The IEEE 802.11 standard specifies the medium access control (MAC) and physical characteristics for a wireless local area network (WLAN) to support physical layer units. The IEEE 802.11 standard is defined in International Standard ISO/IEC 8802-11, “IEEE Standard for Information technology—Telecommunications and information exchange between systems—Local and metropolitan area networks-Specific requirements, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications,” 1999 Edition [1], which is hereby incorporated by reference as if fully set forth herein. The following supplements to 802.11 are also herein incorporated by reference: IEEE 802.11h, IEEE TGk draft D 0.14, and IEEE TGe draft D8.0.
In certain regulatory domains, a station (STA) is not allowed to transmit frames in certain frequency bands until it determines that no radar exists in the band of interest, or it has been informed that radars of interest are not detected by an access point (AP). If the AP finds radar, it will report to the station, which will then shut the network in that channel and move to another channel. This movement is performed following 802.11 channel scanning procedure.
IEEE TGk, previously incorporated by reference, provides for WLAN roaming capability. This specification provides for scanning for radar to a fixed number of channels, i.e., the system will scan channels in a certain range that are permitted. To assist the system in scanning, a wireless station receives reports such as a Site Report or Neighbor Report collected from the APs that says which channels are available in the station's neighborhood. This reduces the amount of scanning required to determine available channels and minimizes a lag in transmission time.
Stations may have no capacity to detect radar themselves. In such regulatory domains, stations perform passive scanning to wait for beacons from access points. The beacons contain information whether radar is present in a channel or not. The beacons are transmitted at regular fixed intervals of time and are normally spaced farther apart for networking efficiency reasons. This has the drawback that when a station switches channels during roaming, it cannot transmit until it scans for radar or listens for beacons that contain radar information. This scanning for radar and/or listening for beacons leads to longer average wait times for stations performing passive scanning, up to one beacon period per scanned channel.
Thus, in order to reduce the average wait time, information regarding radar presence, a component of channel availability, must be obtained through alternate means.
The present invention is directed to an apparatus and method for determining available channels in a wireless network. In one aspect one method for determining available channels in a wireless network involves the steps of: receiving regulatory domain information within the wireless network; generating a report comprising at least one component corresponding to the regulatory domain information; transmitting the report; receiving the report at a STA; and determining whether a channel is available for transmission based, at least in part, on the component corresponding to said regulatory domain information contained in the report.
In one embodiment, the receiving step includes receiving regulatory domain information on a system level.
In another embodiment, the receiving step includes receiving the regulatory domain information wirelessly, through a wired system, or both.
In another embodiment, the transmitting step includes transmitting the report at an interval of time shorter than the interval of time between subsequent beacon transmissions.
In another embodiment, the transmitting step includes transmitting the report independent of beacon transmissions.
In another embodiment, the transmitting step includes transmitting the report from an AP when solicited by a STA.
In another embodiment, the transmitting step includes an unsolicited transmission of the report.
In another embodiment, the method includes transmitting in the channel based on the determining step.
In another embodiment, the report includes information on a collection of APs that are candidates to which an STA can roam.
In another embodiment, the report includes information on a collection of APs that are candidates to which an STA would prefer to roam.
In another embodiment, the generating step includes generating a report including at least one component corresponding to the regulatory domain information and at least one component corresponding to radar presence.
In another embodiment, the determining step includes determining whether a channel is available for transmission based, at least in part, on the component corresponding to regulatory domain information and the component corresponding to radar presence contained in the report.
In another aspect, a method for determining available channels in a wireless network includes the steps of: receiving regulatory domain information within the wireless network; generating a report including at least one component corresponding to regulatory domain information and at least one component corresponding to radar presence; transmitting the report; receiving the report at a STA; and determining whether a channel is available for transmission based, at least in part, on the component corresponding to regulatory domain information and the component corresponding to radar presence contained in the report.
In another aspect, a method for determining available channels in a wireless network includes the steps of: collecting regulatory domain information in at least one channel at an AP; generating a protocol frame format with at least one component corresponding to said regulatory domain information; transmitting the protocol frame format; and determining whether a channel is available for transmission based, at least in part, on the component corresponding to said regulatory domain information contained in the protocol frame format.
In one embodiment, the collecting step includes collecting regulatory domain information measuring at least one channel, retrieving regulatory information from a local database, or applying regulatory rules on the results of the radio measurement.
In another embodiment, the collecting step occurs through a wired network or through a wireless network.
In another embodiment, the transmitting step includes the AP transmitting the protocol frame format independent of regular beacons, either upon request by a STA or unsolicited.
In another aspect a system for determining available channels in a wireless network includes: a memory containing regulatory domain information; a transmission device for transmitting the regulatory domain information within the wireless network; a receiver for receiving the regulatory domain information; a report generator which generates a report containing at least one component corresponding to the regulatory domain information; a transmitter for transmitting the report; a STA for receiving the report; and a processor for determining whether a channel is available for transmission based, at least in part, on the component corresponding to the regulatory domain information contained in the report.
In another aspect, a system for determining available channels in a wireless network includes: a memory containing regulatory domain information; a transmission device for transmitting the regulatory domain information within the wireless network; a receiver for receiving the regulatory domain information; a detector for detecting the presence of radar; a report generator which generates a report containing at least one component corresponding to the regulatory domain information and at least one component corresponding to radar presence; a transmitter for transmitting the report; a STA for receiving the report; and a processor for determining whether a channel is available for transmission based, at least in part, on the component corresponding to the regulatory domain information and the component corresponding to radar presence.
The invention provides many advantages, some of which are elucidated with reference to the embodiments below.
With continued reference to
If present, AP 24 may be an interface for communicating between wireless network 20 and a wireline network. AP 24 may be configured to provide a communications gateway between STAs 26 and AP 24 that are in cell 22 and also between a wireline network and the STAs 26. AP 24 is typically configured to convert signals between wireline and wireless communications mediums. The conversion may allow the access point to pass communication information between the wireline network and wireless STAs 26. The wireline network may be coupled to an external network 29 (e.g., PBX, PSTN, Internet, etc.).
Referring now to
In operation, in a typical 802.11-based wireless local area network (WLAN), such as wireless LAN 20 of
AP 24 may broadcast or transmit a report such as a Site Report or Neighbor report in Site Report protocol frames. Regulatory domain information may be included in and conveyed with the report.
BSSID 302 is the address of the STA 26 contained in the AP 24. The subsequent fields, including BSSID Match Status 303, Current Channel 304, and PHY Type 306 are presumed to be for corresponding BSSID.
BSSID Match Status 303 is, for example, a two-octet field containing the information shown in
Returning to the Site Report of
Channel Band field 305 contains an enumerated value from a table which specifies the frequency band in which the Current Channel is valid. This information is generated from a table outlined in TGk draft D1.0 Table kl, previously incorporated by reference, from which APs can specify bands in which the Current Channel is valid.
PHY Type field 306 represents the PHY type of the AP 24 represented by BSSID. IF the BSSID has more than one PHY type there will be a duplicate BSSID entry in the Site Report.
Maximum Transit Power Level field 307 is, for example, one octet in length. It indicates the maximum power, for example in dBm, allowed to be transmitted in the system.
Local Power Constraint field 308 is set to a value that allows mitigation requirements to be satisfied in the current channel. It is coded, for example, as an unsigned integer in units of dB. The local maximum transmit power for a channel is defined, e.g., as the Maximum Transmit Power Level specified for the channel in a Country element (not shown) minus the Local Power Constraint specified for the channel (for the MIB) in the Power Constraint element.
Signal/Map field 309 is coded as a bit field.
BSS bit 501 can be set equal to 1 when at least one valid MAC Protocol Data Unit (MPDU) was received in the channel during the measurement period from another BSS or IBSS. Otherwise the bit is set equal to 0.
OFDM Preamble bit 502 can be set equal to 1 when at least one sequence of short training symbols, as defined in IEEE 802.11-1999 Reaf 2003 section 17.3.3, was detected in the channel during the measurement period without a subsequent valid Signal field. This may indicate the presence of an OFDM preamble, such as HIPERLAN/2. Otherwise, the OFDM Preamble bit is set equal to 0.
Unidentified Signal bit 503 can be set equal to 1 when significant power is detected in the channel during the measurement period that cannot be characterized as radar, an OFDM preamble, or a valid MPDU. Otherwise, the Unidentified Signal bit is set equal to 0. The definition of significant power is implementation dependent.
Radar bit 504 can be set equal to 1 when radar was detected operating in the channel by the system during a measurement period. The algorithm to detect radar satisfies regulatory requirements in a given region and is beyond the scope of the TGk standard. If no radar was detected during the measurement period, the Radar bit is set to equal 0.
Unmeasured bit 505 can be set equal to 1 when this channel ahs not been measured. Otherwise it is set equal to 0. When the Unmeasured bit 505 is set equal to 1, all the other fields in Signal/Map field 309 are set to equal 0.
A subset of the information elements, or a subset of the fields, or a subset of the bits within the fields, or a combination thereof could be used in the proposed protocol frame. Additionally, the length of the fields is given as an example only. The field lengths could be made fixed or variable, or the byte count changed to accommodate different ranges of information known in the art.
The present invention has been described with respect to particular illustrative embodiments. It is to be understood that the invention is not limited to the above-described embodiments and modifications thereto, and that those of ordinary skill in the art may make various changes and modifications without departing from the spirit and scope of the appended claims.
In interpreting the appended claims, it should be understood that:
a) the word “comprising” does not exclude the presence of other elements or acts than those listed in a given claim;
b) the word “a” or “an” preceding an element does not exclude the presence of a plurality of such elements;
c) any reference signs in the claims do not limit their scope;
d) several “means” may be represented by the same item or hardware or software implemented structure or function;
e) any of the disclosed elements may be comprised of hardware portions (e.g., including discrete and integrated electronic circuitry), software portions (e.g., computer programming), and any combination thereof;
f) hardware portions may be comprised of one or both of analog and digital portions;
g) any of the disclosed devices or portions thereof may be combined together or separated into further portions unless specifically stated otherwise; and
h) no specific sequence of acts is intended to be required unless specifically indicated.
This application claims the benefits of provisional application Ser. No. 60/586,945, filed on Jul. 9, 2004, the teachings of which are incorporated herein by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB2005/052272 | 7/7/2005 | WO | 00 | 1/8/2007 |
Number | Date | Country | |
---|---|---|---|
60586945 | Jul 2004 | US | |
60635685 | Dec 2004 | US |