The present invention relates generally to transparent conductive films in thin film solar cells and more specifically to transparent conductive films comprising magnetic nanostructures with work function matched to the solar cell material.
Optically transparent conductor layers are used in a variety of applications where a transparent conductor is either required or provides an advantage. Applications using transparent conductors include: liquid crystal displays, plasma displays, organic light emitting diodes, solar cells, etc. The transparent conducting oxides (TCOs), such as indium tin oxide and zinc oxide, are the most commonly used transparent conductor materials. However, TCO films represent a compromise between electrical conductivity and optical transparency—as carrier concentrations are increased to improve electrical conductivity, the optical transparency is reduced, and vice-a-versa. Furthermore, as the thickness of the TCO film is increased to improve electrical sheet resistance, the optical transparency is reduced. There is a need for optically transparent conductors with a more favorable compromise between electrical conductivity and optical transparency.
Attempts to find a more favorable combination of optical transparency and electrical conductivity in a thin film optically transparent conductor have resulted in investigation of materials comprising two-dimensional networks of carbon nanotubes and silver nanowires. An example of the latter is shown in
Embodiments of this invention provide an optically transparent conductive layer with a desirable combination of low electrical sheet resistance and good optical transparency. The transparent conductive layer is comprised of magnetic nanowires and/or magnetic nanoparticles which are (1) at a low enough density to provide good optical transparency, and (2) arranged to optimize electrical conductivity. The properties of the transparent conductive layer may be optimized to provide good optical transmission, greater than 90% over the wavelength range of 250 nm to 1.1 microns, and low sheet resistance, less than 20 Ohm/square at room temperature. The concepts and methods of this invention allow for integration of the transparent conductive layer into devices such as solar cells, displays and light emitting diodes.
According to aspects of this invention, a conductive layer comprises a multiplicity of magnetic nanowires in a plane, the nanowires being aligned roughly (1) parallel to each other and (2) with the long axes of the nanowires in the plane of the layer, the nanowires further being configured to provide a plurality of continuous conductive pathways, and wherein the density of the multiplicity of magnetic nanowires allows for substantial optical transparency of the conductive layer. Furthermore, the conductive layer may include an optically transparent continuous conductive film, wherein the multiplicity of magnetic nanowires are electrically connected to the continuous conductive film; the continuous conductive film may be either coating the multiplicity of magnetic nanowires or the multiplicity of magnetic nanowires may be on the surface of the continuous conductive film.
According to further aspects of this invention, a method of forming a conductive layer on a substrate is provided, where the conductive layer is substantially optically transparent and includes magnetic conductive nanowires. The method comprises: depositing a multiplicity of magnetic conductive nanowires on the substrate; and applying a magnetic field to form the nanowires into a plurality of conductive pathways parallel to the surface of the substrate. The depositing step may include spraying a liquid suspension of the nanowires onto the surface of the substrate. After the depositing step, the nanowires may be coated with a conductive metal, for example by an electroless plating process.
According to yet further aspects of this invention, the magnetic conductive nanowires may be compound magnetic nanowires. The compound magnetic nanowires may comprise: a non-magnetic conductive center; and a magnetic coating. For example, the non-magnetic center may be silver and the magnetic coating may be cobalt or nickel. Furthermore, the compound magnetic nanowires may comprise: a first cylindrical part comprising a magnetic material; and a second cylindrical part attached to the first cylindrical part, the first and second cylindrical parts being aligned coaxially, the second cylindrical part comprising a carbon nanotube.
According to another aspect of this invention, the method of forming a conductive layer on a substrate may further include providing a multiplicity of compound magnetic nanowires where the providing may include: forming silver nanowires in solution; and coating the silver nanowires with a magnetic metal. Furthermore, the providing of compound magnetic nanowires may include: forming a magnetic metal nanowire; and growing a carbon nanotube on the end of the magnetic metal nanowire.
According to aspects of this invention, a conductive layer comprises a multiplicity of magnetic nanoparticles in a plane, the nanoparticles being aligned in strings, the strings being roughly parallel to each other and configured to provide a plurality of continuous conductive pathways, and wherein the density of the multiplicity of magnetic nanoparticles allows for substantial optical transparency of the conductive layer. Furthermore, the conductive layer may include an optically transparent continuous conductive film, wherein the multiplicity of magnetic nanoparticles are electrically connected to the continuous conductive film; the continuous conductive film may be either coating the multiplicity of magnetic nanoparticles or the multiplicity of magnetic nanoparticles may be on the surface of the continuous conductive film.
According to further aspects of this invention, a method of forming a conductive layer on a substrate is provided, where the conductive layer is substantially optically transparent and includes magnetic conductive nanoparticles. The method comprises: depositing a multiplicity of magnetic conductive nanoparticles on the substrate; and applying a magnetic field to form the nanoparticles into a plurality of conductive pathways parallel to the surface of the substrate. The depositing may include spraying a liquid suspension of the nanoparticles onto the surface of the substrate. After the depositing step, the nanoparticles may be coated with a conductive metal, for example by an electroless plating process. Furthermore, the applying may include fusing the nanoparticles together in continuous conductive pathways.
Furthermore, the conductive layer formed using the methods of the present invention may be used to provide an enhanced semiconductor material to transparent conductive oxide (TCO) interface in thin film solar cells. Nickel and cobalt nanowires/nanoparticles are used with p-type silicon due to their work functions which match that of the p-type silicon and result in improved solar cell performance.
These and other aspects and features of the present invention will become apparent to those ordinarily skilled in the art upon review of the following description of specific embodiments of the invention in conjunction with the accompanying figures, wherein:
The present invention will now be described in detail with reference to the drawings, which are provided as illustrative examples of the invention so as to enable those skilled in the art to practice the invention. Notably, the figures and examples below are not meant to limit the scope of the present invention to a single embodiment, but other embodiments are possible by way of interchange of some or all of the described or illustrated elements. Moreover, where certain elements of the present invention can be partially or fully implemented using known components, only those portions of such known components that are necessary for an understanding of the present invention will be described, and detailed descriptions of other portions of such known components will be omitted so as not to obscure the invention. In the present specification, an embodiment showing a singular component should not be considered limiting; rather, the invention is intended to encompass other embodiments including a plurality of the same component, and vice-versa, unless explicitly stated otherwise herein. Moreover, applicants do not intend for any term in the specification or claims to be ascribed an uncommon or special meaning unless explicitly set forth as such. Further, the present invention encompasses present and future known equivalents to the known components referred to herein by way of illustration.
In general, the present invention contemplates a transparent conductive layer comprising magnetic nanowires and/or magnetic nanoparticles with an optimal combination of both electrical conductivity and optical transparency. The magnetic nanowires and/or magnetic nanoparticles are aligned in a magnetic field to form continuous conductive pathways in the plane of the conductive layer. The transparent conductive layer has a combination of substantial optical transparency and substantial electrical conductivity. For example, some embodiments of the transparent conductive layer may have optical transmission greater than 70% over the wavelength range of 250 nm through 510 nm, and sheet resistance less than 50 Ohm/square. A sub-set of these embodiments of the transparent conductive layer may have optical transmission of greater than 80% over the wavelength range of 250 nm through 1.1 microns, and sheet resistance less than 20 Ohm/square at room temperature. A further sub-set of these embodiments of the transparent conductive layer may have optical transmission greater than 90% over the wavelength range of 250 nm to 1.1 microns, and sheet resistance less than 20 Ohm/square at room temperature.
Furthermore, the conductive layer formed using the methods of the present invention may be used to provide an enhanced semiconductor material to transparent conductive oxide (TCO) interface in thin film solar cells. For example, nickel and cobalt nanowires/nanoparticles are used with p-type silicon due to their work functions which match that of the p-type silicon and result in improved solar cell performance.
Magnetic nanowires may be fabricated by an electrochemical process—either electroless deposition or electrodeposition—in a template. For example, nickel or cobalt metal may be deposited in the pores of porous anodized alumina. See Srivastava et al., Metallurgical and Materials Transactions A, 38A, 717 (2007); Bentley et al., J. Chem. Education, 82(5), 765 (2005); Yoon et al., Bull. Korean Chem. Soc., 23(11), 1519 (2002). The magnetic nanowires are in the general range of 5 to 300 nm in diameter, preferably 10-100 nm in diameter, and most preferably 40 nm in diameter. The magnetic nanowires may have an aspect ratio—length to diameter—in the range of 5:1 to 100:1, and preferably 10:1. The length to diameter ratio is primarily limited by the fabrication method of the nanowires. If a template is used to fabricate the nanowires, then the template is limiting the length to diameter ratio. The nanowires comprise magnetic material, such as nickel metal, as discussed in more detail below. Furthermore, processes for forming magnetic nanowires without using a template are described below with reference to
Magnetic nanoparticles may be fabricated by a solution method. For example, nickel/cobalt metal may be precipitated from a solution. The magnetic nanoparticles are in the general range of 5 to 300 nm in diameter, preferably 10-100 nm in diameter, and most preferably 40 nm in diameter. The magnetic nanoparticles are generally spherical; however, other shapes may be utilized, including dendritic forms. The nanoparticles comprise magnetic material, such as nickel and cobalt metals. See Srivastava et al.
First, some embodiments of the present invention including nanowires will be described with reference to
Referring again to
The nanowires 320 in
Nanowires 320 can comprise a single magnetic metal or a combination of metals chosen for their magnetic and electrical conductive properties.
Furthermore, compound nanowires can be fabricated wherein the compound nanowire 600 comprises a core 620 chosen for ease of fabrication and a coating 610 which is magnetic. For example, the core 620 can be a silver nanowire precipitated out of solution, and the coating 610 can be formed by electroless deposition of nickel or cobalt metal onto the silver nanowires. The silver nanowires also provide excellent electrical conductivity. The silver nanowires can be precipitated out of solution using a method such as that described by Kylee Korte, “Rapid Synthesis of Silver Nanowires,” 2007 National Nanotechnology Infrastructure Network Research Experience for Undergraduates Program Research Accomplishments, 28-29, available at http://www.nnin.org/doc/2007NNINreuRA.pdf last visited Jul. 9, 2009. The method described by Korte involves precipitation of silver nanowires from a solution including silver nitrate, poly(vinylpyrrolidone) (PVP), ethylene glycol and copper(II) chloride. This method may provide an inexpensive process, compared to electroplating of wires in an anodized alumina template, for forming silver nanowires with good control over nanowire dimensions. Silver nanowires are also commercially available. The silver nanowires can then be plated with nickel or cobalt metal using commercially available electroless plating solutions. Nickel coated silver wires may be fabricated with a diameter chosen over a wide range, although a 20-40 nanometer silver core diameter, with a 5-50 nanometer nickel coating is suitable for making a TCO replacement according to some embodiments of the present invention.
A method according to the present invention for forming a conductive layer such as the thin film 310 shown in
The integration of the aligned magnetic nanowires 720 and the electrically conductive, optically transparent thin film 705 provides an electrically conductive, optically transparent layer which, in preferred embodiments, has a long range electrical conductivity determined primarily by the properties of the aligned magnetic nanowires 720 and a short range electrical conductivity (on the length scale of the separation between adjacent continuous conductive pathways) determined primarily by the properties of the thin film 705. This integrated layer allows for a thin film 705 with a thickness optimized primarily for optical transparency, since the electrical conductivity is provided primarily by the aligned magnetic nanowires 720. The thin film 705 and the layer of aligned nanowires 720 are effectively two dimensional structures; therefore, the electrical conductivity of these structures may most conveniently be discussed in terms of sheet resistance. If a combination of magnetic nanowires and a thin electrically continuous conductive film is used, then it is not absolutely necessary for the magnetic nanowires to be all connected into a continuous string. Indeed, short interruptions in the string of nanowires may then be accommodated by a short current path through the electrically conductive film.
In an alternative embodiment (not shown), the aligned nanowires, as shown in
Some embodiments of the present invention which include nanoparticles will now be described, with reference to
Referring again to
The nanoparticles 820 in
Nanoparticles 820 can comprise a single magnetic metal or a combination of metals chosen for their magnetic and electrical conductive properties. For example, nanoparticles may have a core of a first metal and a coating of a second metal. The core may be a magnetic metal and the coating may be a metal chosen for its high electrical conductivity, or vice-versa. For example, the coating may comprise a metal such as copper, silver, gold, palladium or platinum, or a suitable alloy, chosen for electrical conductivity.
A method according to the present invention for forming a conductive layer such as the thin film 810 shown in
After the deposition of the nanoparticles, the substrate may be subjected to a hydrogen plasma to remove oxides from the surface of the particles. Furthermore, the substrate may be heated in a reducing atmosphere, so as to fuse together the nanoparticles. The heating may also improve the bonding of the nanoparticles to the substrate.
Furthermore, after the deposition, the nanoparticles may be coated with a conductive metal such as gold or silver, using techniques such as electroless plating. For example, nickel or cobalt nanoparticles may be immersion coated with silver or gold by a spray process such as electroless nickel immersion gold (ENIG). This immersion coating process may assist in fixing the nanoparticles in place in their aligned configuration.
In light of the description provided above with reference to
Carbon nanotubes (CNTs) have physical properties that make them attractive for use in a TCO layer replacement—for example an armchair (n,n) type CNT can carry approximately 103 times the current density of a copper wire of the same diameter. However, CNTs are not magnetic and therefore cannot be aligned in a magnetic field. In a further embodiment of the present invention, CNTs are formed into compound magnetic nanowires comprising a magnetic metal portion. These compound magnetic nanowires may be used in place of, or in combination with, the magnetic nanowires in some of the embodiments of the invention described above to form TCO replacement layers.
Although embodiments of the present invention have been described with reference to the use of either nanoparticles or nanowires, the present invention may be implemented with a combination of nanoparticles and nanowires or with any other equivalent nano-sized magnetic conductive objects.
Enhanced Silicon-Transparent Conductor Interface
Typical transparent conductors, such as zinc oxide and tin oxide materials, in thin film silicon solar cells have poor work function match to the p-Si layer. The prior art solution to this problem is to have a highly doped “shield” layer at the interface between the transparent conductor and the p-Si layer.
According to some embodiments of the present invention, a transparent conductive layer comprising magnetic nanostructures with a work function matching p-Si is used in place of or in addition to the typical TCO film. The nanostructures may be nanowires or nanoparticles, as described above. The nanostructures include a material, such as nickel, which has a work function close to or higher than that of the p-Si.
The concepts of the invention may also be applied to matching the work function of n-type silicon. A lower work function, around 4.25-4.35 eV, is required for matching n-type silicon. Suitable metals include Al, Ti, In, Ca and Mg; these metals are not magnetic, but may be coated onto a magnetic core, as described above with reference to
Further to the improved work function matching, some embodiments of the invention also provide improved adhesion of nanowires to p-type silicon. For example, nickel nanowires exhibit better adhesion to p-type silicon than silver nanowires. Consequently, Ni coated Ag nanowires may be used to advantage for improved adhesion and work function matching, while maintaining the high conductivity of the Ag. The Ag nanowires may be coated with Ni using an electroless plating process, for example. The Ag nanowires may first undergo a galvanic surface replacement process with a noble metal, such as Pd, to help facilitate the Ni coating. The Ag/Pd nanowires may then be placed into a Ni-containing plating solution, where the Ni can be deposited via electroless reduction onto the nanowire surface.
System 1301 is optional, since the nanowires may be deposited directly onto a glass substrate to form a transparent conductive electrode (TCE). Furthermore, glass substrates may be provided with a TCO already present on the surface using an in-line pyrolytic glass coating process.
Furthermore, after the nanowires are aligned on the surface of the TCO, the nanowires may be annealed and/or pressed using a compressive force to further improve the electrical connection between contacting nanowires and/or assist in fixing the nanowires in place in their aligned configuration. The nanowires may be annealed at temperatures ranging from 100-250° C. to facilitate fusing together or interconnecting individual nanowires in their aligned configuration. Additionally, the nanowires in their aligned configuration can be pressed or fused together using a hydraulic press to supply compressive force in the range of 1-20 tons prior to deposition of the silicon solar stack. To reduce contact resistance between nanowires, the nanowires may be subjected to one or more of etching, annealing and/or pressing. The etching removes surface oxide. Tools for annealing, pressing and etching may be included in system 1302.
Although the present invention has been described for a solar device as shown in
Although the present invention has been particularly described with reference to certain embodiments thereof, it should be readily apparent to those of ordinary skill in the art that changes and modifications in the form and details may be made without departing from the spirit and scope of the invention.
This application is a Continuation in Part of U.S. application Ser. No. 12/553,300, filed Sep. 3, 2009, which is a Continuation in Part of U.S. application Ser. No. 12/419,178, filed Apr. 6, 2009, which is a Continuation in Part of U.S. application Ser. No. 12/258,263, filed Oct. 24, 2008.
Number | Date | Country | |
---|---|---|---|
Parent | 12553300 | Sep 2009 | US |
Child | 12766829 | US | |
Parent | 12419178 | Apr 2009 | US |
Child | 12553300 | US | |
Parent | 12258263 | Oct 2008 | US |
Child | 12419178 | US |