images similar to image 300 such that the neural network is trained to predict the full extent of the car objects in image 300, and thus generates an accurate result in the form of object identification and object location detection. Training a neural network is the process of finding a set of weights and bias values such that computed outputs closely match the known outputs for a collection of training data items. Once a qualifying set of weights and bias values have been found, the resulting neural network model can make predictions on new data with unknown output values. In some embodiments, training data for predicting the full extent of car objects includes images in which a car object is not fully visible within a frame as well as images in which car objects are fully visible within the frame.


In some embodiments, the neural network is trained using a batch method, wherein the adjustment delta values are accumulated over all training items to produce an aggregate set of deltas. The aggregated deltas are applied to each weight and bias. In some embodiments, the neural network is training using an online method, wherein weights and bias values are adjusted for every training item based on the difference between computed outputs and the training data target outputs. Any other method or methods of training neural networks can be used to predict the full extent of the car objects in image 300.


Example Image


An example embodiment of the object detection method follows. In the example, a heuristic is used to determine priority field of view for a received image. The priority field of view is cropped, then batched with a downsampled image. The boxes of objects are combined in post-processing. Further details on these steps are provided below.


First, according to a heuristic retrieved from the heuristics database 110, system 100 determines a horizon line based on gyroscope data generated by one or more sensors within an autonomous vehicle. Map data, (e.g., offline or online maps, such as OpenStreetMaps), may be used, optionally along with compass data, to determine a vehicle heading and future road direction. System 100 receives a 1920×1080 image from a forward facing camera in the autonomous vehicle. A 640×360 region of the image is cropped, depicting a region where the road is expected to be in 100 meters. The original image is downsampled to 640×360, the same dimensions as the cropped image. The two images are batched and fed into the detector, wherein the detector can output the images annotated with labeled bounding boxes (windows). The bounding boxes of the objects are combined by scaling them appropriately. Non-maximal suppression techniques are then used by system 100 to remove any duplicate object detections.


The result of this example is that nine times the pixel count in the high priority field of vision can be processed in the detector, resulting in an increase of three times the distance of the farthest object detected. The computational increase is twice the amount, but in practice this is commonly less, due to a sub-linear computational increase when the images are batched, since the computation is more parallelizable than it otherwise would have been. Thus, a low compute, long range object detection is achieved in the example as a result of the methods and techniques described herein.


Example Block Diagrams


As will be described below, in some embodiments a machine learning model may be used to determine a particular field of view of an image. For example, a machine learning model may be leveraged which identifies a vanishing line, horizon line, portion of a road, and so on. In this example, a crop of the image may be obtained based on the identification. As described herein, the crop may include information which may be considered particular advantageous for use in autonomous operation of a vehicle. For example, cars, pedestrians, and so on, may be included in this crop. As an example, since the crop may be based on a vanishing or horizon line, as may be appreciated other vehicles or pedestrians may tend to be clustered in this field of view. Thus, it may be advantageous for this portion to be enhanced.


The description above focused on the above-described portion being analyzed by one or more machine learning models at greater than a threshold resolution. Remaining portions of an image may be analyzed at a downsampled, or reduced, resolution. Thus, the portion associated with the particular field of view may be analyzed at a greater level of detail while limiting an extent to which compute resources are required.


As will be described below, with respect to FIGS. 5A-5B, in some embodiments the above-described portion may be analyzed by one or more subsequent machine learning models. For example, a convolutional neural network may be used to extract features from this portion of an image. These features may thus be associated with the particular field of view, such as associated with a vanishing line or horizon line. Advantageously, the features may be combined (e.g., concatenated) with features determined from an entirety of the image. A subsequent machine learning model may then analyze the combined features to determine output information. As described above, output information may indicate particular classified objects, location information, bounding box information, and so on.


In this way, subsequent processing may occur for the particular field of view. A multitude of machine learning models, such as convolutional neural networks, may be trained (e.g., end-to-end training) to leverage this subsequent processing. Thus, the portion of an image which may tend to include other vehicles, pedestrians, signs, and so on, may advantageously be further analyzed.


The description of FIGS. 5A-5B below, will focus on analyzing an input image 502. For example, the input image 502 may be analyzed during operation of the vehicle. Thus, the machine learning models described below may be trained. As may be appreciated, the vehicle, or another system, may perform training of the machine learning models. For example, backpropagation techniques may be employed to train the models.



FIG. 5A illustrates a block diagram of an example technique for object detection. In the illustrated example, three convolutional neural networks 504A-504C are included. These convolutional neural networks 504A-504C may be used to determine output information 516, such as detected objects, for use in autonomous navigation, driving, operation, and so on, of a vehicle. As described herein, the convolutional neural networks 504A-504C may be implemented by a system of one or more processors or computers, one or more application-specific integrated circuits (ASICs), and so on.


An input image 502 may be provided to convolutional neural network (CNN) A 504A. A forward pass through CNN A 504A may be performed, and image features 506 may be determined. The image features 506 may represent feature maps. For example, the input image 502 may be of size [832, 1024, 3] (e.g., height, width, color channels). In this example, the image features 506 may be of size [26, 40, 512] features. Based on the image features 506, vanishing line information 508 may be determined for the input image 502.


As an example, CNN A 504A may be trained to extract features via convolutional layers. CNN A 504A may optionally further include one or more dense or fully-connected layers to identify a y-coordinate which corresponds to a vanishing line, horizon line, or other field of view. As another example, a subsequent machine learning model, or other classifier, may analyze the image features 506 and identify the vanishing line information 508. In some embodiments, CNN A 504A or another model or classifier may be trained to identify the vanishing line information 508. For example, labels associated with images may be identify y-coordinates, or other locations, of respective vanishing lines in the images. In this way, the vanishing line information 508 may be identified.


An image portion 510 of the input image 502 may be identified based on the vanishing line information 508. For example, the vanishing line information 508 may indicate a y-coordinate. In this example, a crop may be obtained based on the y-coordinate. For example, a rectangle from the image may be cropped. The rectangle may optionally extend a first threshold distance above the y-coordinate and a second threshold distance below the y-coordinate. The rectangle may optionally extend along an entirety of a horizontal axis of the input image 502. In some embodiments, the rectangle may optionally encompass extend along a particular length of the horizontal axis. Thus, less than the full horizontal axis of the input image 502 may be cropped. With respect to an example the input image 502 being of size [832, 1024, 3], and the y-coordinate being at row 500 from the top, the image portion 510 may be a horizontal stripe of size [256, 1024, 3].


A forward pass of the image portion 51 may then be performed through CNN B 504B. Image portion features 512 may then be obtained based on this forward pass. With respect to the horizontal stripe being [256, 1024, 3], the image portion features 512 may be features of size [8, 40, 512]. The image portion features 512 may be combined with image features 506 to generate the combined image features 514. For example, the two features 512, 506, may be fused together by spatially contacting them along the channel dimension (e.g. the features may be concatenated). With respect to the example above, the resulting combined image features 514 may be of size [26, 40, 1024].


The image portion features 514 may be placed into a correct location (e.g., of the combined image features 514) spatially based on the location of the vanishing line information 508. A remainder may be padded with zeroes. In the example above of the vanishing line information 508 being at row 500, and the features being reduced in size by a fraction of 32, the features may be placed 16 rows down and may fill in the next 8 rows. As described above, a remainder may thus be padded.


The combined image features 514 may then be provided to CNN C 504C. This model 504C may be used to determine output information 516. As described above, output information 516 may include detected objects (e.g., classified objects), bounding boxes about each detected object, location information for the detected objects, and so on.


In this way, there may be no explicit merging of bounding boxes from two scales at the end. The merging may be implicit and done inside the CNNs. Thus, the field of view described above in FIGS. 2-4, may be labeled by the techniques described in FIG. 5A. A portion of the image 502 associated with this field of view may then be further analyzed by CNN B 504B. Thus, CNN C 504C may have the advantage of information identifying specific image features for the portion, which are concatenated, with image features for the input image. The CNNs A-C 504A-504C may be trained to enhance an accuracy associated with detecting objects within the field of view.



FIG. 5B illustrates a block diagram of another example technique for object detection. In some embodiments, the input image 502 identified above may be downsampled. For example, vanishing line information 508 for a downsampled image 522 may be identified. An image portion 530 associated with the vanishing line information 508 may be cropped. Advantageously, the image portion 530 may be cropped from a full resolution version of the image 522. Image portion features 532 may then be obtained, and concatenated with image features 526 associated with the downsampled image 522. In some embodiments, the image portion features 532 may be used in place of a corresponding portion of the image features 526. For example, a portion of the image features 526 associated with the vanishing line may be replaced.


The combined image features 534 may then be provided to CNN C 504C, and output information 516 determined. In this way, FIG. 5B leverages downsampling of an input image 502 for portions of the image 502 not associated with a particular field of view.


Other Embodiments

Embodiments of the system and/or method can include every combination and permutation of the various system components and the various method processes, wherein one or more instances of the method and/or processes described herein can be performed asynchronously (e.g., sequentially), concurrently (e.g., in parallel), or in any other suitable order by and/or using one or more instances of the systems, elements, and/or entities described herein.


As a person skilled in the art will recognize from the previous detailed description and from the figures and claims, modifications and changes can be made to the preferred embodiments of the invention without departing from the scope of this invention defined in the following claims.


Each of the processes, methods, and algorithms described in the preceding sections may be embodied in, and fully or partially automated by, code modules executed by one or more computer systems or computer processors comprising computer hardware. The code modules (or “engines”) may be stored on any type of non-transitory computer-readable medium or computer storage device, such as hard drives, solid state memory, optical disc, and/or the like. The systems and modules may also be transmitted as generated data signals (for example, as part of a carrier wave or other analog or digital propagated signal) on a variety of computer-readable transmission mediums, including wireless-based and wired/cable-based mediums, and may take a variety of forms (for example, as part of a single or multiplexed analog signal, or as multiple discrete digital packets or frames). The processes and algorithms may be implemented partially or wholly in application-specific circuitry. The results of the disclosed processes and process steps may be stored, persistently or otherwise, in any type of non-transitory computer storage such as, for example, volatile or non-volatile storage.


In general, the terms “engine” and “module”, as used herein, refer to logic embodied in hardware or firmware, or to a collection of software instructions, possibly having entry and exit points, written in a programming language, such as, for example, Java, Lua, C or C++. A software module may be compiled and linked into an executable program, installed in a dynamic link library, or may be written in an interpreted programming language such as, for example, BASIC, Perl, or Python. It will be appreciated that software modules may be callable from other modules or from themselves, and/or may be invoked in response to detected events or interrupts. Software modules configured for execution on computing devices may be provided on one or more computer readable media, such as a compact discs, digital video discs, flash drives, or any other tangible media. Such software code may be stored, partially or fully, on a memory device of the executing computing device. Software instructions may be embedded in firmware, such as an EPROM. It will be further appreciated that hardware modules may be comprised of connected logic units, such as gates and flip-flops, and/or may be comprised of programmable units, such as programmable gate arrays or processors. The modules described herein are preferably implemented as software modules, but may be represented in hardware or firmware. Generally, the modules described herein refer to logical modules that may be combined with other modules or divided into sub-modules despite their physical organization or storage. Electronic Data Sources can include databases, volatile/non-volatile memory, and any memory system or subsystem that maintains information.


The various features and processes described above may be used independently of one another, or may be combined in various ways. All possible combinations and subcombinations are intended to fall within the scope of this disclosure. In addition, certain method or process blocks may be omitted in some implementations. The methods and processes described herein are also not limited to any particular sequence, and the blocks or states relating thereto can be performed in other sequences that are appropriate. For example, described blocks or states may be performed in an order other than that specifically disclosed, or multiple blocks or states may be combined in a single block or state. The example blocks or states may be performed in serial, in parallel, or in some other manner. Blocks or states may be added to or removed from the disclosed example embodiments. The example systems and components described herein may be configured differently than described. For example, elements may be added to, removed from, or rearranged compared to the disclosed example embodiments.


Conditional language used herein, such as, among others, “can,” “could,” “might,” “may,” “for example,” and the like, unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or steps. Thus, such conditional language is not generally intended to imply that features, elements and/or steps are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without author input or prompting, whether these features, elements and/or steps are included or are to be performed in any particular embodiment. The terms “comprising,” “including,” “having,” and the like are synonymous and are used inclusively, in an open-ended fashion, and do not exclude additional elements, features, acts, operations, and so forth. Also, the term “or” is used in its inclusive sense (and not in its exclusive sense) so that when used, for example, to connect a list of elements, the term “or” means one, some, or all of the elements in the list. Conjunctive language such as the phrase “at least one of X, Y and Z,” unless specifically stated otherwise, is otherwise understood with the context as used in general to convey that an item, term, etc. may be either X, Y or Z. Thus, such conjunctive language is not generally intended to imply that certain embodiments require at least one of X, at least one of Y and at least one of Z to each be present.


The term “a” as used herein should be given an inclusive rather than exclusive interpretation. For example, unless specifically noted, the term “a” should not be understood to mean “exactly one” or “one and only one”; instead, the term “a” means “one or more” or “at least one,” whether used in the claims or elsewhere in the specification and regardless of uses of quantifiers such as “at least one,” “one or more,” or “a plurality” elsewhere in the claims or specification.


The term “comprising” as used herein should be given an inclusive rather than exclusive interpretation. For example, a general purpose computer comprising one or more processors should not be interpreted as excluding other computer components, and may possibly include such components as memory, input/output devices, and/or network interfaces, among others.


While certain example embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the disclosure. Thus, nothing in the foregoing description is intended to imply that any particular element, feature, characteristic, step, module, or block is necessary or indispensable. Indeed, the novel methods and systems described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions, and changes in the form of the methods and systems described herein may be made without departing from the spirit of the inventions disclosed herein. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of certain of the inventions disclosed herein.


Any process descriptions, elements, or blocks in the flow diagrams described herein and/or depicted in the attached figures should be understood as potentially representing modules, segments, or portions of code which include one or more executable instructions for implementing specific logical functions or steps in the process. Alternate implementations are included within the scope of the embodiments described herein in which elements or functions may be deleted, executed out of order from that shown or discussed, including substantially concurrently or in reverse order, depending on the functionality involved, as would be understood by those skilled in the art.


It should be emphasized that many variations and modifications may be made to the above-described embodiments, the elements of which are to be understood as being among other acceptable examples. All such modifications and variations are intended to be included herein within the scope of this disclosure. The foregoing description details certain embodiments of the invention. It will be appreciated, however, that no matter how detailed the foregoing appears in text, the invention can be practiced in many ways. As is also stated above, it should be noted that the use of particular terminology when describing certain features or aspects of the invention should not be taken to imply that the terminology is being re-defined herein to be restricted to including any specific characteristics of the features or aspects of the invention with which that terminology is associated.

Claims
  • 1. A method implemented by a system of one or more processors, the method comprising: obtaining a set of images from of a plurality of image sensors positioned about a vehicle, wherein image information from a subset of image sensors is associated with a forward direction of the vehicle;determining a field of view associated with the image information, the field of view being associated with a vanishing line, wherein the field of view is determined, at least in part, based on an attention-based network and the image information;generating, based on the attention-based network, information comprising a crop portion corresponding to the field of view, and a remaining portion, wherein the remaining portion is downsampled; andoutputting, via a neural network based, at least in part, on the generated information, information associated with detected objects, wherein detecting objects comprises performing a forward pass through the neural network of the generated information.
  • 2. The method of claim 1, wherein the neural network receives additional data as input, and wherein the additional data includes data from an inertial measurement unit.
  • 3. The method of claim 1, wherein the neural network receives additional data as input, and wherein the additional data includes map data.
  • 4. The method of claim 1, wherein the output information associated with detected objects combines detected objects from the crop portion and the remaining portion.
  • 5. The method of claim 1, wherein output from neural network is associated with a combination of output associated with the set of images.
  • 6. The method of claim 1, wherein the crop portion is aligned with the remaining portion.
  • 7. The method of claim 1, wherein the vanishing line is indicative of a horizon line.
  • 8. A system comprising one or more processors and non-transitory computer storage media storing instructions that when executed by the one or more processors, cause the processors to perform operations comprising: obtaining a set of images from of a plurality of image sensors positioned about a vehicle, wherein image information from a subset of image sensors is associated with a forward direction of the vehicle;determining a field of view associated with the image information, the field of view being associated with a vanishing line, wherein the field of view is determined, at least in part, based on an attention-based network and the image information;generating, based on the attention-based network, information comprising a crop portion corresponding to the field of view, and a remaining portion, wherein the remaining portion is downsampled; andoutputting, via a neural network based, at least in part, on the generated information, information associated with detected objects, wherein detecting objects comprises performing a forward pass through the neural network of the generated information.
  • 9. The system of claim 8, wherein the neural network receives additional data as input, and wherein the additional data includes data from an inertial measurement unit.
  • 10. The system of claim 8, wherein the neural network receives additional data as input, and wherein the additional data includes map data.
  • 11. The system of claim 8, wherein the output information associated with detected objects combines detected objects from the crop portion and the remaining portion.
  • 12. The system of claim 8, wherein output from neural network is associated with a combination of output associated with the set of images.
  • 13. The system of claim 8, wherein the crop portion is aligned with the remaining portion.
  • 14. The system of claim 8, wherein the vanishing line is indicative of a horizon line.
  • 15. Non-transitory computer storage media storing instructions that when executed by a system of one or more processors, cause the one or more processors to perform operations comprising: obtaining a set of images from of a plurality of image sensors positioned about a vehicle, wherein image information from a subset of image sensors is associated with a forward direction of the vehicle;determining a field of view associated with the image information, the field of view being associated with a vanishing line, wherein the field of view is determined, at least in part, based on an attention-based network and the image information;generating, based on the attention-based network, information comprising a crop portion corresponding to the field of view, and a remaining portion, wherein the remaining portion is downsampled; andoutputting, via a neural network based, at least in part, on the generated information, information associated with detected objects, wherein detecting objects comprises performing a forward pass through the neural network of the generated information.
  • 16. The computer storage media of claim 15, wherein the neural network receives additional data as input, and wherein the additional data includes data from an inertial measurement unit and/or map data.
  • 17. The computer storage media of claim 15, wherein the output information associated with detected objects combines detected objects from the crop portion and the remaining portion.
  • 18. The computer storage media of claim 15, wherein the vanishing line is indicative of a horizon line.
  • 19. The computer storage media of claim 15, wherein output from neural network is associated with a combination of output associated with the set of images.
  • 20. The computer storage media of claim 15, wherein the crop portion is aligned with the remaining portion.
US Referenced Citations (594)
Number Name Date Kind
6882755 Silverstein et al. May 2005 B2
7209031 Nakai et al. Apr 2007 B2
7747070 Puri Jun 2010 B2
7904867 Burch et al. Mar 2011 B2
7974492 Nishijima Jul 2011 B2
8165380 Choi et al. Apr 2012 B2
8369633 Lu et al. Feb 2013 B2
8406515 Cheatle et al. Mar 2013 B2
8509478 Haas et al. Aug 2013 B2
8588470 Rodriguez et al. Nov 2013 B2
8744174 Hamada et al. Jun 2014 B2
8773498 Lindbergh Jul 2014 B2
8912476 Fogg et al. Dec 2014 B2
8913830 Sun et al. Dec 2014 B2
8928753 Han et al. Jan 2015 B2
8972095 Furuno et al. Mar 2015 B2
8976269 Duong Mar 2015 B2
9008422 Eid et al. Apr 2015 B2
9081385 Ferguson et al. Jul 2015 B1
9275289 Li et al. Mar 2016 B2
9586455 Sugai et al. Mar 2017 B2
9672437 McCarthy Jun 2017 B2
9710696 Wang et al. Jul 2017 B2
9738223 Zhang Aug 2017 B2
9754154 Craig et al. Sep 2017 B2
9767369 Furman et al. Sep 2017 B2
9965865 Agrawal et al. May 2018 B1
10133273 Linke Nov 2018 B2
10140252 Fowers et al. Nov 2018 B2
10140544 Zhao et al. Nov 2018 B1
10146225 Ryan Dec 2018 B2
10152655 Krishnamurthy et al. Dec 2018 B2
10167800 Chung et al. Jan 2019 B1
10169680 Sachdeva et al. Jan 2019 B1
10192016 Ng et al. Jan 2019 B2
10216189 Haynes Feb 2019 B1
10228693 Micks et al. Mar 2019 B2
10242293 Shim et al. Mar 2019 B2
10248121 VandenBerg, III Apr 2019 B2
10262218 Lee et al. Apr 2019 B2
10282623 Ziyaee et al. May 2019 B1
10296828 Viswanathan May 2019 B2
10303961 Stoffel et al. May 2019 B1
10310087 Laddha et al. Jun 2019 B2
10311312 Yu et al. Jun 2019 B2
10318848 Dijkman et al. Jun 2019 B2
10325178 Tang et al. Jun 2019 B1
10331974 Zia et al. Jun 2019 B2
10338600 Yoon et al. Jul 2019 B2
10343607 Kumon et al. Jul 2019 B2
10359783 Williams et al. Jul 2019 B2
10366290 Wang et al. Jul 2019 B2
10372130 Kaushansky et al. Aug 2019 B1
10373019 Nariyambut Murali et al. Aug 2019 B2
10373026 Kim et al. Aug 2019 B1
10380741 Yedla et al. Aug 2019 B2
10394237 Xu et al. Aug 2019 B2
10395144 Zeng et al. Aug 2019 B2
10402646 Klaus Sep 2019 B2
10402986 Ray et al. Sep 2019 B2
10414395 Sapp et al. Sep 2019 B1
10423934 Zanghi et al. Sep 2019 B1
10436615 Agarwal et al. Oct 2019 B2
10452905 Segalovitz et al. Oct 2019 B2
10460053 Olson et al. Oct 2019 B2
10467459 Chen et al. Nov 2019 B2
10468008 Beckman et al. Nov 2019 B2
10468062 Levinson et al. Nov 2019 B1
10470510 Koh et al. Nov 2019 B1
10474160 Huang Nov 2019 B2
10474161 Huang et al. Nov 2019 B2
10474928 Sivakumar et al. Nov 2019 B2
10489126 Kumar et al. Nov 2019 B2
10489972 Atsmon Nov 2019 B2
10503971 Dang et al. Dec 2019 B1
10514711 Bar-Nahum et al. Dec 2019 B2
10528824 Zou Jan 2020 B2
10529078 Abreu et al. Jan 2020 B2
10529088 Fine et al. Jan 2020 B2
10534854 Sharma et al. Jan 2020 B2
10535191 Sachdeva et al. Jan 2020 B2
10542930 Sanchez et al. Jan 2020 B1
10546197 Shrestha et al. Jan 2020 B2
10546217 Albright et al. Jan 2020 B2
10552682 Jonsson et al. Feb 2020 B2
10559386 Neuman Feb 2020 B1
10565475 Lecue et al. Feb 2020 B2
10567674 Kirsch Feb 2020 B2
10568570 Sherpa et al. Feb 2020 B1
10572717 Zhu et al. Feb 2020 B1
10574905 Srikanth et al. Feb 2020 B2
10579058 Oh et al. Mar 2020 B2
10579063 Haynes et al. Mar 2020 B2
10579897 Redmon et al. Mar 2020 B2
10586280 McKenna et al. Mar 2020 B2
10591914 Palanisamy et al. Mar 2020 B2
10592785 Zhu et al. Mar 2020 B2
10599701 Liu Mar 2020 B2
10599930 Lee Mar 2020 B2
10599958 He et al. Mar 2020 B2
10606990 Tuli et al. Mar 2020 B2
10609434 Singhai et al. Mar 2020 B2
10614344 Anthony et al. Apr 2020 B2
10621513 Deshpande et al. Apr 2020 B2
10627818 Sapp et al. Apr 2020 B2
10628432 Guo et al. Apr 2020 B2
10628686 Ogale et al. Apr 2020 B2
10628688 Kim et al. Apr 2020 B1
10629080 Kazemi et al. Apr 2020 B2
10636161 Uchigaito Apr 2020 B2
10636169 Estrada et al. Apr 2020 B2
10642275 Silva et al. May 2020 B2
10645344 Marman et al. May 2020 B2
10649464 Gray May 2020 B2
10650071 Asgekar et al. May 2020 B2
10652565 Zhang et al. May 2020 B1
10656657 Djuric et al. May 2020 B2
10657391 Chen et al. May 2020 B2
10657418 Marder May 2020 B2
10657934 Kolen et al. May 2020 B1
10661902 Tavshikar May 2020 B1
10664750 Greene May 2020 B2
10671082 Huang et al. Jun 2020 B2
10671886 Price et al. Jun 2020 B2
10678244 Iandola et al. Jun 2020 B2
10678839 Gordon et al. Jun 2020 B2
10678997 Ahuja et al. Jun 2020 B2
10679129 Baker Jun 2020 B2
10685159 Su et al. Jun 2020 B2
10685188 Zhang et al. Jun 2020 B1
10692000 Surazhsky et al. Jun 2020 B2
10692242 Morrison et al. Jun 2020 B1
10693740 Coccia et al. Jun 2020 B2
10698868 Guggilla et al. Jun 2020 B2
10699119 Lo et al. Jun 2020 B2
10699140 Kench et al. Jun 2020 B2
10699477 Levinson et al. Jun 2020 B2
10705525 Smolyanskiy Jul 2020 B2
10713502 Tiziani Jul 2020 B2
10719759 Kutliroff Jul 2020 B2
10725475 Yang et al. Jul 2020 B2
10726264 Sawhney et al. Jul 2020 B2
10726279 Kim et al. Jul 2020 B1
10726374 Engineer et al. Jul 2020 B1
10732261 Wang et al. Aug 2020 B1
10733262 Miller et al. Aug 2020 B2
10733482 Lee Aug 2020 B1
10733638 Jain et al. Aug 2020 B1
10733755 Liao Aug 2020 B2
10733876 Moura et al. Aug 2020 B2
10740563 Dugan Aug 2020 B2
10740914 Xiao et al. Aug 2020 B2
10748062 Rippel et al. Aug 2020 B2
10748247 Paluri Aug 2020 B2
10751879 Li et al. Aug 2020 B2
10755112 Mabuchi Aug 2020 B2
10755575 Johnston et al. Aug 2020 B2
10757330 Ashrafi Aug 2020 B2
10762396 Vallespi et al. Sep 2020 B2
10768628 Martin et al. Sep 2020 B2
10768629 Song et al. Sep 2020 B2
10769446 Chang et al. Sep 2020 B2
10769483 Nirenberg et al. Sep 2020 B2
10769493 Yu et al. Sep 2020 B2
10769494 Xiao et al. Sep 2020 B2
10769525 Redding et al. Sep 2020 B2
10776626 Lin et al. Sep 2020 B1
10776673 Kim et al. Sep 2020 B2
10776939 Ma et al. Sep 2020 B2
10779760 Lee et al. Sep 2020 B2
10783381 Yu et al. Sep 2020 B2
10783454 Shoaib et al. Sep 2020 B2
10789402 Vemuri et al. Sep 2020 B1
10789544 Fiedel et al. Sep 2020 B2
10790919 Kolen et al. Sep 2020 B1
10796221 Zhang et al. Oct 2020 B2
10796355 Price et al. Oct 2020 B1
10796423 Goja Oct 2020 B2
10798368 Briggs et al. Oct 2020 B2
10803325 Bai et al. Oct 2020 B2
10803328 Bai et al. Oct 2020 B1
10803743 Abari et al. Oct 2020 B2
10805629 Liu et al. Oct 2020 B2
10809730 Chintakindi Oct 2020 B2
10810445 Kangaspunta Oct 2020 B1
10816346 Wheeler et al. Oct 2020 B2
10816992 Chen Oct 2020 B2
10817731 Vallespi et al. Oct 2020 B2
10817732 Porter et al. Oct 2020 B2
10819923 McCauley et al. Oct 2020 B1
10824122 Mummadi et al. Nov 2020 B2
10824862 Qi et al. Nov 2020 B2
10828790 Nemallan Nov 2020 B2
10832057 Chan et al. Nov 2020 B2
10832093 Taralova et al. Nov 2020 B1
10832414 Pfeiffer Nov 2020 B2
10832418 Karasev et al. Nov 2020 B1
10833785 O'Shea et al. Nov 2020 B1
10836379 Xiao Nov 2020 B2
10838936 Cohen Nov 2020 B2
10839230 Charette et al. Nov 2020 B2
10839578 Coppersmith et al. Nov 2020 B2
10843628 Kawamoto et al. Nov 2020 B2
10845820 Wheeler Nov 2020 B2
10845943 Ansari et al. Nov 2020 B1
10846831 Raduta Nov 2020 B2
10846888 Kaplanyan et al. Nov 2020 B2
10853670 Sholingar et al. Dec 2020 B2
10853739 Truong et al. Dec 2020 B2
10860919 Kanazawa et al. Dec 2020 B2
10860924 Burger Dec 2020 B2
10867444 Russell et al. Dec 2020 B2
10871444 Al et al. Dec 2020 B2
10871782 Milstein et al. Dec 2020 B2
10872204 Zhu et al. Dec 2020 B2
10872254 Mangla et al. Dec 2020 B2
10872326 Garner Dec 2020 B2
10872531 Liu Dec 2020 B2
10885083 Moeller-Bertram et al. Jan 2021 B2
10887433 Fu et al. Jan 2021 B2
10890898 Akella Jan 2021 B2
10891715 Li Jan 2021 B2
10891735 Yang et al. Jan 2021 B2
10893070 Wang et al. Jan 2021 B2
10893107 Callari et al. Jan 2021 B1
10896763 Kempanna et al. Jan 2021 B2
10901416 Khanna Jan 2021 B2
10901508 Laszlo et al. Jan 2021 B2
10902551 Mellado et al. Jan 2021 B1
10908068 Amer et al. Feb 2021 B2
10908606 Stein et al. Feb 2021 B2
10909368 Guo et al. Feb 2021 B2
10909453 Myers et al. Feb 2021 B1
10915783 Hallman et al. Feb 2021 B1
10917522 Segalis et al. Feb 2021 B2
10921817 Kangaspunta Feb 2021 B1
10922578 Banerjee et al. Feb 2021 B2
10924661 Vasconcelos et al. Feb 2021 B2
10928508 Swaminathan Feb 2021 B2
10929757 Baker et al. Feb 2021 B2
10930065 Grant et al. Feb 2021 B2
10936908 Ho et al. Mar 2021 B1
10937186 Wang et al. Mar 2021 B2
10943101 Agarwal et al. Mar 2021 B2
10943132 Wang et al. Mar 2021 B2
10943355 Fagg et al. Mar 2021 B2
11468285 Tang Oct 2022 B1
11537811 Shen et al. Dec 2022 B2
20030035481 Hahm Feb 2003 A1
20050162445 Sheasby et al. Jul 2005 A1
20060072847 Chor et al. Apr 2006 A1
20060224533 Thaler Oct 2006 A1
20060280364 Ma et al. Dec 2006 A1
20090016571 Tijerina et al. Jan 2009 A1
20100118157 Kameyama May 2010 A1
20120109915 Kamekawa May 2012 A1
20120110491 Cheung May 2012 A1
20120134595 Fonseca et al. May 2012 A1
20150104102 Carreira et al. Apr 2015 A1
20160132786 Balan et al. May 2016 A1
20160328856 Mannino et al. Nov 2016 A1
20170011281 Dijkman Jan 2017 A1
20170158134 Shigemura Jun 2017 A1
20170185872 Chakraborty Jun 2017 A1
20170200061 Julian Jul 2017 A1
20170206434 Nariyambut et al. Jul 2017 A1
20180012411 Richey et al. Jan 2018 A1
20180018590 Szeto et al. Jan 2018 A1
20180039853 Liu et al. Feb 2018 A1
20180067489 Oder et al. Mar 2018 A1
20180068459 Zhang et al. Mar 2018 A1
20180068540 Romanenko et al. Mar 2018 A1
20180074506 Branson Mar 2018 A1
20180121762 Han et al. May 2018 A1
20180150081 Gross et al. May 2018 A1
20180211403 Hotson et al. Jul 2018 A1
20180260639 Kapach Sep 2018 A1
20180308012 Mummadi et al. Oct 2018 A1
20180314878 Lee et al. Nov 2018 A1
20180357511 Misra et al. Dec 2018 A1
20180374105 Azout et al. Dec 2018 A1
20190023277 Roger et al. Jan 2019 A1
20190025773 Yang Jan 2019 A1
20190042894 Anderson Feb 2019 A1
20190042919 Peysakhovich et al. Feb 2019 A1
20190042944 Nair et al. Feb 2019 A1
20190042948 Lee et al. Feb 2019 A1
20190057314 Julian et al. Feb 2019 A1
20190065637 Bogdoll et al. Feb 2019 A1
20190072978 Levi Mar 2019 A1
20190079526 Vallespi et al. Mar 2019 A1
20190080602 Rice et al. Mar 2019 A1
20190095780 Zhong et al. Mar 2019 A1
20190095946 Azout et al. Mar 2019 A1
20190101914 Coleman et al. Apr 2019 A1
20190103026 Liu Apr 2019 A1
20190108417 Talagala et al. Apr 2019 A1
20190122111 Min et al. Apr 2019 A1
20190130255 Yim et al. May 2019 A1
20190145765 Luo May 2019 A1
20190146497 Urtasun et al. May 2019 A1
20190147112 Gordon May 2019 A1
20190147250 Zhang May 2019 A1
20190147254 Bai May 2019 A1
20190147255 Homayounfar May 2019 A1
20190147335 Wang et al. May 2019 A1
20190147372 Luo et al. May 2019 A1
20190158784 Ahn et al. May 2019 A1
20190180154 Orlov et al. Jun 2019 A1
20190185010 Ganguli et al. Jun 2019 A1
20190189251 Horiuchi et al. Jun 2019 A1
20190197357 Anderson et al. Jun 2019 A1
20190204842 Jafari et al. Jul 2019 A1
20190205402 Sernau et al. Jul 2019 A1
20190205667 Avidan et al. Jul 2019 A1
20190217791 Bradley et al. Jul 2019 A1
20190227562 Mohammadiha et al. Jul 2019 A1
20190228037 Nicol et al. Jul 2019 A1
20190230282 Sypitkowski et al. Jul 2019 A1
20190235499 Kazemi et al. Aug 2019 A1
20190236437 Shin et al. Aug 2019 A1
20190243371 Nister et al. Aug 2019 A1
20190244138 Bhowmick et al. Aug 2019 A1
20190250622 Nister et al. Aug 2019 A1
20190250626 Ghafarianzadeh et al. Aug 2019 A1
20190250640 O'Flaherty et al. Aug 2019 A1
20190258878 Koivisto et al. Aug 2019 A1
20190266418 Xu et al. Aug 2019 A1
20190266610 Ghatage et al. Aug 2019 A1
20190272446 Kangaspunta et al. Sep 2019 A1
20190276041 Choi et al. Sep 2019 A1
20190279004 Kwon et al. Sep 2019 A1
20190286652 Habbecke et al. Sep 2019 A1
20190286972 El Husseini et al. Sep 2019 A1
20190287028 St Amant et al. Sep 2019 A1
20190289281 Badrinarayanan et al. Sep 2019 A1
20190294177 Kwon et al. Sep 2019 A1
20190294975 Sachs Sep 2019 A1
20190311290 Huang et al. Oct 2019 A1
20190318099 Carvalho et al. Oct 2019 A1
20190325088 Dubey et al. Oct 2019 A1
20190325266 Klepper et al. Oct 2019 A1
20190325269 Bagherinezhad et al. Oct 2019 A1
20190325580 Lukac et al. Oct 2019 A1
20190325595 Stein et al. Oct 2019 A1
20190325746 Lewis Oct 2019 A1
20190329790 Nandakumar et al. Oct 2019 A1
20190332875 Vallespi-Gonzalez Oct 2019 A1
20190333232 Vallespi-Gonzalez et al. Oct 2019 A1
20190336063 Dascalu Nov 2019 A1
20190339989 Liang et al. Nov 2019 A1
20190340462 Pao et al. Nov 2019 A1
20190340492 Burger et al. Nov 2019 A1
20190340499 Burger et al. Nov 2019 A1
20190347501 Kim et al. Nov 2019 A1
20190349571 Herman et al. Nov 2019 A1
20190354782 Kee et al. Nov 2019 A1
20190354786 Lee et al. Nov 2019 A1
20190354808 Park et al. Nov 2019 A1
20190354817 Shlens et al. Nov 2019 A1
20190354850 Watson et al. Nov 2019 A1
20190370398 He et al. Dec 2019 A1
20190370575 Nandakumar et al. Dec 2019 A1
20190370935 Chang et al. Dec 2019 A1
20190373322 Rojas-Echenique et al. Dec 2019 A1
20190377345 Bachrach et al. Dec 2019 A1
20190377965 Totolos et al. Dec 2019 A1
20190378049 Widmann et al. Dec 2019 A1
20190378051 Widmann et al. Dec 2019 A1
20190382007 Casas et al. Dec 2019 A1
20190384303 Muller et al. Dec 2019 A1
20190384304 Towal et al. Dec 2019 A1
20190384309 Silva et al. Dec 2019 A1
20190384994 Frossard et al. Dec 2019 A1
20190385048 Cassidy et al. Dec 2019 A1
20190385360 Yang et al. Dec 2019 A1
20200004259 Gulino et al. Jan 2020 A1
20200004351 Marchant et al. Jan 2020 A1
20200012936 Lee et al. Jan 2020 A1
20200017117 Milton Jan 2020 A1
20200025931 Liang et al. Jan 2020 A1
20200026282 Choe et al. Jan 2020 A1
20200026283 Barnes et al. Jan 2020 A1
20200026992 Zhang et al. Jan 2020 A1
20200027210 Haemel et al. Jan 2020 A1
20200033858 Xiao Jan 2020 A1
20200033865 Mellinger et al. Jan 2020 A1
20200034665 Ghanta et al. Jan 2020 A1
20200034710 Sidhu et al. Jan 2020 A1
20200036948 Song Jan 2020 A1
20200039520 Misu et al. Feb 2020 A1
20200051550 Baker Feb 2020 A1
20200060757 Ben-Haim et al. Feb 2020 A1
20200065711 Clément et al. Feb 2020 A1
20200065879 Hu et al. Feb 2020 A1
20200069973 Lou et al. Mar 2020 A1
20200073385 Jobanputra et al. Mar 2020 A1
20200074230 Englard et al. Mar 2020 A1
20200086880 Poeppel et al. Mar 2020 A1
20200089243 Poeppel et al. Mar 2020 A1
20200089969 Lakshmi et al. Mar 2020 A1
20200090056 Singhal et al. Mar 2020 A1
20200097841 Petousis et al. Mar 2020 A1
20200098095 Borcs et al. Mar 2020 A1
20200103894 Cella et al. Apr 2020 A1
20200104705 Bhowmick et al. Apr 2020 A1
20200110416 Hong et al. Apr 2020 A1
20200117180 Cella et al. Apr 2020 A1
20200117889 Laput et al. Apr 2020 A1
20200117916 Liu Apr 2020 A1
20200117917 Yoo Apr 2020 A1
20200118035 Asawa et al. Apr 2020 A1
20200125844 She et al. Apr 2020 A1
20200125845 Hess et al. Apr 2020 A1
20200126129 Lkhamsuren et al. Apr 2020 A1
20200134427 Oh et al. Apr 2020 A1
20200134461 Chai et al. Apr 2020 A1
20200134466 Weintraub et al. Apr 2020 A1
20200134848 El-Khamy et al. Apr 2020 A1
20200143231 Fusi et al. May 2020 A1
20200143279 West et al. May 2020 A1
20200148201 King et al. May 2020 A1
20200149898 Felip et al. May 2020 A1
20200151201 Chandrasekhar et al. May 2020 A1
20200151619 Mopur et al. May 2020 A1
20200151692 Gao et al. May 2020 A1
20200158822 Owens et al. May 2020 A1
20200158869 Amirloo et al. May 2020 A1
20200159225 Zeng et al. May 2020 A1
20200160064 Wang et al. May 2020 A1
20200160104 Urtasun et al. May 2020 A1
20200160117 Urtasun et al. May 2020 A1
20200160178 Kar et al. May 2020 A1
20200160532 Urtasun et al. May 2020 A1
20200160558 Urtasun et al. May 2020 A1
20200160559 Urtasun et al. May 2020 A1
20200160598 Manivasagam et al. May 2020 A1
20200162489 Bar-Nahum et al. May 2020 A1
20200167438 Herring May 2020 A1
20200167554 Wang et al. May 2020 A1
20200174481 Van Heukelom et al. Jun 2020 A1
20200175326 Shen et al. Jun 2020 A1
20200175354 Volodarskiy et al. Jun 2020 A1
20200175371 Kursun Jun 2020 A1
20200175401 Shen Jun 2020 A1
20200183482 Sebot et al. Jun 2020 A1
20200184250 Oko Jun 2020 A1
20200184333 Oh Jun 2020 A1
20200192389 ReMine et al. Jun 2020 A1
20200193313 Ghanta et al. Jun 2020 A1
20200193328 Guestrin et al. Jun 2020 A1
20200202136 Shrestha et al. Jun 2020 A1
20200202196 Guo et al. Jun 2020 A1
20200209857 Djuric et al. Jul 2020 A1
20200209867 Valois et al. Jul 2020 A1
20200209874 Chen et al. Jul 2020 A1
20200210717 Hou et al. Jul 2020 A1
20200210769 Hou et al. Jul 2020 A1
20200210777 Valois et al. Jul 2020 A1
20200216064 du Toit et al. Jul 2020 A1
20200218722 Mai et al. Jul 2020 A1
20200218979 Kwon et al. Jul 2020 A1
20200223434 Campos et al. Jul 2020 A1
20200225758 Tang et al. Jul 2020 A1
20200226377 Campos et al. Jul 2020 A1
20200226430 Ahuja et al. Jul 2020 A1
20200238998 Dasalukunte et al. Jul 2020 A1
20200242381 Chao et al. Jul 2020 A1
20200242408 Kim et al. Jul 2020 A1
20200242511 Kale et al. Jul 2020 A1
20200245869 Sivan et al. Aug 2020 A1
20200249685 Elluswamy et al. Aug 2020 A1
20200250456 Wang et al. Aug 2020 A1
20200250515 Rifkin et al. Aug 2020 A1
20200250874 Assouline et al. Aug 2020 A1
20200257301 Weiser Aug 2020 A1
20200257306 Nisenzon Aug 2020 A1
20200258057 Farahat et al. Aug 2020 A1
20200265247 Musk et al. Aug 2020 A1
20200272160 Djuric et al. Aug 2020 A1
20200272162 Hasselgren et al. Aug 2020 A1
20200272859 Iashyn et al. Aug 2020 A1
20200273231 Schied et al. Aug 2020 A1
20200279354 Klaiman Sep 2020 A1
20200279364 Sarkisian et al. Sep 2020 A1
20200279371 Wenzel et al. Sep 2020 A1
20200285464 Brebner Sep 2020 A1
20200286256 Houts et al. Sep 2020 A1
20200293786 Jia et al. Sep 2020 A1
20200293796 Sajjadi et al. Sep 2020 A1
20200293828 Wang et al. Sep 2020 A1
20200293905 Huang et al. Sep 2020 A1
20200294162 Shah Sep 2020 A1
20200294257 Yoo et al. Sep 2020 A1
20200294310 Lee et al. Sep 2020 A1
20200297237 Tamersoy et al. Sep 2020 A1
20200298891 Liang et al. Sep 2020 A1
20200301799 Manivasagam et al. Sep 2020 A1
20200302276 Yang et al. Sep 2020 A1
20200302291 Hong Sep 2020 A1
20200302627 Duggal et al. Sep 2020 A1
20200302662 Homayounfar et al. Sep 2020 A1
20200304441 Bradley et al. Sep 2020 A1
20200306640 Kolen et al. Oct 2020 A1
20200307562 Ghafarianzadeh et al. Oct 2020 A1
20200307563 Ghafarianzadeh et al. Oct 2020 A1
20200309536 Omari et al. Oct 2020 A1
20200309923 Bhaskaran et al. Oct 2020 A1
20200310442 Halder et al. Oct 2020 A1
20200311601 Robinson et al. Oct 2020 A1
20200312003 Borovikov et al. Oct 2020 A1
20200315708 Mosnier et al. Oct 2020 A1
20200320132 Neumann Oct 2020 A1
20200324073 Rajan et al. Oct 2020 A1
20200327192 Hackman et al. Oct 2020 A1
20200327443 Van et al. Oct 2020 A1
20200327449 Tiwari et al. Oct 2020 A1
20200327662 Liu et al. Oct 2020 A1
20200327667 Arbel et al. Oct 2020 A1
20200331476 Chen et al. Oct 2020 A1
20200334416 Vianu et al. Oct 2020 A1
20200334495 Al et al. Oct 2020 A1
20200334501 Lin et al. Oct 2020 A1
20200334551 Javidi et al. Oct 2020 A1
20200334574 Ishida Oct 2020 A1
20200337648 Saripalli et al. Oct 2020 A1
20200341466 Pham et al. Oct 2020 A1
20200342350 Madar et al. Oct 2020 A1
20200342548 Mazed et al. Oct 2020 A1
20200342652 Rowell et al. Oct 2020 A1
20200348909 Das Sarma et al. Nov 2020 A1
20200350063 Thornton et al. Nov 2020 A1
20200351438 Dewhurst et al. Nov 2020 A1
20200356107 Wells Nov 2020 A1
20200356790 Jaipuria et al. Nov 2020 A1
20200356864 Neumann Nov 2020 A1
20200356905 Luk et al. Nov 2020 A1
20200361083 Mousavian et al. Nov 2020 A1
20200361485 Zhu et al. Nov 2020 A1
20200364481 Kornienko et al. Nov 2020 A1
20200364508 Gurel et al. Nov 2020 A1
20200364540 Elsayed et al. Nov 2020 A1
20200364746 Longano et al. Nov 2020 A1
20200364953 Simoudis Nov 2020 A1
20200372362 Kim Nov 2020 A1
20200372402 Kursun et al. Nov 2020 A1
20200380362 Cao et al. Dec 2020 A1
20200380383 Kwong et al. Dec 2020 A1
20200393841 Frisbie et al. Dec 2020 A1
20200394421 Yu et al. Dec 2020 A1
20200394457 Brady Dec 2020 A1
20200394495 Moudgill et al. Dec 2020 A1
20200394813 Theverapperuma et al. Dec 2020 A1
20200396394 Zlokolica et al. Dec 2020 A1
20200398855 Thompson Dec 2020 A1
20200401850 Bazarsky et al. Dec 2020 A1
20200401886 Deng et al. Dec 2020 A1
20200402155 Kurian et al. Dec 2020 A1
20200402226 Peng Dec 2020 A1
20200410012 Moon et al. Dec 2020 A1
20200410224 Goel Dec 2020 A1
20200410254 Pham et al. Dec 2020 A1
20200410288 Capota et al. Dec 2020 A1
20200410751 Omari et al. Dec 2020 A1
20210004014 Sivakumar Jan 2021 A1
20210004580 Sundararaman et al. Jan 2021 A1
20210004611 Garimella et al. Jan 2021 A1
20210004663 Park et al. Jan 2021 A1
20210006835 Slattery et al. Jan 2021 A1
20210011908 Hayes et al. Jan 2021 A1
20210012116 Urtasun et al. Jan 2021 A1
20210012210 Sikka et al. Jan 2021 A1
20210012230 Hayes et al. Jan 2021 A1
20210012239 Arzani et al. Jan 2021 A1
20210015240 Elfakhri et al. Jan 2021 A1
20210019215 Neeter Jan 2021 A1
20210026360 Luo Jan 2021 A1
20210027112 Brewington et al. Jan 2021 A1
20210027117 McGavran et al. Jan 2021 A1
20210030276 Li et al. Feb 2021 A1
20210034921 Pinkovich et al. Feb 2021 A1
20210042575 Firner Feb 2021 A1
20210042928 Takeda et al. Feb 2021 A1
20210046954 Haynes Feb 2021 A1
20210049378 Gautam et al. Feb 2021 A1
20210049455 Kursun Feb 2021 A1
20210049456 Kursun Feb 2021 A1
20210049548 Grisz et al. Feb 2021 A1
20210049700 Nguyen et al. Feb 2021 A1
20210056114 Price et al. Feb 2021 A1
20210056306 Hu et al. Feb 2021 A1
20210056317 Golov Feb 2021 A1
20210056420 Konishi et al. Feb 2021 A1
20210056701 Vranceanu et al. Feb 2021 A1
Foreign Referenced Citations (253)
Number Date Country
2019261735 Jun 2020 AU
2019201716 Oct 2020 AU
2739989 Apr 2010 CA
100367314 Feb 2008 CN
110599537 Dec 2010 CN
102737236 Oct 2012 CN
103366339 Oct 2013 CN
104835114 Aug 2015 CN
103236037 May 2016 CN
103500322 Aug 2016 CN
106419893 Feb 2017 CN
106504253 Mar 2017 CN
107031600 Aug 2017 CN
107169421 Sep 2017 CN
107507134 Dec 2017 CN
107885214 Apr 2018 CN
108122234 Jun 2018 CN
107133943 Jul 2018 CN
107368926 Jul 2018 CN
105318888 Aug 2018 CN
108491889 Sep 2018 CN
108647591 Oct 2018 CN
108710865 Oct 2018 CN
105550701 Nov 2018 CN
108764185 Nov 2018 CN
108845574 Nov 2018 CN
108898177 Nov 2018 CN
109086867 Dec 2018 CN
107103113 Jan 2019 CN
109215067 Jan 2019 CN
109359731 Feb 2019 CN
109389207 Feb 2019 CN
109389552 Feb 2019 CN
106779060 Mar 2019 CN
109579856 Apr 2019 CN
109615073 Apr 2019 CN
106156754 May 2019 CN
106598226 May 2019 CN
106650922 May 2019 CN
109791626 May 2019 CN
109901595 Jun 2019 CN
109902732 Jun 2019 CN
109934163 Jun 2019 CN
109948428 Jun 2019 CN
109949257 Jun 2019 CN
109951710 Jun 2019 CN
109975308 Jul 2019 CN
109978132 Jul 2019 CN
109978161 Jul 2019 CN
110060202 Jul 2019 CN
110069071 Jul 2019 CN
110084086 Aug 2019 CN
110096937 Aug 2019 CN
110111340 Aug 2019 CN
110135485 Aug 2019 CN
110197270 Sep 2019 CN
110310264 Oct 2019 CN
110321965 Oct 2019 CN
110334801 Oct 2019 CN
110399875 Nov 2019 CN
110414362 Nov 2019 CN
110426051 Nov 2019 CN
110473173 Nov 2019 CN
110516665 Nov 2019 CN
110543837 Dec 2019 CN
110569899 Dec 2019 CN
110599864 Dec 2019 CN
110612431 Dec 2019 CN
110619282 Dec 2019 CN
110619283 Dec 2019 CN
110619330 Dec 2019 CN
110659628 Jan 2020 CN
110688992 Jan 2020 CN
107742311 Feb 2020 CN
110751280 Feb 2020 CN
110826566 Feb 2020 CN
107451659 Apr 2020 CN
108111873 Apr 2020 CN
110956185 Apr 2020 CN
110966991 Apr 2020 CN
111027549 Apr 2020 CN
111027575 Apr 2020 CN
111047225 Apr 2020 CN
111126453 May 2020 CN
111158355 May 2020 CN
107729998 Jun 2020 CN
108549934 Jun 2020 CN
111275129 Jun 2020 CN
111275618 Jun 2020 CN
111326023 Jun 2020 CN
111428943 Jul 2020 CN
111444821 Jul 2020 CN
111445420 Jul 2020 CN
111461052 Jul 2020 CN
111461053 Jul 2020 CN
111461110 Jul 2020 CN
110225341 Aug 2020 CN
111307162 Aug 2020 CN
111488770 Aug 2020 CN
111539514 Aug 2020 CN
111565318 Aug 2020 CN
111582216 Aug 2020 CN
111598095 Aug 2020 CN
108229526 Sep 2020 CN
111693972 Sep 2020 CN
106558058 Oct 2020 CN
107169560 Oct 2020 CN
107622258 Oct 2020 CN
111767801 Oct 2020 CN
111768002 Oct 2020 CN
111783545 Oct 2020 CN
111783971 Oct 2020 CN
111797657 Oct 2020 CN
111814623 Oct 2020 CN
111814902 Oct 2020 CN
111860499 Oct 2020 CN
111881856 Nov 2020 CN
111882579 Nov 2020 CN
111897639 Nov 2020 CN
111898507 Nov 2020 CN
111898523 Nov 2020 CN
111899227 Nov 2020 CN
112101175 Dec 2020 CN
112101562 Dec 2020 CN
112115953 Dec 2020 CN
111062973 Jan 2021 CN
111275080 Jan 2021 CN
112183739 Jan 2021 CN
112232497 Jan 2021 CN
112288658 Jan 2021 CN
112308095 Feb 2021 CN
112308799 Feb 2021 CN
112313663 Feb 2021 CN
112329552 Feb 2021 CN
112348783 Feb 2021 CN
111899245 Mar 2021 CN
202017102235 May 2017 DE
202017102238 May 2017 DE
102017116017 Jan 2019 DE
102018130821 Jun 2020 DE
102019008316 Aug 2020 DE
1215626 Sep 2008 EP
2228666 Sep 2012 EP
2420408 May 2013 EP
2723069 Apr 2014 EP
2741253 Jun 2014 EP
3115772 Jan 2017 EP
2618559 Aug 2017 EP
3285485 Feb 2018 EP
2863633 Feb 2019 EP
3113080 May 2019 EP
3525132 Aug 2019 EP
3531689 Aug 2019 EP
3537340 Sep 2019 EP
3543917 Sep 2019 EP
3608840 Feb 2020 EP
3657387 May 2020 EP
2396750 Jun 2020 EP
3664020 Jun 2020 EP
3690712 Aug 2020 EP
3690742 Aug 2020 EP
3722992 Oct 2020 EP
3690730 Nov 2020 EP
3739486 Nov 2020 EP
3501897 Dec 2020 EP
3751455 Dec 2020 EP
3783527 Feb 2021 EP
3657130 May 2023 EP
2402572 Aug 2005 GB
2548087 Sep 2017 GB
2577485 Apr 2020 GB
2517270 Jun 2020 GB
2578262 Aug 1998 JP
3890996 Mar 2007 JP
3941252 Jul 2007 JP
4282583 Jun 2009 JP
4300098 Jul 2009 JP
2015004922 Jan 2015 JP
5863536 Feb 2016 JP
6044134 Dec 2016 JP
2017-122713 Jul 2017 JP
6525707 Jun 2019 JP
2019101535 Jun 2019 JP
2020101927 Jul 2020 JP
2020173744 Oct 2020 JP
100326702 Feb 2002 KR
101082878 Nov 2011 KR
101738422 May 2017 KR
101969864 Apr 2019 KR
101996167 Jul 2019 KR
102022388 Aug 2019 KR
102043143 Nov 2019 KR
102095335 Mar 2020 KR
102097120 Apr 2020 KR
1020200085490 Jul 2020 KR
102189262 Dec 2020 KR
1020200142266 Dec 2020 KR
200630819 Sep 2006 TW
I294089 Mar 2008 TW
I306207 Feb 2009 TW
WO 02052835 Jul 2002 WO
WO 16032398 Mar 2016 WO
WO 16048108 Mar 2016 WO
WO 16207875 Dec 2016 WO
WO 17007626 Jan 2017 WO
WO 17116635 Jul 2017 WO
WO 17158622 Sep 2017 WO
WO-2018138584 Aug 2018 WO
WO 19005547 Jan 2019 WO
WO 19067695 Apr 2019 WO
WO 19089339 May 2019 WO
WO 19092456 May 2019 WO
WO 19099622 May 2019 WO
WO 19122952 Jun 2019 WO
WO 19125191 Jun 2019 WO
WO 19126755 Jun 2019 WO
WO 19144575 Aug 2019 WO
WO 19182782 Sep 2019 WO
WO 19191578 Oct 2019 WO
WO 19216938 Nov 2019 WO
WO 19220436 Nov 2019 WO
WO 20006154 Jan 2020 WO
WO 20012756 Jan 2020 WO
WO 20025696 Feb 2020 WO
WO 20034663 Feb 2020 WO
WO 20056157 Mar 2020 WO
WO 20076356 Apr 2020 WO
WO 20097221 May 2020 WO
WO 20101246 May 2020 WO
WO 20120050 Jun 2020 WO
WO 20121973 Jun 2020 WO
WO 20131140 Jun 2020 WO
WO 20139181 Jul 2020 WO
WO 20139355 Jul 2020 WO
WO 20139357 Jul 2020 WO
WO 20142193 Jul 2020 WO
WO 20146445 Jul 2020 WO
WO 20151329 Jul 2020 WO
WO 20157761 Aug 2020 WO
WO 20163455 Aug 2020 WO
WO 20167667 Aug 2020 WO
WO 20174262 Sep 2020 WO
WO 20177583 Sep 2020 WO
WO 20185233 Sep 2020 WO
WO 20185234 Sep 2020 WO
WO 20195658 Oct 2020 WO
WO 20198189 Oct 2020 WO
WO 20198779 Oct 2020 WO
WO 20205597 Oct 2020 WO
WO 20221200 Nov 2020 WO
WO 20240284 Dec 2020 WO
WO 20260020 Dec 2020 WO
WO 20264010 Dec 2020 WO
Related Publications (1)
Number Date Country
20230245415 A1 Aug 2023 US
Provisional Applications (1)
Number Date Country
62775287 Dec 2018 US
Continuations (1)
Number Date Country
Parent 16703660 Dec 2019 US
Child 18145632 US