Conventionally, some portable electronic devices use glass as a part of their devices, either internal or external. Externally, a glass part can be provided as part of a housing, such a glass part is often referred to as a cover glass. The transparent and scratch-resistance characteristics of glass make it well suited for such applications. Internally, glass parts can be provided to support display technology. More particularly, for supporting a display, a portable electronic device can provide a display technology layer beneath an outer cover glass. A sensing arrangement can also be provided with or adjacent the display technology layer. By way of example, the display technology layer may include or pertain to a Liquid Crystal Display (LCD) that includes a Liquid Crystal Module (LCM). The LCM generally includes an upper glass sheet and a lower glass sheet that sandwich a liquid crystal layer therebetween. The sensing arrangement may be a touch sensing arrangement such as those used to create a touch screen. For example, a capacitive sensing touch screen can include substantially transparent sensing points or nodes dispersed about a sheet of glass.
Unfortunately, however, use of glass with portable electronic devices requires that the glass be relatively thin. Generally speaking, the thinner the glass the more susceptible the glass is to damage when the portable electronic device is stressed or placed under a significant force. Chemically strengthening has been used to strengthen glass. While chemically strengthening is effective, there is a continuing need to provide improved ways to strengthen glass, namely, thin glass.
The invention relates generally to increasing the strength of glass. Through multi-bath chemical processing greater levels of strengthening can be achieved for glass articles. The multi-bath chemical processing can be achieved through the use of successive chemical baths. The use of multi-bath chemical processing for a glass article can enhance the effectiveness of the chemical strengthening process. Accordingly, glass articles that have undergone multi-bath chemical processing are able to be not only thin but also sufficiently strong and resistant to damage. The strengthened glass articles are well suited for use in consumer products, such as consumer electronic devices (e.g., portable electronic devices).
The invention can be implemented in numerous ways, including as a method, system, device, or apparatus. Several embodiments of the invention are discussed below.
As a method for strengthening a piece of glass, one embodiment can, for example, include at least obtaining a piece of glass that is to be chemically strengthened, enhancing the glass to make it more susceptible to chemical strengthening, and subsequently chemically strengthening the enhanced glass.
As a glass strengthening system for glass articles, one embodiment can, for example, includes at least a first bath station providing a sodium solution, and a second bath station providing a potassium solution. The first bath station serves to receive a glass article and to introduce sodium ions into surfaces of the glass article. The second bath station serves to receive the glass article following the first bath station and to exchange potassium ions for sodium ions within the glass article.
As a method for processing a glass piece to improve its strength, one embodiment can, for example, include at least: submerging the glass piece in a heated sodium bath, determining whether the glass piece should be removed from the heated sodium bath, subsequently submerging the glass piece in a heated potassium bath, determining whether the glass piece should be removed from the heated potassium bath, and performing post-processing on the glass piece following removal of the glass piece from the heated potassium bath.
A method for processing a glass piece to improve its strength, another embodiment can, for example, include at least: submerging the glass piece in a heated sodium bath; removing the glass piece from the heated sodium bath after being in the heated sodium solution for a first duration; subsequently submerging the glass piece in a heated potassium bath; removing the glass piece from the heated potassium bath after being in the heated potassium solution for a second duration; and performing post-processing on the glass piece following removal of the glass piece from the heated potassium bath.
Other aspects and advantages of the invention will become apparent from the following detailed description taken in conjunction with the accompanying drawings which illustrate, by way of example, the principles of the invention.
The invention will be readily understood by the following detailed description in conjunction with the accompanying drawings, wherein like reference numerals designate like structural elements, and in which:
The invention relates generally to increasing the strength of glass. Through multi-bath chemical processing greater levels of strengthening can be achieved for glass articles. The multi-bath chemical processing can be achieved through the use of successive chemical baths. The use of multi-bath chemical processing for a glass article can enhance the effectiveness of the chemical strengthening process. Accordingly, glass articles that have undergone multi-bath chemical processing are able to be not only thin but also sufficiently strong and resistant to damage. The strengthened glass articles are well suited for use in consumer products, such as consumer electronic devices (e.g., portable electronic devices).
Embodiments of the invention can relate to apparatus, systems and methods for improving strength of a thin glass member for a consumer product, such as a consumer electronic device. In one embodiment, the glass member may be an outer surface of a consumer electronic device. For example, the glass member may, for example, correspond to a glass cover that helps form part of a display area of the electronic device (i.e., situated in front of a display either as a separate part or integrated within the display). As another example, the glass member may form a part of a housing for the consumer electronic device (e.g., may form an outer surface other than in the display area). In another embodiment, the glass member may be an inner component of a consumer electronic device. For example, the glass member can be a component glass piece of a LCD display provided internal to the housing of the consumer electronic device.
The apparatus, systems and methods for improving strength of thin glass are especially suitable for glass covers or displays (e.g., LCD displays), particularly those assembled in small form factor electronic devices such as handheld electronic devices (e.g., mobile phones, media players, personal digital assistants, remote controls, etc.). The glass can be thin in these small form factor embodiments, such as less than 3 mm, or more particularly between 0.3 and 2.5 mm. The apparatus, systems and methods can also be used for glass covers or displays for other devices including, but not limited to including, relatively larger form factor electronic devices (e.g., portable computers, tablet computers, displays, monitors, televisions, etc.). The glass can also be thin in these larger form factor embodiments, such as less than 5 mm, or more particularly between 0.3 and 3 mm.
Embodiments of the invention are discussed below with reference to
The glass strengthening process 100 can enhance 104 the glass for subsequent chemical strengthening. In one implementation, the glass can be enhanced 104 chemically through chemical processing. Specifically, the glass can be placed in a sodium solution so that sodium ions can migrate from the sodium solution into the glass, namely into the exposed surfaces of the glass.
After the glass has been enhanced 104, the enhanced glass can be chemically strengthened 106. In one implementation, the enhanced glass can be chemically strengthened 106 through chemical processing. Specifically, the enhanced glass can be placed in a potassium solution so that potassium ions from the potassium solution can be exchanged for sodium ions within the enhanced glass.
By enhancing 104 the glass, the glass becomes more susceptible to chemical strengthening 106. In other words, the glass can be strengthened to a greater extent when the glass has been enhanced 104. Following block 106, the piece of glass has been chemically strengthened. Due to the enhancement of the glass, the glass is able to be chemically strengthened to a greater extent. Following the chemical strengthening, the glass strengthening process 100 can end.
Furthermore, following removal of the glass article from the second bath 208, post-processing can be performed on the glass article. Post-processing can vary widely dependent on intended application for the glass article. However, post-processing can, for example, include one or more of rinsing, polishing, annealing and the like.
The sodium solution 206 within the first bath 204 can be heated to a predetermined temperature, and the glass article 202 can be immersed within the first bath 204 for a predetermined period of time. The degree of enhancement of the glass article 202 is dependent on: (1) type of glass, (2) concentration of bath (e.g., Na concentration), (3) time in the first bath 204, and (4) temperature of the first bath 204. Likewise, the potassium solution 210 within the second bath 208 can be heated to a predetermined temperature, and the glass article 202 can be immersed within the second bath 208 for a predetermined period of time. The degree of chemically strengthening provided by the second bath 208 to the glass article is dependent on: (1) type of glass, (2) concentration of bath (e.g., K concentration), (3) time in the second bath 208, and (4) temperature of the second bath 208.
In one implementation, the glass for the glass article can, for example, be alumina silicate glass or soda lime glass. Also, glass from different suppliers, even if the same type of glass, can have different properties and thus may require different values. The first bath 204 can be a sodium (Na) bath or a sodium nitrate (NaNO3) bath, in either case with a sodium concentration of 30%-100% mol. In another embodiment the first bath 204 can be a sodium nitrate (NaNO3) and potassium nitrate (KNO3) bath. The time for the glass article 202 to remain immersed in the first bath 204 can be about 4-8 hours and the temperature for the first bath 204 can be about 350-450 degrees Celsius. The time for the glass article 202 to remain immersed in the second bath 208 can be about 6-20 hours and the temperature for the second bath 208 can be about 300-500 degrees Celsius.
The glass piece process 300 initially obtains 302 a piece of glass. The glass piece can be submerged 304 in a heated sodium bath. A decision 306 can then determine whether the glass piece should be removed from the heated sodium bath. For example, the heated sodium bath can be maintained at a predetermined temperature and the glass piece can be submerged within the heated sodium for a predetermined period of time. As an example, the decision 306 can determine that the glass piece should be removed from the heated sodium bath after the glass piece has been immersed in the heated sodium bath for the predetermined amount of time.
Once the decision 306 determines that the glass piece is to be removed from the heated sodium bath, the glass piece can then be submerged 308 into a heated potassium bath. A decision 310 can then determine whether the glass piece should be removed from the heated potassium bath. The heated potassium bath can, for example, be maintained at a predetermined temperature and the glass piece can be submerged within the heated potassium bath for a predetermined period of time.
Once the decision 310 determines that the glass piece is to be removed from the potassium bath, post-processing on the glass piece can be performed 312. The post-processing can vary depending upon application. For example, the post-processing can include one or more of: polishing, grinding, heating, annealing, cleaning and the like for the glass piece. Typically, the post-processing is performed on the glass piece to make the glass piece more suitable for its intended usage.
Following the performing 312 of the post-processing, the glass piece can be utilized 314 in a consumer product. The glass piece can be used as an outer portion of a housing for the consumer product, or can be used as an internal component (e.g., LCD glass panel) glass piece. For example, the consumer product can be a consumer electronics product, such as a portable electronic device. Following the block 314, the glass piece process 300 can end.
The predetermined temperature for use with the heated potassium bath can be the same or different than the predetermined temperature for use with the heated sodium bath. The predetermined period of time for use with the heated potassium bath can be the same or different than the predetermined period of time for use with the heated sodium bath. For example, the glass piece can be immersed in a heated sodium bath at a temperature of about 350-450 degrees Celsius for a predetermined amount of time of about 4-8 hours. Also, for example, the glass piece can be immersed in a heated potassium bath at a temperature of about 300-500 degrees Celsius for a predetermined amount of time of about 6-20 hours.
According to another embodiment, glass processing can further include an additional bath. The additional bath can be provided to provide a small amount of back exchange of ions at the surfaces of a glass piece (glass article). The back exchange can serve to exchange potassium ions from the glass piece for sodium ions. This back exchange process can be useful to move a compressive maximum inward from the outer edges (10-70 micrometers) as defects or cracks proximate the edges reside slightly inward from the edges and are weak points that render the glass piece more susceptible to causing damage to the glass member.
Additionally, after the glass article 402 has been removed from the second bath 408, the glass article can be provided to a third bath station where a third bath 412 is provided. The glass article 402 can be inserted (e.g., immersed) into the third bath 412 which includes a sodium solution 414. Here, potassium ions from the glass article exchange with sodium ions in the sodium solution. This can be referred to as a back exchange because some ions previously exchanged with the glass article are effectively unexchanged or returned. Subsequently, the glass article 402 is removed from the third bath 412.
The sodium solution 406 within the first bath 404 can be heated to a predetermined temperature, and the glass article 402 can be immersed within the first bath 404 for a predetermined period of time. The degree of enhancement of the glass article is dependent on at least: (1) type of glass, (2) concentration of bath (e.g., Na concentration), (3) time in the first bath 402, and (4) temperature of the first bath 402. Likewise, the potassium solution 410 within the second bath 408 can heated to a predetermined temperature, and the glass article 402 can be immersed within the second bath 408 for a predetermined period of time. Still further, the sodium solution 414 within the third bath 412 can heated to a predetermined temperature, and the glass article 402 can be immersed within the third bath 412 for a predetermined period of time.
The predetermined period of time for use with the second bath 408 can be the same or different than the predetermined period of time for use with the first bath 404 or the third bath 412. The predetermined period of time for use with the third bath 412 can be the same or different than the predetermined period of time for use with the first bath 404 or the second bath 408. Typically, the predetermined period of time for use with the third bath 412 is substantially less than the predetermined period of time for use with the first bath 404.
Furthermore, following removal of the glass article from the third bath 412, post-processing can be performed on the glass article. Post-processing can vary widely dependent on intended application for the glass article. However, post-processing can, for example, include one or more of rinsing, polishing, annealing and the like.
The sodium solution 406 within the first bath 404 can be heated to a predetermined temperature, and the glass article 402 can be immersed within the first bath 404 for a predetermined period of time. The degree of enhancement of the glass article 402 is dependent on: (1) type of glass, (2) concentration of bath (e.g., Na concentration), (3) time in the first bath 404, and (4) temperature of the first bath 404. Likewise, the potassium solution 410 within the second bath 408 can heated to a predetermined temperature, and the glass article 402 can be immersed within the second bath 408 for a predetermined period of time. The degree of chemically strengthening provided by the second bath 408 to the glass article is dependent on: (1) type of glass, (2) concentration of bath (e.g., K concentration), (3) time in the second bath 408, and (4) temperature of the second bath 408.
In one implementation, the glass for the glass article can, for example, be alumina silicate glass or soda lime glass. Also, glass from different suppliers, even if the same type of glass, can have different properties and thus may require different values. The first bath 404 can be a sodium (Na) bath or a sodium nitrate (NaNO3) bath, in either case with a sodium concentration of 30%-100% mol. The time for the glass article 402 to remain immersed in the first bath 404 can be about 4-8 hours and the temperature for the first bath 404 can be about 350-450 degrees Celsius. The time for the glass article 402 to remain immersed in the second bath 408 can be about 6-20 hours and the temperature for the second bath 408 can be about 300-500 degrees Celsius. The third bath 412 can be a sodium (Na) bath or a sodium nitrate (NaNO3) bath, in either case with a sodium concentration of 30%-100% mol. The time for the glass article 402 to remain immersed in the third bath 412 can be about 1-30 minutes and the temperature for the third bath 412 can be about 350-450 degrees Celsius.
The back exchange process 500 provides an additional bath for providing back exchange of sodium into the glass piece. According to the back exchange process 500, the glass piece can be submerged 502 into a heated sodium bath. A decision 504 can then determine whether the glass piece should be removed from the heated sodium bath. For example, the heated sodium bath can be maintained at a predetermined temperature and the glass piece can be submerged within the heated sodium bath for a predetermined period of time. As an example, the decision 504 can determine that the glass piece should be removed from the heated sodium bath after the glass piece has been immersed in the heated sodium bath for the predetermined amount of time.
Once the decision 504 determines that the glass piece is to be removed from the heated sodium bath, the processing of the glass piece can then return to perform pre-processing at block 312 and subsequent operations of the glass piece process 300 illustrated in
In the back exchange process 500, the heated sodium bath can be heated to a predetermined temperature, and the glass piece can be immersed within the heated sodium bath for a predetermined period of time. The extent of the back exchange fir the glass piece can be dependent on: (1) type of glass, (2) concentration of bath (e.g., Na concentration), (3) time in the sodium bath, and (4) temperature of the sodium bath. In one implementation, the glass for the glass piece can, for example, be alumina silicate glass or soda lime glass. Also, glass from different suppliers, even if the same type of glass, can have different properties and thus may require different values. The heated sodium bath can be a sodium (Na) bath or a sodium nitrate (NaNO3) bath, in either case with a sodium concentration of 30%-100% mol. The predetermined period of time for the glass piece to remain immersed in the heated sodium bath for back exchange can be about 1-30 minutes and the temperature for the heated sodium bath can be about 350-450 degrees Celsius.
As previously discussed, glass covers can be used as an outer surface of portions of a housing for electronic devices, such as portable electronic devices. Those portable electronic devices that are small and highly portable can be referred to as handheld electronic devices. A handheld electronic device may, for example, function as a media player, phone, internet browser, email unit or some combination of two or more of such. A handheld electronic device generally includes a housing and a display area.
Cover window 604 may generally be arranged or embodied in a variety of ways. By way of example, cover window 604 may be configured as a protective glass piece that is positioned over an underlying display (e.g., display assembly 606) such as a flat panel display (e.g., LCD) or touch screen display (e.g., LCD and a touch layer). Alternatively, cover window 604 may effectively be integrated with a display, i.e., glass window may be formed as at least a portion of a display. Additionally, cover window 604 may be substantially integrated with a touch sensing device such as a touch layer associated with a touch screen. In some cases, cover window 604 can serve as the outer most layer of the display.
Cover window 704 is primarily transparent so that display assembly 706 is visible through cover window 704. Display assembly 706 can, for example, be positioned adjacent cover window 704. Housing 702 can also contain internal electrical components besides the display assembly, such as a controller (processor), memory, communications circuitry, etc. Display assembly 706 can, for example, include a LCD module. By way of example, display assembly 706 may include a Liquid Crystal Display (LCD) that includes a Liquid Crystal Module (LCM). In one embodiment, cover window 704 is integrally formed with the LCM. Housing 702 can also include an opening 708 for containing the internal electrical components to provide electronic device 700 with electronic capabilities.
The front surface of electronic device 700 can also include user interface control 708 (e.g., click wheel control). In this embodiment, cover window 704 does not cover the entire front surface of electronic device 700. Electronic device 700 essentially includes a partial display area that covers a portion of the front surface.
Cover window 704 may generally be arranged or embodied in a variety of ways. By way of example, cover window 704 may be configured as a protective glass piece that is positioned over an underlying display (e.g., display assembly 706) such as a flat panel display (e.g., LCD) or touch screen display (e.g., LCD and a touch layer). Alternatively, cover window 704 may effectively be integrated with a display, i.e., glass window may be formed as at least a portion of a display. Additionally, cover window 704 may be substantially integrated with a touch sensing device such as a touch layer associated with a touch screen. In some cases, cover window 704 can serve as the outer most layer of the display.
As noted above, the electronic device can be a handheld electronic device or a portable electronic device. The invention can serve to enable a glass cover to be not only thin but also adequately strong. Since handheld electronic devices and portable electronic devices are mobile, they are potentially subjected to various different impact events and stresses that stationary devices are not subjected to. As such, the invention is well suited for implementation of glass surfaces for handheld electronic device or a portable electronic device that are designed to be thin.
The strengthened glass, e.g., glass covers or cover windows, is particularly useful for thin glass applications. For example, the thickness of a glass cover being strengthen can be between about 0.5-2.5 mm. In other embodiments, the strengthening is suitable for glass products whose thickness is less than about 2 mm, or even thinner than about 1 mm, or still even thinner than about 0.6 mm.
Chemically strengthening glass, e.g., glass covers or cover windows, can be more effective for edges of glass that are rounded by a predetermined edge geometry having a predetermined curvature (or edge radius) of at least 10% of the thickness applied to the corners of the edges of the glass. In other embodiments, the predetermined curvature can be between 20% to 50% of the thickness of the glass. A predetermined curvature of 50% can also be considered a continuous curvature, one example of which is illustrated in
In one embodiment, the size of the glass cover depends on the size of the associated electronic device. For example, with handheld electronic devices, the size of the glass cover is often not more than five (5) inches (about 12.7 cm) diagonal. As another example, for portable electronic devices, such as smaller portable computers or tablet computers, the size of the glass cover is often between four (4) (about 10.2 cm) to twelve (12) inches (about 30.5 cm) diagonal. As still another example, for portable electronic devices, such as full size portable computers, displays (including televisions) or monitors, the size of the glass cover is often between ten (10) (about 25.4 cm) to twenty (20) inches (about 50.8 cm) diagonal or even larger.
However, it should be appreciated that with larger screen sizes, the thickness of the glass layers may need to be greater. The thickness of the glass layers may need to be increased to maintain planarity of the larger glass layers. While the displays can still remain relatively thin, the minimum thickness can increase with increasing screen size. For example, the minimum thickness of the glass cover can correspond to about 0.3 mm for small handheld electronic devices, about 0.5 mm for smaller portable computers or tablet computers, about 1.0 mm or more for full size portable computers, displays or monitors, again depending on the size of the screen. However, more generally, the thickness of the glass cover can depend on the application and/or the size of electronic device.
As discussed above, glass cover or, more generally, a glass piece may be chemically treated such that surfaces of the glass are effectively strengthened. Through such strengthening, glass pieces can be made stronger so that thinner glass pieces can be used with consumer electronic device. Thinner glass with sufficient strength allows for consumer electronic device to become thinner.
In step 804, the glass piece can be placed on a rack. The rack is typically configured to support the glass piece, as well as other glass pieces, during chemical treatment. Once the glass piece is placed on the rack, the rack can be submerged in a heated ion bath in step 806. The heated ion bath may generally be a bath which includes a concentration of ions (e.g., Alkali metal ions, such as Lithium, Cesium or Potassium). It should be appreciated that the concentration of ions in the bath may vary, as varying the concentration of ions allows compression stresses on surfaces of the glass to be controlled. The heated ion bath may be heated to any suitable temperature to facilitate ion exchange.
After the rack is submerged in the heated ion bath, an ion exchange is allowed to occur in step 808 between the ion bath and the glass piece held on the rack. A diffusion exchange occurs between the glass piece, which generally includes Na+ ions, and the ion bath. During the diffusion exchange, Alkali metal ions, which are larger than Na+ ions, effectively replace the Na+ ions in the glass piece. In general, the Na+ ions near surface areas of the glass piece may be replaced by the Alkali ions, while Na+ ions are essentially not replaced by Alkali ions in portions of the glass which are not surface areas. As a result of the Alkali ions replacing Na+ ions in the glass piece, a compressive layer is effectively generated near the surface of the glass piece. The Na+ ions which have been displaced from the glass piece by the Alkali metal ions become a part of the ion solution.
A determination can be made in step 810 as to whether a period of time for submerging the rack in the heated ion bath has ended. It should be appreciated that the amount of time that a rack is to be submerged may vary widely depending on implementation. Typically, the longer a rack is submerged, i.e., the higher the exchange time for Alkali metal ions and Na+ ions, the deeper the depth of the chemically strengthened layer. For example, with thickness of the glass sheet being on the order of 1 mm, the chemical processing (i.e., ion exchange) provided in the ion bath can be provide into the surfaces of the glass pieces 10 micrometers or more. For example, if the glass pieces are formed from soda lime glass, the depth of the compression layer due to the ion exchange can be about 10 microns. As another example, if the glass pieces are formed from alumino silicate glass, the depth of the compression layer due to the ion exchange can be about 50 microns.
If the determination in step 810 is that the period of time for submerging the rack in the heated ion bath has not ended, then process 800 flow can return to step 817 in which the chemical reaction is allowed to continue to occur between the ion bath and the glass piece. Alternatively, if it is determined that the period of time for submersion has ended, then the rack can be removed from the ion bath in step 812. Upon removing the rack from the ion bath, the glass piece may be removed from the rack in step 814, and the process 800 of chemically treating surfaces of a glass piece can be completed. However, if desired, the glass piece can be polished. Polishing can, for example, remove any haze or residue on the glass piece following the chemical treatment.
A glass cover which has undergone a chemical strengthening process generally includes a chemically strengthened layer, as previously mentioned.
Chemically strengthened layer 928 has a thickness (y) which may vary depending upon the requirements of a particular system in which glass cover 900 is to be utilized. Non-chemically strengthened portion 926 generally includes Na+ ions 934 but no Alkali metal ions 936. A chemical strengthening process causes chemically strengthened layer 928 to be formed such that chemically strengthened layer 928 includes both Na+ ions 934 and Alkali metal ions 936.
The concentration of Alkali metal ions in an ion bath may be varied while a glass cover is soaking in the ion bath. In other words, the concentration of Alkali metal ions in a ion bath may be maintained substantially constant, may be increased, and/or may be decreased while a glass cover is submerged in the ion bath without departing from the spirit or the scope of the present invention. For example, as Alkali metal ions displace Na+ ions in the glass, the Na+ ions become part of the ion bath. Hence, the concentration of Alkali metal ions in the ion bath may change unless additional Alkali metal ions are added into the ion bath.
The techniques describe herein may be applied to glass surfaces used by any of a variety of electronic devices including but not limited handheld electronic devices, portable electronic devices and substantially stationary electronic devices. Examples of these include any known consumer electronic device that includes a display. By way of example, and not by way of limitation, the electronic device may correspond to media players, mobile phones (e.g., cellular phones), PDAs, remote controls, notebooks, tablet PCs, monitors, all in one computers and the like.
The various aspects, features, embodiments or implementations of the invention described above can be used alone or in various combinations.
Additional details on strengthening edges of glass articles can be found in: (i) U.S. Provisional Patent Application No. 61/156,803, filed Mar. 2, 2009 and entitled “Techniques for Strengthening Glass Covers for Portable Electronic Devices”, which is herein incorporated by reference; and (ii) International Patent Application No. PCT/US2010/025979, filed Mar. 2, 2010 and entitled “Techniques for Strengthening Glass Covers for Portable Electronic Devices”, which is herein incorporated by reference.
Additional details on chemical strengthening processing using different chemical baths can be found in U.S. Provisional Patent Application No. 61/301,585, filed Feb. 4, 2010 and entitled “Techniques for Strengthening Glass Covers for Portable Electronic Devices,” which is hereby incorporated herein by reference.
Although only a few embodiments of the invention have been described, it should be understood that the invention may be embodied in many other specific forms without departing from the spirit or the scope of the present invention. By way of example, the steps associated with the methods of the invention may vary widely. Steps may be added, removed, altered, combined, and reordered without departing from the spirit of the scope of the invention. Similarly, while operations are depicted in the drawings in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results.
While this specification contains many specifics, these should not be construed as limitations on the scope of the disclosure or of what may be claimed, but rather as descriptions of features specific to particular embodiment of the disclosure. Certain features that are described in the context of separate embodiments can also be implemented in combination. Conversely, various features that are described in the context of a single embodiment can also be implemented in multiple embodiments separately or in any suitable subcombination. Moreover, although features may be described above as acting in certain combinations, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a subcombination or variation of a subcombination.
While this invention has been described in terms of several embodiments, there are alterations, permutations, and equivalents, which fall within the scope of this invention. It should also be noted that there are many alternative ways of implementing the methods and apparatuses of the present invention. It is therefore intended that the following appended claims be interpreted as including all such alterations, permutations, and equivalents as fall within the true spirit and scope of the present invention.
This application claims priority to U.S. Provisional Patent Application No. 61/374,988, filed Aug. 18, 2010, and entitled “ENHANCED GLASS STRENGTHENING OF GLASS”, which is hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2643020 | Dalton | Jun 1953 | A |
3415637 | Glynn | Dec 1968 | A |
3441398 | Hess | Apr 1969 | A |
3467508 | Loukes et al. | Sep 1969 | A |
3498773 | La Due et al. | Mar 1970 | A |
3558415 | Rieser et al. | Jan 1971 | A |
3607172 | Poole et al. | Sep 1971 | A |
3619240 | Toussaint et al. | Nov 1971 | A |
3626723 | Plumat | Dec 1971 | A |
3652244 | Plumat | Mar 1972 | A |
3753840 | Plumat | Aug 1973 | A |
3798013 | Inoue et al. | Mar 1974 | A |
3843472 | Toussaint et al. | Oct 1974 | A |
3857689 | Koizumi et al. | Dec 1974 | A |
3926605 | Kunkle | Dec 1975 | A |
3951707 | Kurtz et al. | Apr 1976 | A |
4015045 | Rinehart | Mar 1977 | A |
4052184 | Anderson | Oct 1977 | A |
4119760 | Rinehart | Oct 1978 | A |
4156755 | Rinehart | May 1979 | A |
4165228 | Ebata et al. | Aug 1979 | A |
4148082 | Ganswein et al. | Dec 1979 | A |
4212919 | Hoda | Jul 1980 | A |
4218230 | Hogan | Aug 1980 | A |
4346601 | France | Aug 1982 | A |
4353649 | Kishii | Oct 1982 | A |
4425810 | Simon et al. | Jan 1984 | A |
4537820 | Nowobliski et al. | Aug 1985 | A |
4646722 | Silverstein et al. | Mar 1987 | A |
4671814 | Aratani et al. | Jun 1987 | A |
4733973 | Machak et al. | Mar 1988 | A |
4842629 | Clemens et al. | Jun 1989 | A |
4844724 | Sakai et al. | Jul 1989 | A |
4846868 | Aratani | Jul 1989 | A |
4849002 | Rapp | Jul 1989 | A |
4872896 | LaCourse et al. | Oct 1989 | A |
4911743 | Bagby | Mar 1990 | A |
4937129 | Yamazaki | Jun 1990 | A |
4957364 | Chesler | Sep 1990 | A |
4959548 | Kupperman et al. | Sep 1990 | A |
4983197 | Froning et al. | Jan 1991 | A |
4986130 | Engelhaupt et al. | Jan 1991 | A |
5041173 | Shikata et al. | Aug 1991 | A |
5104435 | Oikawa et al. | Apr 1992 | A |
5129934 | Koss | Jul 1992 | A |
5157746 | Tobita et al. | Oct 1992 | A |
5160523 | Honkanen et al. | Nov 1992 | A |
5254149 | Hashemi et al. | Oct 1993 | A |
5269888 | Morasca | Dec 1993 | A |
5281303 | Beguin et al. | Jan 1994 | A |
5369267 | Johnson et al. | Nov 1994 | A |
5411563 | Yeh | May 1995 | A |
5437193 | Schleitweiler et al. | Aug 1995 | A |
5445871 | Murase et al. | Aug 1995 | A |
5483261 | Yasutake | Jan 1996 | A |
5488204 | Mead et al. | Jan 1996 | A |
5525138 | Hashemi et al. | Jun 1996 | A |
5625154 | Matsuhiro et al. | Apr 1997 | A |
5654057 | Kitayama | Aug 1997 | A |
5725625 | Kitayama et al. | Mar 1998 | A |
5733622 | Starcke et al. | Mar 1998 | A |
5766493 | Shin | Jun 1998 | A |
5780371 | Rifqi et al. | Jul 1998 | A |
5816225 | Koch et al. | Oct 1998 | A |
5825352 | Bisset et al. | Oct 1998 | A |
5826601 | Muraoka et al. | Oct 1998 | A |
5835079 | Shieh | Nov 1998 | A |
5880411 | Gillespie et al. | Mar 1999 | A |
5880441 | Gillespie et al. | Mar 1999 | A |
5930047 | Gunz et al. | Jul 1999 | A |
5953094 | Matsuoka et al. | Sep 1999 | A |
5985014 | Ueda et al. | Nov 1999 | A |
6050870 | Suginoya et al. | Apr 2000 | A |
6114039 | Rifqi | Sep 2000 | A |
6120908 | Papanu et al. | Sep 2000 | A |
6166915 | Lake et al. | Dec 2000 | A |
6188391 | Seely et al. | Feb 2001 | B1 |
6245313 | Suzuki et al. | Jun 2001 | B1 |
6287674 | Verlinden et al. | Sep 2001 | B1 |
6307590 | Yoshida | Oct 2001 | B1 |
6310610 | Beaton et al. | Oct 2001 | B1 |
6323846 | Westerman et al. | Nov 2001 | B1 |
6325704 | Brown et al. | Dec 2001 | B1 |
6327011 | Kim | Dec 2001 | B2 |
6350664 | Haji et al. | Feb 2002 | B1 |
6393180 | Farries et al. | May 2002 | B1 |
6429840 | Sekiguchi | Aug 2002 | B1 |
6437867 | Zeylikovich et al. | Aug 2002 | B2 |
6516634 | Green et al. | Feb 2003 | B1 |
6521862 | Brannon | Feb 2003 | B1 |
6621542 | Aruga | Sep 2003 | B1 |
6690387 | Zimmerman et al. | Feb 2004 | B2 |
6718612 | Bajorek | Apr 2004 | B2 |
6769274 | Cho et al. | Aug 2004 | B2 |
6772610 | Albrand et al. | Aug 2004 | B1 |
6810688 | Duisit et al. | Nov 2004 | B1 |
6936741 | Munnig et al. | Aug 2005 | B2 |
6955971 | Ghyselen et al. | Oct 2005 | B2 |
6996324 | Hiraka et al. | Feb 2006 | B2 |
7012700 | De Groot et al. | Mar 2006 | B2 |
7013709 | Hajduk et al. | Mar 2006 | B2 |
7015894 | Morohoshi | Mar 2006 | B2 |
7070837 | Ross | Jul 2006 | B2 |
7166531 | van Den Hoek et al. | Jan 2007 | B1 |
7184064 | Zimmerman et al. | Feb 2007 | B2 |
7461564 | Glaesemann | Dec 2008 | B2 |
7558054 | Prest et al. | Jul 2009 | B1 |
7626807 | Hsu | Dec 2009 | B2 |
7663607 | Hotelling et al. | Feb 2010 | B2 |
7810355 | Feinstein et al. | Oct 2010 | B2 |
7872644 | Hong et al. | Jan 2011 | B2 |
7918019 | Chang et al. | Apr 2011 | B2 |
8013834 | Kim | Sep 2011 | B2 |
8110268 | Hegemier et al. | Feb 2012 | B2 |
8111248 | Lee et al. | Feb 2012 | B2 |
8312743 | Pun et al. | Nov 2012 | B2 |
8391010 | Rothkopf | Mar 2013 | B2 |
8393175 | Kohli et al. | Mar 2013 | B2 |
8551283 | Pakula et al. | Oct 2013 | B2 |
8673163 | Zhong | Mar 2014 | B2 |
8684613 | Weber et al. | Apr 2014 | B2 |
8824140 | Prest | Sep 2014 | B2 |
9128666 | Werner | Sep 2015 | B2 |
20020035853 | Brown et al. | Mar 2002 | A1 |
20020105793 | Oda | Aug 2002 | A1 |
20020155302 | Smith et al. | Oct 2002 | A1 |
20020157199 | Piltingsrud | Oct 2002 | A1 |
20030024274 | Cho et al. | Feb 2003 | A1 |
20030057183 | Cho et al. | Mar 2003 | A1 |
20030077453 | Oaku et al. | Apr 2003 | A1 |
20030234771 | Mulligan et al. | Dec 2003 | A1 |
20040051944 | Stark | Mar 2004 | A1 |
20040119701 | Mulligan et al. | Jun 2004 | A1 |
20040137828 | Takashashi et al. | Jul 2004 | A1 |
20040142118 | Takechi | Jul 2004 | A1 |
20040163414 | Eto et al. | Aug 2004 | A1 |
20050058423 | Brinkmann et al. | Mar 2005 | A1 |
20050105071 | Ishii | May 2005 | A1 |
20050135724 | Helvajian et al. | Jun 2005 | A1 |
20050174525 | Tsuboi | Aug 2005 | A1 |
20050193772 | Davidson et al. | Sep 2005 | A1 |
20050245165 | Harada et al. | Nov 2005 | A1 |
20050259438 | Mizutani | Nov 2005 | A1 |
20050285991 | Yamazaki | Dec 2005 | A1 |
20060026521 | Hotelling et al. | Feb 2006 | A1 |
20060055936 | Yun et al. | Mar 2006 | A1 |
20060063009 | Naitou et al. | Mar 2006 | A1 |
20060063351 | Jain | Mar 2006 | A1 |
20060070694 | Rehfeld et al. | Apr 2006 | A1 |
20060097991 | Hotelling et al. | May 2006 | A1 |
20060197753 | Hotelling et al. | Sep 2006 | A1 |
20060227331 | Wollmer et al. | Oct 2006 | A1 |
20060238695 | Miyamoto | Oct 2006 | A1 |
20060250559 | Bocko et al. | Nov 2006 | A1 |
20060268528 | Zadeksky et al. | Nov 2006 | A1 |
20060292822 | Xie | Dec 2006 | A1 |
20070003796 | Isono et al. | Jan 2007 | A1 |
20070013822 | Kawata et al. | Jan 2007 | A1 |
20070029519 | Kikuyama et al. | Feb 2007 | A1 |
20070030436 | Sasabayashi | Feb 2007 | A1 |
20070039353 | Kamiya | Feb 2007 | A1 |
20070046200 | Fu et al. | Mar 2007 | A1 |
20070063876 | Wong | Mar 2007 | A1 |
20070089827 | Funatsu | Apr 2007 | A1 |
20070122542 | Halsey et al. | May 2007 | A1 |
20070132737 | Mulligan et al. | Jun 2007 | A1 |
20070196578 | Karp et al. | Aug 2007 | A1 |
20070236618 | Magg et al. | Oct 2007 | A1 |
20080020919 | Murata | Jan 2008 | A1 |
20080026260 | Kawai | Jan 2008 | A1 |
20080074028 | Ozolins et al. | Mar 2008 | A1 |
20080094716 | Ushiro et al. | Apr 2008 | A1 |
20080135157 | Higuchi | Jun 2008 | A1 |
20080158181 | Hamblin et al. | Jul 2008 | A1 |
20080202167 | Cavallaro et al. | Aug 2008 | A1 |
20080230177 | Crouser et al. | Sep 2008 | A1 |
20080243321 | Walser et al. | Oct 2008 | A1 |
20080261057 | Slobodin | Oct 2008 | A1 |
20080264176 | Bertrand et al. | Oct 2008 | A1 |
20080286548 | Ellison et al. | Nov 2008 | A1 |
20090046240 | Bolton | Feb 2009 | A1 |
20090067141 | Dabov et al. | Mar 2009 | A1 |
20090091551 | Hotelling et al. | Apr 2009 | A1 |
20090096937 | Bauer et al. | Apr 2009 | A1 |
20090153729 | Hiltunen et al. | Jun 2009 | A1 |
20090162703 | Kawai | Jun 2009 | A1 |
20090197048 | Amin et al. | Aug 2009 | A1 |
20090202808 | Glaesemann et al. | Aug 2009 | A1 |
20090220761 | Dejneka et al. | Sep 2009 | A1 |
20090257189 | Wang et al. | Oct 2009 | A1 |
20090294420 | Abramov et al. | Dec 2009 | A1 |
20090324899 | Feinstein et al. | Dec 2009 | A1 |
20090324939 | Feinstein et al. | Dec 2009 | A1 |
20100009154 | Allan et al. | Jan 2010 | A1 |
20100024484 | Kashima | Feb 2010 | A1 |
20100028607 | Lee et al. | Feb 2010 | A1 |
20100035038 | Barefoot et al. | Feb 2010 | A1 |
20100053632 | Alphonse et al. | Mar 2010 | A1 |
20100062284 | Watanabe et al. | Mar 2010 | A1 |
20100119846 | Sawada | May 2010 | A1 |
20100137031 | Griffin et al. | Jun 2010 | A1 |
20100154992 | Feinstein et al. | Jun 2010 | A1 |
20100167059 | Hasimoto et al. | Jul 2010 | A1 |
20100171920 | Nishiyama | Jul 2010 | A1 |
20100179044 | Sellier et al. | Jul 2010 | A1 |
20100206008 | Harvey et al. | Aug 2010 | A1 |
20100215862 | Gomez et al. | Aug 2010 | A1 |
20100216514 | Smoyer et al. | Aug 2010 | A1 |
20100224767 | Kawano et al. | Sep 2010 | A1 |
20100265188 | Chang et al. | Oct 2010 | A1 |
20100279067 | Sabia et al. | Nov 2010 | A1 |
20100285275 | Baca et al. | Nov 2010 | A1 |
20100296027 | Matsuhira et al. | Nov 2010 | A1 |
20100315570 | Dinesh et al. | Dec 2010 | A1 |
20100321305 | Chang et al. | Dec 2010 | A1 |
20110003619 | Bolton | Jan 2011 | A1 |
20110012873 | Prest et al. | Jan 2011 | A1 |
20110019123 | Prest et al. | Jan 2011 | A1 |
20110019354 | Prest et al. | Jan 2011 | A1 |
20110030209 | Chang et al. | Feb 2011 | A1 |
20110050657 | Yamada | Mar 2011 | A1 |
20110063550 | Gettemy et al. | Mar 2011 | A1 |
20110067447 | Zadesky et al. | Mar 2011 | A1 |
20110072856 | Davidson et al. | Mar 2011 | A1 |
20110102346 | Orsley et al. | May 2011 | A1 |
20110159321 | Eda et al. | Jun 2011 | A1 |
20110164372 | McClure et al. | Jul 2011 | A1 |
20110182084 | Tomlinson | Jul 2011 | A1 |
20110186345 | Pakula et al. | Aug 2011 | A1 |
20110188846 | Sorg | Aug 2011 | A1 |
20110199687 | Sellier et al. | Aug 2011 | A1 |
20110248152 | Svajda et al. | Oct 2011 | A1 |
20110255000 | Weber et al. | Oct 2011 | A1 |
20110255250 | Dinh | Oct 2011 | A1 |
20110267833 | Verrat-Debailleul et al. | Nov 2011 | A1 |
20110279383 | Wilson et al. | Nov 2011 | A1 |
20110300908 | Grespan et al. | Dec 2011 | A1 |
20120018323 | Johnson et al. | Jan 2012 | A1 |
20120227399 | Yeates | Feb 2012 | A1 |
20120099113 | de Boer et al. | Apr 2012 | A1 |
20120105400 | Mathew et al. | May 2012 | A1 |
20120118628 | Pakula et al. | May 2012 | A1 |
20120135195 | Glaesemann et al. | May 2012 | A1 |
20120136259 | Milner et al. | May 2012 | A1 |
20120151760 | Steijner | Jun 2012 | A1 |
20120188743 | Wilson et al. | Jul 2012 | A1 |
20120196071 | Cornejo et al. | Aug 2012 | A1 |
20120202040 | Barefoot et al. | Aug 2012 | A1 |
20120236477 | Weber et al. | Sep 2012 | A1 |
20120236526 | Weber et al. | Sep 2012 | A1 |
20120281381 | Sanford | Nov 2012 | A1 |
20120328843 | Cleary et al. | Dec 2012 | A1 |
20130071601 | Bibl et al. | Mar 2013 | A1 |
20130083506 | Wright et al. | Apr 2013 | A1 |
20130182259 | Brezinski et al. | Jul 2013 | A1 |
20130213565 | Lee et al. | Aug 2013 | A1 |
20140176779 | Weber et al. | Jun 2014 | A1 |
Number | Date | Country |
---|---|---|
283 630 | Oct 1970 | AT |
1277090 | Dec 2000 | CN |
1369449 | Sep 2002 | CN |
1694589 | Nov 2005 | CN |
101025502 | Aug 2007 | CN |
101206314 | Jun 2008 | CN |
101523275 | Feb 2009 | CN |
101465892 | Jun 2009 | CN |
102117104 | Jul 2011 | CN |
102131357 | Jul 2011 | CN |
101267509 | Aug 2011 | CN |
1322339 | Nov 2011 | CN |
202799425 | Mar 2013 | CN |
103958423 | Jul 2014 | CN |
14 96 586 | Jun 1969 | DE |
17 71 268 | Dec 1971 | DE |
32 12 612 | Oct 1983 | DE |
103 22 350 | Dec 2004 | DE |
1038663 | Sep 2000 | EP |
1 206 422 | Nov 2002 | EP |
1 593 658 | Nov 2005 | EP |
1592073 | Nov 2005 | EP |
2025556 | Feb 2009 | EP |
2036867 | Mar 2009 | EP |
2075237 | Jul 2009 | EP |
2196870 | Jun 2010 | EP |
2233447 | Sep 2010 | EP |
2483216 | Aug 2012 | EP |
2635540 | Sep 2013 | EP |
2 797 627 | Feb 2001 | FR |
2 801 302 | May 2001 | FR |
B S42-011599 | Jun 1963 | JP |
B-S48-006925 | Mar 1973 | JP |
55031944 | Mar 1980 | JP |
55 067529 | May 1980 | JP |
55-95645 | Jul 1980 | JP |
A S55-136979 | Oct 1980 | JP |
55 144450 | Nov 1980 | JP |
A S59-013638 | Jan 1984 | JP |
59037451 | Feb 1984 | JP |
A S61-097147 | May 1986 | JP |
6066696 | Oct 1986 | JP |
A S63-106617 | May 1988 | JP |
63222234 | Sep 1988 | JP |
5-32431 | Feb 1993 | JP |
05249422 | Sep 1993 | JP |
6242260 | Sep 1994 | JP |
A H07-050144 | Feb 1995 | JP |
8-274054 | Oct 1996 | JP |
52031757 | Mar 1997 | JP |
A-H09-073072 | Mar 1997 | JP |
A H09-507206 | Jul 1997 | JP |
09-312245 | Dec 1997 | JP |
A H11-281501 | Oct 1999 | JP |
A 2000-086261 | Mar 2000 | JP |
2000-163031 | Jun 2000 | JP |
200203895 | Jul 2000 | JP |
A 2001-083887 | Mar 2001 | JP |
A 2002-160932 | Jun 2002 | JP |
2002-342033 | Nov 2002 | JP |
A 2002-338283 | Nov 2002 | JP |
A2003502257 | Jan 2003 | JP |
A2003-146705 | May 2003 | JP |
A 2004-094256 | Mar 2004 | JP |
A2004-259402 | Sep 2004 | JP |
A 2004-292247 | Oct 2004 | JP |
A2004-339019 | Dec 2004 | JP |
2005-165249 | Jun 2005 | JP |
A 2005-156766 | Jun 2005 | JP |
A 2005140901 | Jun 2005 | JP |
2005-353592 | Dec 2005 | JP |
A 2000-348338 | Dec 2005 | JP |
2007-099557 | Apr 2007 | JP |
2008-001590 | Jan 2008 | JP |
2008007360 | Jan 2008 | JP |
2008-63166 | Mar 2008 | JP |
2008-066126 | Mar 2008 | JP |
2008-192194 | Aug 2008 | JP |
A 2008-195602 | Aug 2008 | JP |
A 2008-216938 | Sep 2008 | JP |
A 2008-306149 | Dec 2008 | JP |
A 2009-167086 | Jul 2009 | JP |
A 2009-234856 | Oct 2009 | JP |
A2009230341 | Oct 2009 | JP |
2010 064943 | Mar 2010 | JP |
A 2010-060908 | Mar 2010 | JP |
A 2010-116276 | May 2010 | JP |
U 3162733 | Aug 2010 | JP |
2010195600 | Sep 2010 | JP |
A 2010-237493 | Oct 2010 | JP |
2011-032124 | Feb 2011 | JP |
A 2011-032140 | Feb 2011 | JP |
A 2011-158799 | Aug 2011 | JP |
2011-527661 | Nov 2011 | JP |
A 2011-231009 | Nov 2011 | JP |
A 2013-537723 | Oct 2013 | JP |
2010-2006-005920 | Jan 2006 | KR |
10-2010-0019526 | Feb 2010 | KR |
10-2011-0030919 | Mar 2011 | KR |
201007521 | Feb 2010 | TW |
201235744 | Sep 2012 | TW |
WO 0242838 | May 2002 | WO |
WO 2004014109 | Feb 2004 | WO |
WO 2004-061806 | Jul 2004 | WO |
WO 2004106253 | Dec 2004 | WO |
WO 2004106253 | Dec 2004 | WO |
WO 2007089054 | Aug 2007 | WO |
WO 2008044694 | Apr 2008 | WO |
WO 2008143999 | Nov 2008 | WO |
WO 2009003029 | Dec 2008 | WO |
WO 2009078406 | Jun 2009 | WO |
WO 2009099615 | Aug 2009 | WO |
WO 2009102326 | Aug 2009 | WO |
WO 2009125133 | Oct 2009 | WO |
WO 2010005578 | Jan 2010 | WO |
WO 2010014163 | Feb 2010 | WO |
WO 2010019829 | Feb 2010 | WO |
WO 2010080988 | Jul 2010 | WO |
WO 2010101961 | Sep 2010 | WO |
WO 2011008433 | Jan 2011 | WO |
WO 2010027565 | Feb 2011 | WO |
WO 2011041484 | Apr 2011 | WO |
WO 2012015960 | Feb 2012 | WO |
WO 2012027220 | Mar 2012 | WO |
WO 2012106280 | Aug 2012 | WO |
WO 2013106242 | Jul 2013 | WO |
Entry |
---|
Arun K. Varshneya, Chemical Strengthening of Glass: Lessons Learned and Yet to Be Learned, International Journal of Applied Glass Science, 2010, 1, 2, pp. 131-142. |
International Search Report and Written Opinion for International Application No. PCT/US2011/047479, dated Nov. 11, 2011. |
Chemically Strengthened Glass, Wikipedia, Apr. 19, 2009, http://en/wikipedia.org/w/index.php?title=Chemically_strengthened_glass&oldid=284794988. |
Wikipedia: “Iphone 4”, www.wikipedia.org, retrieved Oct. 31, 2011, 15 pgs. |
“Toward Making Smart Phone Touch-Screens More Glare and Smudge Resistant”, e! Science News, http://eciencenews.com/articles/2009/08/19toward.making.smart.phone.touch.screens.more.glare.and.smudge.resistant, Aug. 19, 2009, 1 pg. |
Aben “Laboratory of Photoelasticity”, Institute of Cybernetics at TTU, www.ioc.ee/res/photo.html, Oct. 5, 2000. |
Forooghian et al., Investigative Ophthalmology & Visual Science; Oct. 2008, vol. 49, No. 10. |
Saxer et al., “High-Speed Fiber-Based Polarization-sensitive optical coherence tomography of in vivo human skin”, Optics Letters, vol. 25, No. 18, Sep. 15, 2000, pp. 1355-1357. |
Ohkuma, “Development of a Manufacturing Process of a Thin, Lightweight LCD Cell”, Department of Cell Process Development, IBM, Japan, Section 13.4. |
Lee et al., “A Multi-Touch Three Dimensional Touch-Sensitive Tablet”, Proceedings of CHI: ACM Conference on Human Factors in Computing Systems, Apr. 1985, pp. 21-25. |
Rubine, “The Automatic Recognition of Gestures”, CMU-CS-91-202, Submitted in Partial Fulfillment of the Requirements of the Degree of Doctor of Philosophy in Computer Science at Carnegie Mellon University, Dec. 1991, 285 pages. |
Rubine, “Combining Gestures and Direct Manipulation”, CHI'92, May 1992, pp. 659-660. |
Westerman, “Hand Tracking, Finger Identification and Chronic Manipulation of a Multi-Touch Surface”, A Dissertation Submitted to the Faculty of the University of Delaware in Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy in Electrical Engineering, Spring 1999, 364 pages. |
Karlsson et al., “The Technology of Chemical Glass Strengthening—a review”, Apr. 2010, Glass Technology, European Journal of Glass Science and Technology A., vol. 51, No. 2, pp. 41-54. |
Examination Report for European Patent Application No. 11749636.4, dated Apr. 16, 2014. |
Notice of Preliminary Rejection for Korean Patent Application No. 10-2013-7006694, dated Jul. 21, 2014. |
Notice of Final Rejection for Korean Patent Application No. 10-2013-7006694, dated May 22, 2015. |
First Office Action for Chinese Patent Application No. 201180047550.3, dated Nov. 26, 2014. |
Office Action for Chinese Patent Application No. 201180047550.3 dated Feb. 29, 2016. |
Kingery et al., “Introduction to Ceramics” 2nd Ed. John Wiley & Sons, 1976, pp. 792 and 833-844. |
Second Office Action for Chinese Patent Application No. 201180047550.3, dated Sep. 30, 2015. |
Second Final Rejection for Korean Patent Application No. 10-2013-70006694, dated Sep. 16, 2015. |
Number | Date | Country | |
---|---|---|---|
20110067447 A1 | Mar 2011 | US |
Number | Date | Country | |
---|---|---|---|
61374988 | Aug 2010 | US |