Gaseous hydrocarbons, which are hydrocarbons that are gaseous at mild environmental temperatures such as 15° C. and atmospheric pressure, are often transported great distances by tanker in liquid form (“liquefied gas”) as LNG (liquefied natural gas) such as LPG (liquefied petroleum gas, commonly containing primarily propane and butane). To keep LNG liquid at approximately atmospheric pressure, it is maintained at a low temperature such as −160° C. in highly thermally insulated tanks. At the tanker offloading destination, the LNG is offloaded to an import terminal where it is vaporized (heated to turn it into a gas) and warmed, and where the warmed gas is passed though a pipeline to users or stored.
The heating of large quantities of liquefied gas can be done by flowing large quantities of seawater though a heat exchanger. However, such use of large quantities of seawater is not acceptable in many areas because large quantities of sea life such as fish eggs and small fish that flow into the sea water intake are destroyed, and because large decreases in local sea water temperature may harm sea life in general. Local regulations are increasingly limiting the use of sea water for such liquefied gas heating, especially in harbors where the seawater is largely isolated from the ocean. The limitations often specify the minimum temperature and maximum outflow rate of sea water. An alternative is the burning of fuel such as hydrocarbon gas to create hot gases that heat the rest of the hydrocarbon gas (e.g. in submerged combustion vaporization), but this uses large amounts of valuable fuel and creates environmentally harmful nitrogen oxides and chemically treated discharge that goes into the sea.
In accordance with the present invention, applicant heats liquid hydrocarbon gas that has been transported in a liquefied state (“liquefied gas”) by a tanker across a long distance to an import terminal lying in the vicinity of the final destination of the gas, by a method applied at the import terminal that is of low cost and that is environmentally friendly. The heating of the liquefied hydrocarbon gas is accomplished by vertically-extending air vaporizers, with the design of the air vaporizers known, although previously used in only small quantities and small capacities. In the air vaporizers, liquefied gas is directly or indirectly vaporized by an airflow which passes downward along the outside of the vaporizer tubes or pipes. The environmental air can be passively or actively passed over the vaporizer tubes. Electrically driven air blowers integrated with the air vaporizers can be used to create a forced air flow over a vaporizer that holds liquefied gas to dissipate fog and defrost the tubes. The liquefied gas entering the air vaporizers is at least 10° C. colder than the surrounding environmental temperature, and most of it has a temperature of below −30° C.
During operation of the air vaporizers, a layer of ice (simple ice and/or snowflakes) forms on the outside of the tubes and fins due to the low liquefied gas temperature. The ice layer increases in thickness with the duration of the operation of the vaporizer, and thus reduces its capacity to exchange heat. These vaporizers are operated in a repetitive cycle of vaporizing and defrosting of a limited number of vaporizers at a time, and in cold climates applicant uses blowers to blow air and uses heaters to remove ice. The consistency of the ice layer, and thus the thermal conductivity of the ice layer, varies with the local air humidity and precipitation, with the interior gas temperature, and with the operation cycle of the vaporizer. The performance of these vaporizers is very sensitive to the local air flow pattern and the air temperature distribution as the air exchanges heat with the vaporizer tubes. The vaporizers are normally designed for a certain ice layer thickness build-up. Before this invention, the performance of these vaporizers has been determined empirically, based on a single vaporizer unit, which has limited their use to small-scale applications, often for non-continuous operation.
A novelty of this invention is the idea to use this typically small-scale vaporizer technology for large-scale applications, such as for LNG import terminals. This requires many units positioned close to each other in order to minimize the required plot space and the associated cost. When operating many units in close proximity of each other, their thermal performance will be affected because of their mutual influence on cold air and on air of reduced humidity near the vaporizer tubes due to the condensation or sublimation of the water vapor in the air close to the cold tubes. Also a large cloud of fog can be formed in windless or low wind conditions, which will affect operation in certain applications. It is therefore useful to be able to predict the performance of a large amount of vaporizers in close proximity of each other, before large-scale application is warranted.
A computerized CFD (Computational Fluid Dynamics) calculation method has been developed to enable a reliable prediction in large-scale applications. This model not only allows for the air flow and temperature distribution, but also for ice sublimation and deposition on the tubes, and the prediction of fog, including its thickness and its rate of dispersion. It also calculates the duration of the vaporizing cycle and the defrosting cycle for large numbers of vaporizers, depending on the environmental conditions, spacing, elevation above ground level etc.
The invention is particularly suitable for application on floating offshore or inshore (within about 20 meters of low tide) structures, due to the limited plot space available, and the elevation of the vaporizers above the sea level, which enables a rapid dispersion of any formed fog cloud. However, the invention also may be applied for onshore import terminals where the conditions are acceptable.
A passive air flow over an ambient air vaporizer provides a simple and cost effective system. In cold and very humid environments, the passive ambient air vaporization system can be provided with additional blowers and heating elements (e.g. heating rods or steam pipes) to enhance the defrosting of built-up ice layers on the vaporizer tubes and fins, and melt ice which has fallen from fins onto the deck.
The novel features of the invention are set forth with particularity in the appended claims. The invention will be best understood from the following description when read in conjunction with the accompanying drawings.
The cold liquid hydrocarbon gas in the tanks 76 of the floating structure 74 must be heated to a gaseous state, or vaporized. Further, the cold but gaseous hydrocarbons must be further heated to a temperature of more than −30° C., preferably at least −10° C., and usually at least 0° C. to constitute warmed gas, before the gas is transferred though an underwater conduit 24 to a warmed gas receiving facility at 83. Such receiving facility is a facility that uses, stores and/or distributes hydrocarbon gas. Such a gas receiving facility can be an onshore, inshore (close to shore, usually within 20 meters of low tide) or offshore facility, that distributes or uses the gas and/or that stores the gas in pipes of a distribution network (by varying gas pressure). The gas storage facility may instead, or also include an underground cavern 20 that stores the warmed gas (over −30° C.) and later delivers it to the onshore or offshore warmed gas receiving facility. Vaporization is achieved by the use of air vaporizers 84 located on the floating structure. Item 110 in
One particular embodiment of the import terminal facility includes the floating structure 74 such as a vessel or a barge that supports a turret 72 that is anchored to the sea floor by catenary lines 22. A fluid swivel on the turret connects to an underwater conduit 24 which includes a riser hose 70 and a sea floor pipeline 26. The sea floor pipeline extends to a gas receiving facility 83. The conduit is also shown connected to a cavern for extra storage of gas. Another general type of import terminal has the storage tanks for the liquefied gas and the offloading system located on one floating vessel or barge (also called FSO, for Floating Storage and Offloading unit). However the vaporization system is located elsewhere, on an auxiliary structure, such as on a separate fixed platform 140 (
The import terminal using the air vaporization system may also be entirely onshore as shown in
As discussed earlier, previous import terminal systems have used sea water to heat the cold (liquid or gaseous and below −30° C.) hydrocarbons that are gaseous when heated, but the resulting large quantities of cold water discharged into the sea can harm sea life. Local authorities are passing increasingly severe law that limit how much water in their area can be cooled and the water discharge temperature. Heating by burning some of the gas stored in the import terminal uses up valuable gas and creates pollution.
In accordance with the present invention, applicant heats the liquefied gas to turn it into its gaseous phase, and heats the resulting cold (under −30° C.) hydrocarbon gas, at least partially using a large quantity (more than 10) of air vaporizers 84 (
Additional means for further direct or indirect heating of the warmed gas can be used when low ambient temperatures prevent the gas from being warmed to approximately 0° C. in the air vaporizers, including the use of flowing sea water (through pipes 114 in
There are many advantages in using naturally flowing air vaporizers to heat the liquefied and cold hydrocarbon gas. The use of air vaporizers minimizes the environmental impact dramatically. Air and water pollutants are much lower than for other cryogenic vaporization systems. Also this vaporization system has a lower cost than other methods. Since no sea water is required for the vaporization, the location of the vaporizers can be different from the location where the liquefied gas is stored. In one embodiment, where the vaporizers are located on a separate barge, the storage vessel (the FSO) can be simply a gas carrier vessel that can be chartered and needs no modifications. This will enable a much quicker implementation of the import terminal facility, compared with the building of an onshore terminal. Also, when both the liquefied gas storage facility and the vaporization facility are separate floating bodies, each of them can be easily replaced, as by a larger unit, without having to perform complex modifications to a unit which is in operation.
The invention includes not only the method for vaporizing and warming liquefied hydrocarbons that are gaseous at 15° C., but also covers generating, by means of computer calculation, the predicted thermal performance for a large number of units (more than 10) in close proximity, the build-up of ice on the finned pipes or tubes over time and the prediction of its properties, the flow of air between and around the vaporizers and its temperature distribution in space and over time, and the formation of fog and its distribution in space and over time. These calculations provide the basis for the sizing, the elevation above the surface, the relative positioning and the spacing of the individual vaporizers. When a large number of vaporizers are in close proximity, the well-known heat-transfer mechanisms and calculation methods are not applicable anymore. Therefore a new calculation method has been developed for the proper design of such large vaporizer banks.
Although particular embodiments of the invention have been described and illustrated herein, it is recognized that modifications and variations may readily occur to those skilled in the art, and consequently, it is intended that the claims be interpreted to cover such modifications and equivalents.
Number | Date | Country | |
---|---|---|---|
Parent | 11317953 | Dec 2005 | US |
Child | 12322524 | US |