Enhanced strengthening of glass

Information

  • Patent Grant
  • 10189743
  • Patent Number
    10,189,743
  • Date Filed
    Thursday, September 30, 2010
    13 years ago
  • Date Issued
    Tuesday, January 29, 2019
    5 years ago
Abstract
Apparatus, systems and methods for improving strength of a thin glass member for an electronic device are disclosed. In one embodiment, the glass member can have improved strength by using multi-bath chemical processing. The multi-bath chemical processing allows greater levels of strengthening to be achieved for glass member. In one embodiment, the glass member can pertain to a glass cover for a housing of an electronic device.
Description
BACKGROUND OF THE INVENTION

Conventionally, some portable electronic devices use glass as a part of their devices, either internal or external. Externally, a glass part can be provided as part of a housing, such a glass part is often referred to as a cover glass. The transparent and scratch-resistance characteristics of glass make it well suited for such applications. Internally, glass parts can be provided to support display technology. More particularly, for supporting a display, a portable electronic device can provide a display technology layer beneath an outer cover glass. A sensing arrangement can also be provided with or adjacent the display technology layer. By way of example, the display technology layer may include or pertain to a Liquid Crystal Display (LCD) that includes a Liquid Crystal Module (LCM). The LCM generally includes an upper glass sheet and a lower glass sheet that sandwich a liquid crystal layer therebetween. The sensing arrangement may be a touch sensing arrangement such as those used to create a touch screen. For example, a capacitive sensing touch screen can include substantially transparent sensing points or nodes dispersed about a sheet of glass.


Unfortunately, however, use of glass with portable electronic devices requires that the glass be relatively thin. Generally speaking, the thinner the glass the more susceptible the glass is to damage when the portable electronic device is stressed or placed under a significant force. Chemically strengthening has been used to strengthen glass. While chemically strengthening is effective, there is a continuing need to provide improved ways to strengthen glass, namely, thin glass.


SUMMARY

The invention relates generally to increasing the strength of glass. Through multi-bath chemical processing greater levels of strengthening can be achieved for glass articles. The multi-bath chemical processing can be achieved through the use of successive chemical baths. The use of multi-bath chemical processing for a glass article can enhance the effectiveness of the chemical strengthening process. Accordingly, glass articles that have undergone multi-bath chemical processing are able to be not only thin but also sufficiently strong and resistant to damage. The strengthened glass articles are well suited for use in consumer products, such as consumer electronic devices (e.g., portable electronic devices).


The invention can be implemented in numerous ways, including as a method, system, device, or apparatus. Several embodiments of the invention are discussed below.


As a method for strengthening a piece of glass, one embodiment can, for example, include at least obtaining a piece of glass that is to be chemically strengthened, enhancing the glass to make it more susceptible to chemical strengthening, and subsequently chemically strengthening the enhanced glass.


As a glass strengthening system for glass articles, one embodiment can, for example, includes at least a first bath station providing a sodium solution, and a second bath station providing a potassium solution. The first bath station serves to receive a glass article and to introduce sodium ions into surfaces of the glass article. The second bath station serves to receive the glass article following the first bath station and to exchange potassium ions for sodium ions within the glass article.


As a method for processing a glass piece to improve its strength, one embodiment can, for example, include at least: submerging the glass piece in a heated sodium bath, determining whether the glass piece should be removed from the heated sodium bath, subsequently submerging the glass piece in a heated potassium bath, determining whether the glass piece should be removed from the heated potassium bath, and performing post-processing on the glass piece following removal of the glass piece from the heated potassium bath.


A method for processing a glass piece to improve its strength, another embodiment can, for example, include at least: submerging the glass piece in a heated sodium bath; removing the glass piece from the heated sodium bath after being in the heated sodium solution for a first duration; subsequently submerging the glass piece in a heated potassium bath; removing the glass piece from the heated potassium bath after being in the heated potassium solution for a second duration; and performing post-processing on the glass piece following removal of the glass piece from the heated potassium bath.


Other aspects and advantages of the invention will become apparent from the following detailed description taken in conjunction with the accompanying drawings which illustrate, by way of example, the principles of the invention.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be readily understood by the following detailed description in conjunction with the accompanying drawings, wherein like reference numerals designate like structural elements, and in which:



FIG. 1 is a flow diagram of a glass strengthening process according to one embodiment.



FIG. 2 illustrates a glass strengthening system according to one embodiment.



FIG. 3 is a flow diagram of a glass piece process according to one embodiment.



FIG. 4 illustrates a glass strengthening system according to another embodiment.



FIG. 5 is a flow diagram of a back exchange process according to one embodiment.



FIGS. 6A and 6B are diagrammatic representations of electronic device according to one embodiment.



FIGS. 7A and 7B are a diagrammatic representation of an electronic device according to another embodiment.



FIG. 8 is flow diagram which illustrates a method of chemically strengthening glass, e.g., a glass cover, according to one embodiment.



FIG. 9A is a cross-sectional diagram of a glass cover which has been chemically treated according to one embodiment.



FIG. 9B is a cross-sectional diagram of a glass cover which has been chemically treated, as shown to include a chemically treated portion in which potassium ions have been implanted according to one embodiment.



FIG. 10 is a diagrammatic representation of a chemical treatment process that involves submerging a glass cover in an ion bath according to one embodiment.





DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION

The invention relates generally to increasing the strength of glass. Through multi-bath chemical processing greater levels of strengthening can be achieved for glass articles. The multi-bath chemical processing can be achieved through the use of successive chemical baths. The use of multi-bath chemical processing for a glass article can enhance the effectiveness of the chemical strengthening process. Accordingly, glass articles that have undergone multi-bath chemical processing are able to be not only thin but also sufficiently strong and resistant to damage. The strengthened glass articles are well suited for use in consumer products, such as consumer electronic devices (e.g., portable electronic devices).


Embodiments of the invention can relate to apparatus, systems and methods for improving strength of a thin glass member for a consumer product, such as a consumer electronic device. In one embodiment, the glass member may be an outer surface of a consumer electronic device. For example, the glass member may, for example, correspond to a glass cover that helps form part of a display area of the electronic device (i.e., situated in front of a display either as a separate part or integrated within the display). As another example, the glass member may form a part of a housing for the consumer electronic device (e.g., may form an outer surface other than in the display area). In another embodiment, the glass member may be an inner component of a consumer electronic device. For example, the glass member can be a component glass piece of a LCD display provided internal to the housing of the consumer electronic device.


The apparatus, systems and methods for improving strength of thin glass are especially suitable for glass covers or displays (e.g., LCD displays), particularly those assembled in small form factor electronic devices such as handheld electronic devices (e.g., mobile phones, media players, personal digital assistants, remote controls, etc.). The glass can be thin in these small form factor embodiments, such as less than 3 mm, or more particularly between 0.3 and 2.5 mm. The apparatus, systems and methods can also be used for glass covers or displays for other devices including, but not limited to including, relatively larger form factor electronic devices (e.g., portable computers, tablet computers, displays, monitors, televisions, etc.). The glass can also be thin in these larger form factor embodiments, such as less than 5 mm, or more particularly between 0.3 and 3 mm.


Embodiments of the invention are discussed below with reference to FIGS. 1-10. However, those skilled in the art will readily appreciate that the detailed description given herein with respect to these figures is for explanatory purposes as the invention extends beyond these limited embodiments. The illustrations provided in these figures are not necessarily drawn to scale; instead, the illustrations are presented in a manner to facilitate presentation.



FIG. 1 is a flow diagram of a glass strengthening process 100 according to one embodiment. The glass strengthening process 100 serves to chemically strengthen a piece of glass such that it is better suited for its particular usage.


The glass strengthening process 100 can enhance 104 the glass for subsequent chemical strengthening. In one implementation, the glass can be enhanced 104 chemically through chemical processing. Specifically, the glass can be placed in a sodium solution so that sodium ions can migrate from the sodium solution into the glass, namely into the exposed surfaces of the glass.


After the glass has been enhanced 104, the enhanced glass can be chemically strengthened 106. In one implementation, the enhanced glass can be chemically strengthened 106 through chemical processing. Specifically, the enhanced glass can be placed in a potassium solution so that potassium ions from the potassium solution can be exchanged for sodium ions within the enhanced glass.


By enhancing 104 the glass, the glass becomes more susceptible to chemical strengthening 106. In other words, the glass can be strengthened to a greater extent when the glass has been enhanced 104. Following block 106, the piece of glass has been chemically strengthened. Due to the enhancement of the glass, the glass is able to be chemically strengthened to a greater extent. Following the chemical strengthening, the glass strengthening process 100 can end.



FIG. 2 illustrates a glass strengthening system 200 according to one embodiment. The glass strengthening system 200 receives a glass article 202 to be strengthened through chemical processing. The glass article 202 is provided to a first bath station in which a first bath 204 is provided. The glass article 202 can be inserted (e.g., immersed) into the first bath 204 which includes a sodium solution 206. Next, the glass article 202 is removed from the first bath station and provided to a second bath station. The second bath station provides a second bath 208. The glass article can be inserted (e.g., immersed) into the second bath 208 which includes a potassium solution 210. Later, the glass article 202 is removed from the second bath 208. At this point, the glass article has been first enhanced and then strengthened. Since the glass article was enhanced, the glass article is able to be chemically strengthened to a greater extent than would otherwise have been determined if the glass article were not first enhanced.


Furthermore, following removal of the glass article from the second bath 208, post-processing can be performed on the glass article. Post-processing can vary widely dependent on intended application for the glass article. However, post-processing can, for example, include one or more of rinsing, polishing, annealing and the like.


The sodium solution 206 within the first bath 204 can be heated to a predetermined temperature, and the glass article 202 can be immersed within the first bath 204 for a predetermined period of time. The degree of enhancement of the glass article 202 is dependent on: (1) type of glass, (2) concentration of bath (e.g., Na concentration), (3) time in the first bath 204, and (4) temperature of the first bath 204. Likewise, the potassium solution 210 within the second bath 208 can be heated to a predetermined temperature, and the glass article 202 can be immersed within the second bath 208 for a predetermined period of time. The degree of chemically strengthening provided by the second bath 208 to the glass article is dependent on: (1) type of glass, (2) concentration of bath (e.g., K concentration), (3) time in the second bath 208, and (4) temperature of the second bath 208.


In one implementation, the glass for the glass article can, for example, be alumina silicate glass or soda lime glass. Also, glass from different suppliers, even if the same type of glass, can have different properties and thus may require different values. The first bath 204 can be a sodium (Na) bath or a sodium nitrate (NaNO3) bath, in either case with a sodium concentration of 30%-100% mol. In another embodiment the first bath 204 can be a sodium nitrate (NaNO3) and potassium nitrate (KNO3) bath. The time for the glass article 202 to remain immersed in the first bath 204 can be about 4-8 hours and the temperature for the first bath 204 can be about 350-450 degrees Celsius. The time for the glass article 202 to remain immersed in the second bath 208 can be about 6-20 hours and the temperature for the second bath 208 can be about 300-500 degrees Celsius.



FIG. 3 is a flow diagram of a glass piece process 300 according to one embodiment. The glass piece process 300 serves to process a piece of glass such that is more suitable for subsequent use in a consumer product.


The glass piece process 300 initially obtains 302 a piece of glass. The glass piece can be submerged 304 in a heated sodium bath. A decision 306 can then determine whether the glass piece should be removed from the heated sodium bath. For example, the heated sodium bath can be maintained at a predetermined temperature and the glass piece can be submerged within the heated sodium for a predetermined period of time. As an example, the decision 306 can determine that the glass piece should be removed from the heated sodium bath after the glass piece has been immersed in the heated sodium bath for the predetermined amount of time.


Once the decision 306 determines that the glass piece is to be removed from the heated sodium bath, the glass piece can then be submerged 308 into a heated potassium bath. A decision 310 can then determine whether the glass piece should be removed from the heated potassium bath. The heated potassium bath can, for example, be maintained at a predetermined temperature and the glass piece can be submerged within the heated potassium bath for a predetermined period of time.


Once the decision 310 determines that the glass piece is to be removed from the potassium bath, post-processing on the glass piece can be performed 312. The post-processing can vary depending upon application. For example, the post-processing can include one or more of: polishing, grinding, heating, annealing, cleaning and the like for the glass piece. Typically, the post-processing is performed on the glass piece to make the glass piece more suitable for its intended usage.


Following the performing 312 of the post-processing, the glass piece can be utilized 314 in a consumer product. The glass piece can be used as an outer portion of a housing for the consumer product, or can be used as an internal component (e.g., LCD glass panel) glass piece. For example, the consumer product can be a consumer electronics product, such as a portable electronic device. Following the block 314, the glass piece process 300 can end.


The predetermined temperature for use with the heated potassium bath can be the same or different than the predetermined temperature for use with the heated sodium bath. The predetermined period of time for use with the heated potassium bath can be the same or different than the predetermined period of time for use with the heated sodium bath. For example, the glass piece can be immersed in a heated sodium bath at a temperature of about 350-450 degrees Celsius for a predetermined amount of time of about 4-8 hours. Also, for example, the glass piece can be immersed in a heated potassium bath at a temperature of about 300-500 degrees Celsius for a predetermined amount of time of about 6-20 hours.


According to another embodiment, glass processing can further include an additional bath. The additional bath can be provided to provide a small amount of back exchange of ions at the surfaces of a glass piece (glass article). The back exchange can serve to exchange potassium ions from the glass piece for sodium ions. This back exchange process can be useful to move a compressive maximum inward from the outer edges (10-70 micrometers) as defects or cracks proximate the edges reside slightly inward from the edges and are weak points that render the glass piece more susceptible to causing damage to the glass member.



FIG. 4 illustrates a glass strengthening system 400 according to another embodiment. The glass strengthening system 400 receives a glass article 402 to be strengthened through chemical processing. The glass article 402 is provided to a first bath station where a first bath 404 is provided. The glass article 402 can be inserted (e.g., immersed) into the first bath 404 which includes a sodium solution 406. Next, the glass article 402 is removed from the first bath station and provided to a second bath station. The second bath station provides a second bath 408. The glass article can be inserted (e.g., immersed) into the second bath 408 which includes a potassium solution 410. Later, the glass article 402 is removed from the second bath 408. At this point, the glass article has been first enhanced and then strengthened. Since the glass article was enhanced, the glass article is able to be chemically strengthened to a greater extent.


Additionally, after the glass article 402 has been removed from the second bath 408, the glass article can be provided to a third bath station where a third bath 412 is provided. The glass article 402 can be inserted (e.g., immersed) into the third bath 412 which includes a sodium solution 414. Here, potassium ions from the glass article exchange with sodium ions in the sodium solution. This can be referred to as a back exchange because some ions previously exchanged with the glass article are effectively unexchanged or returned. Subsequently, the glass article 402 is removed from the third bath 412.


The sodium solution 406 within the first bath 404 can be heated to a predetermined temperature, and the glass article 402 can be immersed within the first bath 404 for a predetermined period of time. The degree of enhancement of the glass article is dependent on at least: (1) type of glass, (2) concentration of bath (e.g., Na concentration), (3) time in the first bath 402, and (4) temperature of the first bath 402. Likewise, the potassium solution 410 within the second bath 408 can heated to a predetermined temperature, and the glass article 402 can be immersed within the second bath 408 for a predetermined period of time. Still further, the sodium solution 414 within the third bath 412 can heated to a predetermined temperature, and the glass article 402 can be immersed within the third bath 412 for a predetermined period of time.


The predetermined period of time for use with the second bath 408 can be the same or different than the predetermined period of time for use with the first bath 404 or the third bath 412. The predetermined period of time for use with the third bath 412 can be the same or different than the predetermined period of time for use with the first bath 404 or the second bath 408. Typically, the predetermined period of time for use with the third bath 412 is substantially less than the predetermined period of time for use with the first bath 404.


Furthermore, following removal of the glass article from the third bath 412, post-processing can be performed on the glass article. Post-processing can vary widely dependent on intended application for the glass article. However, post-processing can, for example, include one or more of rinsing, polishing, annealing and the like.


The sodium solution 406 within the first bath 404 can be heated to a predetermined temperature, and the glass article 402 can be immersed within the first bath 404 for a predetermined period of time. The degree of enhancement of the glass article 402 is dependent on: (1) type of glass, (2) concentration of bath (e.g., Na concentration), (3) time in the first bath 404, and (4) temperature of the first bath 404. Likewise, the potassium solution 410 within the second bath 408 can heated to a predetermined temperature, and the glass article 402 can be immersed within the second bath 408 for a predetermined period of time. The degree of chemically strengthening provided by the second bath 408 to the glass article is dependent on: (1) type of glass, (2) concentration of bath (e.g., K concentration), (3) time in the second bath 408, and (4) temperature of the second bath 408.


In one implementation, the glass for the glass article can, for example, be alumina silicate glass or soda lime glass. Also, glass from different suppliers, even if the same type of glass, can have different properties and thus may require different values. The first bath 404 can be a sodium (Na) bath or a sodium nitrate (NaNO3) bath, in either case with a sodium concentration of 30%-100% mol. The time for the glass article 402 to remain immersed in the first bath 404 can be about 4-8 hours and the temperature for the first bath 404 can be about 350-450 degrees Celsius. The time for the glass article 402 to remain immersed in the second bath 408 can be about 6-20 hours and the temperature for the second bath 408 can be about 300-500 degrees Celsius. The third bath 412 can be a sodium (Na) bath or a sodium nitrate (NaNO3) bath, in either case with a sodium concentration of 30%-100% mol. The time for the glass article 402 to remain immersed in the third bath 412 can be about 1-30 minutes and the temperature for the third bath 412 can be about 350-450 degrees Celsius.



FIG. 5 is a flow diagram of a back exchange process 500 according to one embodiment. The back exchange process 500 provides additional, optional processing that can be used with the glass piece process 300 illustrated in FIG. 3. For example, the back exchange process 500 can be optionally used following block 310 and prior to block 312 of the glass piece process 300.


The back exchange process 500 provides an additional bath for providing back exchange of sodium into the glass piece. According to the back exchange process 500, the glass piece can be submerged 502 into a heated sodium bath. A decision 504 can then determine whether the glass piece should be removed from the heated sodium bath. For example, the heated sodium bath can be maintained at a predetermined temperature and the glass piece can be submerged within the heated sodium bath for a predetermined period of time. As an example, the decision 504 can determine that the glass piece should be removed from the heated sodium bath after the glass piece has been immersed in the heated sodium bath for the predetermined amount of time.


Once the decision 504 determines that the glass piece is to be removed from the heated sodium bath, the processing of the glass piece can then return to perform pre-processing at block 312 and subsequent operations of the glass piece process 300 illustrated in FIG. 3.


In the back exchange process 500, the heated sodium bath can be heated to a predetermined temperature, and the glass piece can be immersed within the heated sodium bath for a predetermined period of time. The extent of the back exchange fir the glass piece can be dependent on: (1) type of glass, (2) concentration of bath (e.g., Na concentration), (3) time in the sodium bath, and (4) temperature of the sodium bath. In one implementation, the glass for the glass piece can, for example, be alumina silicate glass or soda lime glass. Also, glass from different suppliers, even if the same type of glass, can have different properties and thus may require different values. The heated sodium bath can be a sodium (Na) bath or a sodium nitrate (NaNO3) bath, in either case with a sodium concentration of 30%-100% mol. The predetermined period of time for the glass piece to remain immersed in the heated sodium bath for back exchange can be about 1-30 minutes and the temperature for the heated sodium bath can be about 350-450 degrees Celsius.


As previously discussed, glass covers can be used as an outer surface of portions of a housing for electronic devices, such as portable electronic devices. Those portable electronic devices that are small and highly portable can be referred to as handheld electronic devices. A handheld electronic device may, for example, function as a media player, phone, internet browser, email unit or some combination of two or more of such. A handheld electronic device generally includes a housing and a display area.



FIGS. 6A and 6B are diagrammatic representations of electronic device 600 according to one embodiment. FIG. 6A illustrates a top view for the electronic device 600, and FIG. 6B illustrates a cross-sectional side view for electronic device 600 with respect to reference line A-A′. Electronic device 600 can include housing 602 that has glass cover window 604 (glass cover) as a top surface. Cover window 604 is primarily transparent so that display assembly 606 is visible through cover window 604. Cover window 604 can be chemically strengthened using the multi-bath chemical processing described herein. Display assembly 606 can, for example, be positioned adjacent cover window 604. Housing 602 can also contain internal electrical components besides the display assembly, such as a controller (processor), memory, communications circuitry, etc. Display assembly 606 can, for example, include a LCD module. By way of example, display assembly 606 may include a Liquid Crystal Display (LCD) that includes a Liquid Crystal Module (LCM). In one embodiment, cover window 604 can be integrally formed with the LCM. Housing 602 can also include an opening 608 for containing the internal electrical components to provide electronic device 600 with electronic capabilities. In one embodiment, housing 602 may need not include a bezel for cover window 604. Instead, cover window 604 can extend across the top surface of housing 602 such that the edges of cover window 604 can be aligned (or substantially aligned) with the sides of housing 602. The edges of cover window 604 can remain exposed. Although the edges of cover window 604 can be exposed as shown in FIGS. 6A and 6B, in alternative embodiment, the edges can be further protected. As one example, the edges of cover window 604 can be recessed (horizontally or vertically) from the outer sides of housing 602. As another example, the edges of cover window 604 can be protected by additional material placed around or adjacent the edges of cover window 604.


Cover window 604 may generally be arranged or embodied in a variety of ways. By way of example, cover window 604 may be configured as a protective glass piece that is positioned over an underlying display (e.g., display assembly 606) such as a flat panel display (e.g., LCD) or touch screen display (e.g., LCD and a touch layer). Alternatively, cover window 604 may effectively be integrated with a display, i.e., glass window may be formed as at least a portion of a display. Additionally, cover window 604 may be substantially integrated with a touch sensing device such as a touch layer associated with a touch screen. In some cases, cover window 604 can serve as the outer most layer of the display.



FIGS. 7A and 7B are diagrammatic representations of electronic device 700 according to another embodiment of the invention. FIG. 7A illustrates a top view for electronic device 700, and FIG. 7B illustrates a cross-sectional side view for electronic device 700 with respect to reference line B-B′. Electronic device 700 can include housing 702 that has glass cover window 704 (glass cover) as a top surface. In this embodiment, cover window 704 can be protected by side surfaces 703 of housing 702. Here, cover window 704 does not fully extend across the top surface of housing 702; however, the top surface of side surfaces 703 can be adjacent to and aligned vertically with the outer surface of cover window 704. Since the edges of cover window 704 can be rounded for enhanced strength, there may be gaps 705 that are present between side surfaces 703 and the peripheral edges of cover window 704. Gaps 705 are typically very small given that the thickness of cover window 704 is thin (e.g., less than 3 mm). However, if desired, gaps 705 can be filled by a material. The material can be plastic, rubber, metal, etc. The material can conform in gap 705 to render the entire front surface of electronic device 700 flush, even across gaps 705 proximate the peripheral edges of cover window 704. The material filling gaps 705 can be compliant. The material placed in gaps 705 can implement a gasket. By filling the gaps 705, otherwise probably undesired gaps in the housing 702 can be filled or sealed to prevent contamination (e.g., dirt, water) forming in the gaps 705. Although side surfaces 703 can be integral with housing 702, side surface 703 could alternatively be separate from housing 702 and, for example, operate as a bezel for cover window 704.


Cover window 704 is primarily transparent so that display assembly 706 is visible through cover window 704. Display assembly 706 can, for example, be positioned adjacent cover window 704. Housing 702 can also contain internal electrical components besides the display assembly, such as a controller (processor), memory, communications circuitry, etc. Display assembly 706 can, for example, include a LCD module. By way of example, display assembly 706 may include a Liquid Crystal Display (LCD) that includes a Liquid Crystal Module (LCM). In one embodiment, cover window 704 is integrally formed with the LCM. Housing 702 can also include an opening 708 for containing the internal electrical components to provide electronic device 700 with electronic capabilities.


The front surface of electronic device 700 can also include user interface control 708 (e.g., click wheel control). In this embodiment, cover window 704 does not cover the entire front surface of electronic device 700. Electronic device 700 essentially includes a partial display area that covers a portion of the front surface.


Cover window 704 may generally be arranged or embodied in a variety of ways. By way of example, cover window 704 may be configured as a protective glass piece that is positioned over an underlying display (e.g., display assembly 706) such as a flat panel display (e.g., LCD) or touch screen display (e.g., LCD and a touch layer). Alternatively, cover window 704 may effectively be integrated with a display, i.e., glass window may be formed as at least a portion of a display. Additionally, cover window 704 may be substantially integrated with a touch sensing device such as a touch layer associated with a touch screen. In some cases, cover window 704 can serve as the outer most layer of the display.


As noted above, the electronic device can be a handheld electronic device or a portable electronic device. The invention can serve to enable a glass cover to be not only thin but also adequately strong. Since handheld electronic devices and portable electronic devices are mobile, they are potentially subjected to various different impact events and stresses that stationary devices are not subjected to. As such, the invention is well suited for implementation of glass surfaces for handheld electronic device or a portable electronic device that are designed to be thin.


The strengthened glass, e.g., glass covers or cover windows, is particularly useful for thin glass applications. For example, the thickness of a glass cover being strengthen can be between about 0.5-2.5 mm. In other embodiments, the strengthening is suitable for glass products whose thickness is less than about 2 mm, or even thinner than about 1 mm, or still even thinner than about 0.6 mm.


Chemically strengthening glass, e.g., glass covers or cover windows, can be more effective for edges of glass that are rounded by a predetermined edge geometry having a predetermined curvature (or edge radius) of at least 10% of the thickness applied to the corners of the edges of the glass. In other embodiments, the predetermined curvature can be between 20% to 50% of the thickness of the glass. A predetermined curvature of 50% can also be considered a continuous curvature, one example of which is illustrated in FIG. 3E.


In one embodiment, the size of the glass cover depends on the size of the associated electronic device. For example, with handheld electronic devices, the size of the glass cover is often not more than five (5) inches (about 12.7 cm) diagonal. As another example, for portable electronic devices, such as smaller portable computers or tablet computers, the size of the glass cover is often between four (4) (about 10.2 cm) to twelve (12) inches (about 30.5 cm) diagonal. As still another example, for portable electronic devices, such as full size portable computers, displays (including televisions) or monitors, the size of the glass cover is often between ten (10) (about 25.4 cm) to twenty (20) inches (about 50.8 cm) diagonal or even larger.


However, it should be appreciated that with larger screen sizes, the thickness of the glass layers may need to be greater. The thickness of the glass layers may need to be increased to maintain planarity of the larger glass layers. While the displays can still remain relatively thin, the minimum thickness can increase with increasing screen size. For example, the minimum thickness of the glass cover can correspond to about 0.3 mm for small handheld electronic devices, about 0.5 mm for smaller portable computers or tablet computers, about 1.0 mm or more for full size portable computers, displays or monitors, again depending on the size of the screen. However, more generally, the thickness of the glass cover can depend on the application and/or the size of electronic device.


As discussed above, glass cover or, more generally, a glass piece may be chemically treated such that surfaces of the glass are effectively strengthened. Through such strengthening, glass pieces can be made stronger so that thinner glass pieces can be used with consumer electronic device. Thinner glass with sufficient strength allows for consumer electronic device to become thinner.



FIG. 8 illustrates a process 800 of chemically treating surfaces of a glass piece in accordance with one embodiment. The process 800 can represent processing associated with chemical strengthening at a second bath station or a potassium bath as discussed above, according to one embodiment. The process 800 of chemically treating surfaces, e.g., edges, of a glass piece can begin at step 802 in which the glass piece is obtained. The glass piece may be obtained, in one embodiment, after a glass sheet is singulated into glass pieces, e.g., glass covers, and the edges of the glass pieces are manipulated to have a predetermined geometry. It should be appreciated, however, that a glass piece that is to be chemically treated may be obtained from any suitable source.


In step 804, the glass piece can be placed on a rack. The rack is typically configured to support the glass piece, as well as other glass pieces, during chemical treatment. Once the glass piece is placed on the rack, the rack can be submerged in a heated ion bath in step 806. The heated ion bath may generally be a bath which includes a concentration of ions (e.g., Alkali metal ions, such as Lithium, Cesium or Potassium). It should be appreciated that the concentration of ions in the bath may vary, as varying the concentration of ions allows compression stresses on surfaces of the glass to be controlled. The heated ion bath may be heated to any suitable temperature to facilitate ion exchange.


After the rack is submerged in the heated ion bath, an ion exchange is allowed to occur in step 808 between the ion bath and the glass piece held on the rack. A diffusion exchange occurs between the glass piece, which generally includes Na+ ions, and the ion bath. During the diffusion exchange, Alkali metal ions, which are larger than Na+ ions, effectively replace the Na+ ions in the glass piece. In general, the Na+ ions near surface areas of the glass piece may be replaced by the Alkali ions, while Na+ ions are essentially not replaced by Alkali ions in portions of the glass which are not surface areas. As a result of the Alkali ions replacing Na+ ions in the glass piece, a compressive layer is effectively generated near the surface of the glass piece. The Na+ ions which have been displaced from the glass piece by the Alkali metal ions become a part of the ion solution.


A determination can be made in step 810 as to whether a period of time for submerging the rack in the heated ion bath has ended. It should be appreciated that the amount of time that a rack is to be submerged may vary widely depending on implementation. Typically, the longer a rack is submerged, i.e., the higher the exchange time for Alkali metal ions and Na+ ions, the deeper the depth of the chemically strengthened layer. For example, with thickness of the glass sheet being on the order of 1 mm, the chemical processing (i.e., ion exchange) provided in the ion bath can be provide into the surfaces of the glass pieces 10 micrometers or more. For example, if the glass pieces are formed from soda lime glass, the depth of the compression layer due to the ion exchange can be about 10 microns. As another example, if the glass pieces are formed from alumino silicate glass, the depth of the compression layer due to the ion exchange can be about 50 microns.


If the determination in step 810 is that the period of time for submerging the rack in the heated ion bath has not ended, then process 800 flow can return to step 817 in which the chemical reaction is allowed to continue to occur between the ion bath and the glass piece. Alternatively, if it is determined that the period of time for submersion has ended, then the rack can be removed from the ion bath in step 812. Upon removing the rack from the ion bath, the glass piece may be removed from the rack in step 814, and the process 800 of chemically treating surfaces of a glass piece can be completed. However, if desired, the glass piece can be polished. Polishing can, for example, remove any haze or residue on the glass piece following the chemical treatment.


A glass cover which has undergone a chemical strengthening process generally includes a chemically strengthened layer, as previously mentioned. FIG. 9A is a cross-sectional diagram of a glass cover which has been chemically treated such that a chemically strengthened layer is created according to one embodiment. A glass cover 900 includes a chemically strengthened layer 928 and a non-chemically strengthened portion 926. Although the glass cover 900 is, in one embodiment, subjected to chemical strengthening as a whole, the outer surfaces receive the strengthening. The effect of the strengthening is that the non-chemically strengthened portion 926 is in tension, while the chemically strengthened layer 928 is in compression. While glass cover 900 is shown as having a rounded edge geometry 902, it should be appreciated that glass cover 900 may generally have any edge geometry, though rounded geometries at edges may allow for increased strengthening of the edges of glass cover 900. Rounded edge geometry 902 is depicted by way of example, and not for purposes of limitation.


Chemically strengthened layer 928 has a thickness (y) which may vary depending upon the requirements of a particular system in which glass cover 900 is to be utilized. Non-chemically strengthened portion 926 generally includes Na+ ions 934 but no Alkali metal ions 936. A chemical strengthening process causes chemically strengthened layer 928 to be formed such that chemically strengthened layer 928 includes both Na+ ions 934 and Alkali metal ions 936.



FIG. 10 is a diagrammatic representation of a chemical treatment process that involves submerging a glass cover in an ion bath according to one embodiment. When glass cover 1000, which is partially shown in cross-section, is submerged or soaked in a heated ion bath 1032, diffusion occurs. As shown, Alkali metal ions 1034 which are present in glass cover 1000 diffuse into ion bath 1032 while Alkali metal ions 1036 (e.g., potassium (K)) in ion bath 1032 diffuse into glass cover 1000, such that a chemically strengthened layer 1028 is formed. In other words, Alkali metal ions 1036 from ion bath 1032 can be exchanged with Na+ ions 1034 to form chemically strengthened layer 1028. Alkali metal ions 1036 typically would not diffuse into a center portion 1026 of glass cover 1000. By controlling the duration (i.e., time) of a chemical strengthening treatment, temperature and/or the concentration of Alkali metal ions 1036 in ion bath 1032, the thickness (y) of chemically strengthened layer 1028 may be substantially controlled.


The concentration of Alkali metal ions in an ion bath may be varied while a glass cover is soaking in the ion bath. In other words, the concentration of Alkali metal ions in a ion bath may be maintained substantially constant, may be increased, and/or may be decreased while a glass cover is submerged in the ion bath without departing from the spirit or the scope of the present invention. For example, as Alkali metal ions displace Na+ ions in the glass, the Na+ ions become part of the ion bath. Hence, the concentration of Alkali metal ions in the ion bath may change unless additional Alkali metal ions are added into the ion bath.


The techniques describe herein may be applied to glass surfaces used by any of a variety of electronic devices including but not limited handheld electronic devices, portable electronic devices and substantially stationary electronic devices. Examples of these include any known consumer electronic device that includes a display. By way of example, and not by way of limitation, the electronic device may correspond to media players, mobile phones (e.g., cellular phones), PDAs, remote controls, notebooks, tablet PCs, monitors, all in one computers and the like.


The various aspects, features, embodiments or implementations of the invention described above can be used alone or in various combinations.


Additional details on strengthening edges of glass articles can be found in: (i) U.S. Provisional Patent Application No. 61/156,803, filed Mar. 2, 2009 and entitled “Techniques for Strengthening Glass Covers for Portable Electronic Devices”, which is herein incorporated by reference; and (ii) International Patent Application No. PCT/US2010/025979, filed Mar. 2, 2010 and entitled “Techniques for Strengthening Glass Covers for Portable Electronic Devices”, which is herein incorporated by reference.


Additional details on chemical strengthening processing using different chemical baths can be found in U.S. Provisional Patent Application No. 61/301,585, filed Feb. 4, 2010 and entitled “Techniques for Strengthening Glass Covers for Portable Electronic Devices,” which is hereby incorporated herein by reference.


Although only a few embodiments of the invention have been described, it should be understood that the invention may be embodied in many other specific forms without departing from the spirit or the scope of the present invention. By way of example, the steps associated with the methods of the invention may vary widely. Steps may be added, removed, altered, combined, and reordered without departing from the spirit of the scope of the invention. Similarly, while operations are depicted in the drawings in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results.


While this specification contains many specifics, these should not be construed as limitations on the scope of the disclosure or of what may be claimed, but rather as descriptions of features specific to particular embodiment of the disclosure. Certain features that are described in the context of separate embodiments can also be implemented in combination. Conversely, various features that are described in the context of a single embodiment can also be implemented in multiple embodiments separately or in any suitable subcombination. Moreover, although features may be described above as acting in certain combinations, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a subcombination or variation of a subcombination.


While this invention has been described in terms of several embodiments, there are alterations, permutations, and equivalents, which fall within the scope of this invention. It should also be noted that there are many alternative ways of implementing the methods and apparatuses of the present invention. It is therefore intended that the following appended claims be interpreted as including all such alterations, permutations, and equivalents as fall within the true spirit and scope of the present invention.

Claims
  • 1. A method for strengthening a piece of glass, said method comprising: enhancing the piece of glass by placing the piece of glass in a first sodium solution for a first period of time to migrate sodium ions into the piece of glass; andfollowing the enhancing, chemically strengthening the piece of glass by placing the piece of glass in a potassium solution for a second period of time to exchange potassium ions for sodium ions in the piece of glass, the first period of time being less than the second period of time;following the chemically strengthening, back exchanging the piece of glass by placing the piece of glass in a second sodium solution for a third period of time to back exchange sodium ions for potassium ions to move a compressive maximum inward approximately 70 microns from an outer edge of the piece of glass; andfollowing the back exchanging, post-processing the piece of glass by polishing the piece of glass, wherein:the piece of glass is a cover glass for a portable electronic device; andthe piece of glass has a thickness of less than 1.0 mm.
  • 2. The method as recited in claim 1, wherein the portable electronic device is a mobile phone.
  • 3. The method as recited in claim 1, wherein the first sodium solution is a heated sodium solution.
  • 4. The method as recited in claim 1, wherein the potassium solution includes a heated potassium solution.
  • 5. The method as recited in claim 4, wherein the second sodium solution is a heated sodium solution.
  • 6. The method as recited in claim 1, wherein the enhancing of the piece of glass allows the chemical strengthening to be more effective.
  • 7. The method of claim 1, wherein the exchange of potassium ions for sodium ions in the piece of glass forms a compression layer near the outer edge of the piece of glass having a depth of approximately 50 microns.
  • 8. A glass strengthening system for glass articles, comprising: a first bath station providing a first sodium solution, the first bath station serving to receive a glass article for a first period of time and to migrate sodium ions from the first sodium solution into the glass article to make it more susceptible to chemical strengthening;a second bath station providing a potassium solution, the second bath station serving to receive the glass article for a second period of time following the first bath station and to exchange potassium ions for sodium ions within the glass article, the first period of time being less than the second period of time; anda third bath station providing a second sodium solution, the third bath station serving to receive the glass article for a third period of time following the second bath station and to back exchange potassium ions for sodium ions within the glass article to move a compressive maximum inward approximately 70 microns from an outer edge of the glass article, wherein:the glass article has a thickness of less than 1.0 mm, andthe glass article is a cover glass for a portable electronic device.
  • 9. The glass strengthening system as recited in claim 8, wherein: the first sodium solution is heated to a first predetermined temperature; andthe potassium solution is heated to a second predetermined temperature.
  • 10. The glass strengthening system as recited in claim 8, wherein the glass article is alumina silicate glass.
  • 11. The glass strengthening system as recited in claim 8, wherein the portable electronic device is a mobile phone.
  • 12. A method for processing a glass piece to improve its strength, the method comprising: submerging the glass piece in a first heated sodium bath for a first period of time to migrate sodium ions from the first heated sodium bath into exposed surfaces of the glass piece;following submerging the glass piece in the first heated sodium bath, submerging the glass piece in a heated potassium bath for a second period of time to exchange potassium ions in the heated potassium bath for sodium ions in the glass piece to form a strengthened layer, the first period of time being less than the second period of time;wherein a depth of the strengthened layer of the glass piece depends on the second period of time in the heated potassium bath;following the submerging the glass piece in the heated potassium bath, submerging the glass piece in a second heated sodium bath for a third period of time to back exchange sodium ions in the second heated sodium bath for potassium ions in the strengthened layer of the glass piece to move a compressive maximum inward approximately 70 microns from an outer edge of the glass piece; andattaching the glass piece to a portable electronic device, the glass piece serving as a portion of an outer surface of a housing of the portable electronic device.
  • 13. The method as recited in claim 12, wherein the portable electronic device is a mobile phone.
  • 14. The method as recited in claim 12, wherein the glass piece has a thickness of not more than 1.0 mm.
  • 15. The method as recited in claim 12, wherein the glass piece is a cover glass for the portable electronic device.
  • 16. A method for processing a glass piece to improve its strength, the method comprising: submerging the glass piece in a first heated sodium bath for a first period of time to migrate sodium ions from the first heated sodium bath into the glass piece, the first heated sodium bath having a temperature of about 350-450 degrees Celsius;subsequent to submerging the glass piece in the first heated sodium bath, submerging the glass piece in a heated potassium bath for a second period of time to chemically strengthen the glass piece by exchanging potassium ions in the heated potassium bath for sodium ions in the glass piece;subsequent to submerging the glass piece in the heated potassium bath, submerging the glass piece in a second heated sodium bath for a third period of time to back exchange sodium ions in the second heated sodium bath for potassium ions in the glass piece to move a compressive maximum inward approximately 70 microns from an outer edge of the glass piece; andattaching the glass piece to a portable electronic device, the glass piece serving as a portion of an outer surface of a housing of the portable electronic device.
  • 17. The method of claim 16, wherein the first period of time is approximately between 4-8 hours and the second period of time is approximately between 6-20 hours.
  • 18. The method of claim 16, wherein the heated potassium bath has a temperature of approximately between 300 to 500 degree Celsius.
  • 19. The method of claim 16, wherein the third period of time is approximately between 1-30 minutes and the second heated sodium bath has a temperature of approximately between 300 to 500 degree Celsius.
  • 20. The method of claim 16, wherein following migrating sodium ions from the first heated sodium bath into the glass piece, the glass piece is able to be chemically strengthened to an extent greater than it would be without migrating the sodium ions.
CROSS-REFERENCE TO RELATED APPLICATION

This application claims priority to U.S. Provisional Patent Application No. 61/374,988, filed Aug. 18, 2010, and entitled “ENHANCED GLASS STRENGTHENING OF GLASS”, which is hereby incorporated herein by reference.

US Referenced Citations (257)
Number Name Date Kind
2643020 Dalton Jun 1953 A
3415637 Glynn Dec 1968 A
3441398 Hess Apr 1969 A
3467508 Loukes et al. Sep 1969 A
3498773 La Due et al. Mar 1970 A
3558415 Rieser et al. Jan 1971 A
3607172 Poole et al. Sep 1971 A
3619240 Toussaint et al. Nov 1971 A
3626723 Plumat Dec 1971 A
3652244 Plumat Mar 1972 A
3753840 Plumat Aug 1973 A
3798013 Inoue et al. Mar 1974 A
3843472 Toussaint et al. Oct 1974 A
3857689 Koizumi et al. Dec 1974 A
3926605 Kunkle Dec 1975 A
3951707 Kurtz et al. Apr 1976 A
4015045 Rinehart Mar 1977 A
4052184 Anderson Oct 1977 A
4119760 Rinehart Oct 1978 A
4156755 Rinehart May 1979 A
4165228 Ebata et al. Aug 1979 A
4148082 Ganswein et al. Dec 1979 A
4212919 Hoda Jul 1980 A
4218230 Hogan Aug 1980 A
4346601 France Aug 1982 A
4353649 Kishii Oct 1982 A
4425810 Simon et al. Jan 1984 A
4537820 Nowobliski et al. Aug 1985 A
4646722 Silverstein et al. Mar 1987 A
4671814 Aratani et al. Jun 1987 A
4733973 Machak et al. Mar 1988 A
4842629 Clemens et al. Jun 1989 A
4844724 Sakai et al. Jul 1989 A
4846868 Aratani Jul 1989 A
4849002 Rapp Jul 1989 A
4872896 LaCourse et al. Oct 1989 A
4911743 Bagby Mar 1990 A
4937129 Yamazaki Jun 1990 A
4957364 Chesler Sep 1990 A
4959548 Kupperman et al. Sep 1990 A
4983197 Froning et al. Jan 1991 A
4986130 Engelhaupt et al. Jan 1991 A
5041173 Shikata et al. Aug 1991 A
5104435 Oikawa et al. Apr 1992 A
5129934 Koss Jul 1992 A
5157746 Tobita et al. Oct 1992 A
5160523 Honkanen et al. Nov 1992 A
5254149 Hashemi et al. Oct 1993 A
5269888 Morasca Dec 1993 A
5281303 Beguin et al. Jan 1994 A
5369267 Johnson et al. Nov 1994 A
5411563 Yeh May 1995 A
5437193 Schleitweiler et al. Aug 1995 A
5445871 Murase et al. Aug 1995 A
5483261 Yasutake Jan 1996 A
5488204 Mead et al. Jan 1996 A
5525138 Hashemi et al. Jun 1996 A
5625154 Matsuhiro et al. Apr 1997 A
5654057 Kitayama Aug 1997 A
5725625 Kitayama et al. Mar 1998 A
5733622 Starcke et al. Mar 1998 A
5766493 Shin Jun 1998 A
5780371 Rifqi et al. Jul 1998 A
5816225 Koch et al. Oct 1998 A
5825352 Bisset et al. Oct 1998 A
5826601 Muraoka et al. Oct 1998 A
5835079 Shieh Nov 1998 A
5880411 Gillespie et al. Mar 1999 A
5880441 Gillespie et al. Mar 1999 A
5930047 Gunz et al. Jul 1999 A
5953094 Matsuoka et al. Sep 1999 A
5985014 Ueda et al. Nov 1999 A
6050870 Suginoya et al. Apr 2000 A
6114039 Rifqi Sep 2000 A
6120908 Papanu et al. Sep 2000 A
6166915 Lake et al. Dec 2000 A
6188391 Seely et al. Feb 2001 B1
6245313 Suzuki et al. Jun 2001 B1
6287674 Verlinden et al. Sep 2001 B1
6307590 Yoshida Oct 2001 B1
6310610 Beaton et al. Oct 2001 B1
6323846 Westerman et al. Nov 2001 B1
6325704 Brown et al. Dec 2001 B1
6327011 Kim Dec 2001 B2
6350664 Haji et al. Feb 2002 B1
6393180 Farries et al. May 2002 B1
6429840 Sekiguchi Aug 2002 B1
6437867 Zeylikovich et al. Aug 2002 B2
6516634 Green et al. Feb 2003 B1
6521862 Brannon Feb 2003 B1
6621542 Aruga Sep 2003 B1
6690387 Zimmerman et al. Feb 2004 B2
6718612 Bajorek Apr 2004 B2
6769274 Cho et al. Aug 2004 B2
6772610 Albrand et al. Aug 2004 B1
6810688 Duisit et al. Nov 2004 B1
6936741 Munnig et al. Aug 2005 B2
6955971 Ghyselen et al. Oct 2005 B2
6996324 Hiraka et al. Feb 2006 B2
7012700 De Groot et al. Mar 2006 B2
7013709 Hajduk et al. Mar 2006 B2
7015894 Morohoshi Mar 2006 B2
7070837 Ross Jul 2006 B2
7166531 van Den Hoek et al. Jan 2007 B1
7184064 Zimmerman et al. Feb 2007 B2
7461564 Glaesemann Dec 2008 B2
7558054 Prest et al. Jul 2009 B1
7626807 Hsu Dec 2009 B2
7663607 Hotelling et al. Feb 2010 B2
7810355 Feinstein et al. Oct 2010 B2
7872644 Hong et al. Jan 2011 B2
7918019 Chang et al. Apr 2011 B2
8013834 Kim Sep 2011 B2
8110268 Hegemier et al. Feb 2012 B2
8111248 Lee et al. Feb 2012 B2
8312743 Pun et al. Nov 2012 B2
8391010 Rothkopf Mar 2013 B2
8393175 Kohli et al. Mar 2013 B2
8551283 Pakula et al. Oct 2013 B2
8673163 Zhong Mar 2014 B2
8684613 Weber et al. Apr 2014 B2
8824140 Prest Sep 2014 B2
9128666 Werner Sep 2015 B2
20020035853 Brown et al. Mar 2002 A1
20020105793 Oda Aug 2002 A1
20020155302 Smith et al. Oct 2002 A1
20020157199 Piltingsrud Oct 2002 A1
20030024274 Cho et al. Feb 2003 A1
20030057183 Cho et al. Mar 2003 A1
20030077453 Oaku et al. Apr 2003 A1
20030234771 Mulligan et al. Dec 2003 A1
20040051944 Stark Mar 2004 A1
20040119701 Mulligan et al. Jun 2004 A1
20040137828 Takashashi et al. Jul 2004 A1
20040142118 Takechi Jul 2004 A1
20040163414 Eto et al. Aug 2004 A1
20050058423 Brinkmann et al. Mar 2005 A1
20050105071 Ishii May 2005 A1
20050135724 Helvajian et al. Jun 2005 A1
20050174525 Tsuboi Aug 2005 A1
20050193772 Davidson et al. Sep 2005 A1
20050245165 Harada et al. Nov 2005 A1
20050259438 Mizutani Nov 2005 A1
20050285991 Yamazaki Dec 2005 A1
20060026521 Hotelling et al. Feb 2006 A1
20060055936 Yun et al. Mar 2006 A1
20060063009 Naitou et al. Mar 2006 A1
20060063351 Jain Mar 2006 A1
20060070694 Rehfeld et al. Apr 2006 A1
20060097991 Hotelling et al. May 2006 A1
20060197753 Hotelling et al. Sep 2006 A1
20060227331 Wollmer et al. Oct 2006 A1
20060238695 Miyamoto Oct 2006 A1
20060250559 Bocko et al. Nov 2006 A1
20060268528 Zadeksky et al. Nov 2006 A1
20060292822 Xie Dec 2006 A1
20070003796 Isono et al. Jan 2007 A1
20070013822 Kawata et al. Jan 2007 A1
20070029519 Kikuyama et al. Feb 2007 A1
20070030436 Sasabayashi Feb 2007 A1
20070039353 Kamiya Feb 2007 A1
20070046200 Fu et al. Mar 2007 A1
20070063876 Wong Mar 2007 A1
20070089827 Funatsu Apr 2007 A1
20070122542 Halsey et al. May 2007 A1
20070132737 Mulligan et al. Jun 2007 A1
20070196578 Karp et al. Aug 2007 A1
20070236618 Magg et al. Oct 2007 A1
20080020919 Murata Jan 2008 A1
20080026260 Kawai Jan 2008 A1
20080074028 Ozolins et al. Mar 2008 A1
20080094716 Ushiro et al. Apr 2008 A1
20080135157 Higuchi Jun 2008 A1
20080158181 Hamblin et al. Jul 2008 A1
20080202167 Cavallaro et al. Aug 2008 A1
20080230177 Crouser et al. Sep 2008 A1
20080243321 Walser et al. Oct 2008 A1
20080261057 Slobodin Oct 2008 A1
20080264176 Bertrand et al. Oct 2008 A1
20080286548 Ellison et al. Nov 2008 A1
20090046240 Bolton Feb 2009 A1
20090067141 Dabov et al. Mar 2009 A1
20090091551 Hotelling et al. Apr 2009 A1
20090096937 Bauer et al. Apr 2009 A1
20090153729 Hiltunen et al. Jun 2009 A1
20090162703 Kawai Jun 2009 A1
20090197048 Amin et al. Aug 2009 A1
20090202808 Glaesemann et al. Aug 2009 A1
20090220761 Dejneka et al. Sep 2009 A1
20090257189 Wang et al. Oct 2009 A1
20090294420 Abramov et al. Dec 2009 A1
20090324899 Feinstein et al. Dec 2009 A1
20090324939 Feinstein et al. Dec 2009 A1
20100009154 Allan et al. Jan 2010 A1
20100024484 Kashima Feb 2010 A1
20100028607 Lee et al. Feb 2010 A1
20100035038 Barefoot et al. Feb 2010 A1
20100053632 Alphonse et al. Mar 2010 A1
20100062284 Watanabe et al. Mar 2010 A1
20100119846 Sawada May 2010 A1
20100137031 Griffin et al. Jun 2010 A1
20100154992 Feinstein et al. Jun 2010 A1
20100167059 Hasimoto et al. Jul 2010 A1
20100171920 Nishiyama Jul 2010 A1
20100179044 Sellier et al. Jul 2010 A1
20100206008 Harvey et al. Aug 2010 A1
20100215862 Gomez et al. Aug 2010 A1
20100216514 Smoyer et al. Aug 2010 A1
20100224767 Kawano et al. Sep 2010 A1
20100265188 Chang et al. Oct 2010 A1
20100279067 Sabia et al. Nov 2010 A1
20100285275 Baca et al. Nov 2010 A1
20100296027 Matsuhira et al. Nov 2010 A1
20100315570 Dinesh et al. Dec 2010 A1
20100321305 Chang et al. Dec 2010 A1
20110003619 Bolton Jan 2011 A1
20110012873 Prest et al. Jan 2011 A1
20110019123 Prest et al. Jan 2011 A1
20110019354 Prest et al. Jan 2011 A1
20110030209 Chang et al. Feb 2011 A1
20110050657 Yamada Mar 2011 A1
20110063550 Gettemy et al. Mar 2011 A1
20110067447 Zadesky et al. Mar 2011 A1
20110072856 Davidson et al. Mar 2011 A1
20110102346 Orsley et al. May 2011 A1
20110159321 Eda et al. Jun 2011 A1
20110164372 McClure et al. Jul 2011 A1
20110182084 Tomlinson Jul 2011 A1
20110186345 Pakula et al. Aug 2011 A1
20110188846 Sorg Aug 2011 A1
20110199687 Sellier et al. Aug 2011 A1
20110248152 Svajda et al. Oct 2011 A1
20110255000 Weber et al. Oct 2011 A1
20110255250 Dinh Oct 2011 A1
20110267833 Verrat-Debailleul et al. Nov 2011 A1
20110279383 Wilson et al. Nov 2011 A1
20110300908 Grespan et al. Dec 2011 A1
20120018323 Johnson et al. Jan 2012 A1
20120227399 Yeates Feb 2012 A1
20120099113 de Boer et al. Apr 2012 A1
20120105400 Mathew et al. May 2012 A1
20120118628 Pakula et al. May 2012 A1
20120135195 Glaesemann et al. May 2012 A1
20120136259 Milner et al. May 2012 A1
20120151760 Steijner Jun 2012 A1
20120188743 Wilson et al. Jul 2012 A1
20120196071 Cornejo et al. Aug 2012 A1
20120202040 Barefoot et al. Aug 2012 A1
20120236477 Weber et al. Sep 2012 A1
20120236526 Weber et al. Sep 2012 A1
20120281381 Sanford Nov 2012 A1
20120328843 Cleary et al. Dec 2012 A1
20130071601 Bibl et al. Mar 2013 A1
20130083506 Wright et al. Apr 2013 A1
20130182259 Brezinski et al. Jul 2013 A1
20130213565 Lee et al. Aug 2013 A1
20140176779 Weber et al. Jun 2014 A1
Foreign Referenced Citations (126)
Number Date Country
283 630 Oct 1970 AT
1277090 Dec 2000 CN
1369449 Sep 2002 CN
1694589 Nov 2005 CN
101025502 Aug 2007 CN
101206314 Jun 2008 CN
101523275 Feb 2009 CN
101465892 Jun 2009 CN
102117104 Jul 2011 CN
102131357 Jul 2011 CN
101267509 Aug 2011 CN
1322339 Nov 2011 CN
202799425 Mar 2013 CN
103958423 Jul 2014 CN
14 96 586 Jun 1969 DE
17 71 268 Dec 1971 DE
32 12 612 Oct 1983 DE
103 22 350 Dec 2004 DE
1038663 Sep 2000 EP
1 206 422 Nov 2002 EP
1 593 658 Nov 2005 EP
1592073 Nov 2005 EP
2025556 Feb 2009 EP
2036867 Mar 2009 EP
2075237 Jul 2009 EP
2196870 Jun 2010 EP
2233447 Sep 2010 EP
2483216 Aug 2012 EP
2635540 Sep 2013 EP
2 797 627 Feb 2001 FR
2 801 302 May 2001 FR
B S42-011599 Jun 1963 JP
B-S48-006925 Mar 1973 JP
55031944 Mar 1980 JP
55 067529 May 1980 JP
55-95645 Jul 1980 JP
A S55-136979 Oct 1980 JP
55 144450 Nov 1980 JP
A S59-013638 Jan 1984 JP
59037451 Feb 1984 JP
A S61-097147 May 1986 JP
6066696 Oct 1986 JP
A S63-106617 May 1988 JP
63222234 Sep 1988 JP
5-32431 Feb 1993 JP
05249422 Sep 1993 JP
6242260 Sep 1994 JP
A H07-050144 Feb 1995 JP
8-274054 Oct 1996 JP
52031757 Mar 1997 JP
A-H09-073072 Mar 1997 JP
A H09-507206 Jul 1997 JP
09-312245 Dec 1997 JP
A H11-281501 Oct 1999 JP
A 2000-086261 Mar 2000 JP
2000-163031 Jun 2000 JP
200203895 Jul 2000 JP
A 2001-083887 Mar 2001 JP
A 2002-160932 Jun 2002 JP
2002-342033 Nov 2002 JP
A 2002-338283 Nov 2002 JP
A2003502257 Jan 2003 JP
A2003-146705 May 2003 JP
A 2004-094256 Mar 2004 JP
A2004-259402 Sep 2004 JP
A 2004-292247 Oct 2004 JP
A2004-339019 Dec 2004 JP
2005-165249 Jun 2005 JP
A 2005-156766 Jun 2005 JP
A 2005140901 Jun 2005 JP
2005-353592 Dec 2005 JP
A 2000-348338 Dec 2005 JP
2007-099557 Apr 2007 JP
2008-001590 Jan 2008 JP
2008007360 Jan 2008 JP
2008-63166 Mar 2008 JP
2008-066126 Mar 2008 JP
2008-192194 Aug 2008 JP
A 2008-195602 Aug 2008 JP
A 2008-216938 Sep 2008 JP
A 2008-306149 Dec 2008 JP
A 2009-167086 Jul 2009 JP
A 2009-234856 Oct 2009 JP
A2009230341 Oct 2009 JP
2010 064943 Mar 2010 JP
A 2010-060908 Mar 2010 JP
A 2010-116276 May 2010 JP
U 3162733 Aug 2010 JP
2010195600 Sep 2010 JP
A 2010-237493 Oct 2010 JP
2011-032124 Feb 2011 JP
A 2011-032140 Feb 2011 JP
A 2011-158799 Aug 2011 JP
2011-527661 Nov 2011 JP
A 2011-231009 Nov 2011 JP
A 2013-537723 Oct 2013 JP
2010-2006-005920 Jan 2006 KR
10-2010-0019526 Feb 2010 KR
10-2011-0030919 Mar 2011 KR
201007521 Feb 2010 TW
201235744 Sep 2012 TW
WO 0242838 May 2002 WO
WO 2004014109 Feb 2004 WO
WO 2004-061806 Jul 2004 WO
WO 2004106253 Dec 2004 WO
WO 2004106253 Dec 2004 WO
WO 2007089054 Aug 2007 WO
WO 2008044694 Apr 2008 WO
WO 2008143999 Nov 2008 WO
WO 2009003029 Dec 2008 WO
WO 2009078406 Jun 2009 WO
WO 2009099615 Aug 2009 WO
WO 2009102326 Aug 2009 WO
WO 2009125133 Oct 2009 WO
WO 2010005578 Jan 2010 WO
WO 2010014163 Feb 2010 WO
WO 2010019829 Feb 2010 WO
WO 2010080988 Jul 2010 WO
WO 2010101961 Sep 2010 WO
WO 2011008433 Jan 2011 WO
WO 2010027565 Feb 2011 WO
WO 2011041484 Apr 2011 WO
WO 2012015960 Feb 2012 WO
WO 2012027220 Mar 2012 WO
WO 2012106280 Aug 2012 WO
WO 2013106242 Jul 2013 WO
Non-Patent Literature Citations (22)
Entry
Arun K. Varshneya, Chemical Strengthening of Glass: Lessons Learned and Yet to Be Learned, International Journal of Applied Glass Science, 2010, 1, 2, pp. 131-142.
International Search Report and Written Opinion for International Application No. PCT/US2011/047479, dated Nov. 11, 2011.
Chemically Strengthened Glass, Wikipedia, Apr. 19, 2009, http://en/wikipedia.org/w/index.php?title=Chemically_strengthened_glass&oldid=284794988.
Wikipedia: “Iphone 4”, www.wikipedia.org, retrieved Oct. 31, 2011, 15 pgs.
“Toward Making Smart Phone Touch-Screens More Glare and Smudge Resistant”, e! Science News, http://eciencenews.com/articles/2009/08/19toward.making.smart.phone.touch.screens.more.glare.and.smudge.resistant, Aug. 19, 2009, 1 pg.
Aben “Laboratory of Photoelasticity”, Institute of Cybernetics at TTU, www.ioc.ee/res/photo.html, Oct. 5, 2000.
Forooghian et al., Investigative Ophthalmology & Visual Science; Oct. 2008, vol. 49, No. 10.
Saxer et al., “High-Speed Fiber-Based Polarization-sensitive optical coherence tomography of in vivo human skin”, Optics Letters, vol. 25, No. 18, Sep. 15, 2000, pp. 1355-1357.
Ohkuma, “Development of a Manufacturing Process of a Thin, Lightweight LCD Cell”, Department of Cell Process Development, IBM, Japan, Section 13.4.
Lee et al., “A Multi-Touch Three Dimensional Touch-Sensitive Tablet”, Proceedings of CHI: ACM Conference on Human Factors in Computing Systems, Apr. 1985, pp. 21-25.
Rubine, “The Automatic Recognition of Gestures”, CMU-CS-91-202, Submitted in Partial Fulfillment of the Requirements of the Degree of Doctor of Philosophy in Computer Science at Carnegie Mellon University, Dec. 1991, 285 pages.
Rubine, “Combining Gestures and Direct Manipulation”, CHI'92, May 1992, pp. 659-660.
Westerman, “Hand Tracking, Finger Identification and Chronic Manipulation of a Multi-Touch Surface”, A Dissertation Submitted to the Faculty of the University of Delaware in Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy in Electrical Engineering, Spring 1999, 364 pages.
Karlsson et al., “The Technology of Chemical Glass Strengthening—a review”, Apr. 2010, Glass Technology, European Journal of Glass Science and Technology A., vol. 51, No. 2, pp. 41-54.
Examination Report for European Patent Application No. 11749636.4, dated Apr. 16, 2014.
Notice of Preliminary Rejection for Korean Patent Application No. 10-2013-7006694, dated Jul. 21, 2014.
Notice of Final Rejection for Korean Patent Application No. 10-2013-7006694, dated May 22, 2015.
First Office Action for Chinese Patent Application No. 201180047550.3, dated Nov. 26, 2014.
Office Action for Chinese Patent Application No. 201180047550.3 dated Feb. 29, 2016.
Kingery et al., “Introduction to Ceramics” 2nd Ed. John Wiley & Sons, 1976, pp. 792 and 833-844.
Second Office Action for Chinese Patent Application No. 201180047550.3, dated Sep. 30, 2015.
Second Final Rejection for Korean Patent Application No. 10-2013-70006694, dated Sep. 16, 2015.
Related Publications (1)
Number Date Country
20110067447 A1 Mar 2011 US
Provisional Applications (1)
Number Date Country
61374988 Aug 2010 US