1. Field of the Invention
The present disclosure relates to mixers, and more particularly to fuel mixers such as used in atomizers and injectors for gas turbine engines.
2. Description of Related Art
Mixers are used in many applications where air or some other gas is used to mix and distribute a substance. A particular mixer known in the industry as a drilled hole swirler is used often in fuel injectors for gas turbine combustors to mix and distribute the fuel and air. The drilled holes through the air cap are arranged in a pattern which best fits the combustor geometry in order to optimize the flame distribution throughout the combustor. Traditionally, the drilled holes are cylindrical in nature. In some instances, it has been found that modifying the geometry at the entrance to the drilled hole can increase the discharge coefficient and decrease part-to-part variability of these features, as taught in U.S. Patent Application Publication No. 2014/0166143, which is incorporated by reference herein in its entirety.
Such conventional methods and systems have generally been considered satisfactory for their intended purpose. However, there is an ongoing need in the art for improved turbulent mixing. The present disclosure provides a solution for this need.
A flow directing apparatus for directing fluid flowing therethrough includes a flow body defining an upstream facing inlet surface and an opposed downstream facing outlet surface with a bore defined through the flow body from the inlet surface to the outlet surface. The bore is configured to direct fluid flowing therethrough and includes an inlet portion of the bore extending in a downstream direction from an inlet where the bore meets the inlet surface. An intermediate portion of the bore extends in a downstream direction from the inlet portion of the bore. A backstep portion of the bore extends downstream from the intermediate portion of the bore to an outlet where the bore meets the outlet surface. The intermediate portion of the bore has a cross-sectional flow area that is smaller than or equal to that of the inlet portion and smaller than that of the backstep portion to provide a backward facing step in flow area for flow through the bore.
The intermediate portion of the bore can meet the backstep portion of the bore a position that is between about 20% to about 50% of a length of the bore defined from the inlet to the exit of the bore. The backstep portion of the bore has a diameter that is between about 20% and about 80% larger than the diameter of the intermediate portion of the bore. It is also contemplated that the backstep portion can have a cross-sectional area, e.g., normal to the flow direction, that is between about 40% to 225% larger than that of the intermediate portion. The intermediate portion of the bore can be dimensioned to meter flow through the bore. The inlet portion of the bore can include at least one of a countersink with a larger cross-sectional area than that of the bore downstream of the countersink, or a chamfer with a larger cross-sectional area than that of the bore downstream of the countersink. The backstep portion of the bore can include a diffuser, e.g., a bellmouth diffuser, tapered diffuser, or the like, opening gradually downstream of the intermediate portion.
In another aspect, a flow directing apparatus can include a plurality of bores as described above. The flow body can be a mixer and the bores can be arranged circumferentially about a center axis defined by the flow body. Each bore can be aligned along a bore axis that has at least one of a tangential directional component, a converging directional component, or a diverging directional component relative to a center axis defined by the flow body. The bores can include an inner set of bores arranged circumferentially about a centerline axis defined by the flow body, and an outer set of bores arranged circumferentially about the centerline axis outboard of the inner set of bores. A pressure atomizer can be incorporated in the flow body. In additional to or in lieu of the pressure atomizer, any other suitable device for injecting fuel into a system can be used, such as a prefilming circuit or other advanced prefilming atomizer, fuel jets such as a jet in a cross-flow, multipoint injector, or the like.
These and other features of the systems and methods of the subject disclosure will become more readily apparent to those skilled in the art from the following detailed description of the preferred embodiments taken in conjunction with the drawings.
So that those skilled in the art to which the subject disclosure appertains will readily understand how to make and use the devices and methods of the subject disclosure without undue experimentation, preferred embodiments thereof will be described in detail herein below with reference to certain figures, wherein:
Reference will now be made to the drawings wherein like reference numerals identify similar structural features or aspects of the subject disclosure. For purposes of explanation and illustration, and not limitation, a partial view of an exemplary embodiment of a flow body in accordance with the disclosure is shown in
Flow directing apparatus 100 for directing fluid flowing therethrough includes a flow body 102 defining an upstream facing inlet surface 104, shown in
With reference now to
The intermediate portion 114 of bore 108 meets the backstep portion 116 of bore 108 at a position X that is between about 20% to about 80% of a length L of the bore 108 defined from inlet 112 to exit 118 of bore 108. Backstep portion 116 has a diameter D3 that is between about 20% and about 80% larger than the diameter D2 of the intermediate portion 114. It is also contemplated that the backstep portion 116 can have a cross-sectional area, e.g., normal to the flow direction, that is between about 40% to 225% larger than that of the intermediate portion 114. Diameter D1 of inlet portion 110 is also greater than diameter D2. Intermediate portion 114 is dimensioned to meter flow through the bores 108. It is contemplated that D1 could be equal to D2, e.g., where there is no chamfer, countersink, or the like on the inlet 112.
Inlet portion 110 of bore 108 includes a chamfer with a larger cross-sectional area than that of the bore downstream of the chamfer. Instead of a chamfer, a countersink or any other suitable entrance configuration can be used for providing a suitable discharge coefficient and suitably limit part-to-part variability in flow characteristics. Other suitable entrance configurations, for example, are discussed in U.S. Patent Application Publication No. 2014/0166143.
With reference now to
With reference now to
In another example, back step features as described herein can be used with a prefilming liquid fuel circuit. For example, the swirler ports in the injectors shown and described in U.S. Patent Application Publication No. 2014/0338337 could be modified to benefit from the techniques described herein. Adding the back step mixing features described herein to the inner and outer air holes (reference characters 106 and 122 in that Publication) wherein the fuel is issued in through the fuel circuit would promote extra turbulent energy close the nozzle face and enhance mixing of the air and fuel.
With reference now to
Any suitable manufacturing techniques can be used to form flow bodies as described herein. Conventional machining and/or additive manufacturing can be used.
Compared with traditional configurations having the same effective flow area (effective flow area is the mass flow rate that is allowed through the injector for a given upstream to downstream pressure drop), flow bodies as described herein can provide a significant increase in turbulent kinetic energy associated with backstep in the flow. This turbulence enhances mixing in close proximity to the bores. At a plane downstream of a nozzle, the flow from a flow body as described herein has a much more uniform velocity profile than traditional nozzles with the same effective flow area. This shows that the increased turbulent kinetic energy is being used effectively as a mixer.
When considering the characteristics of a single bore, e.g., bores 108, a large increase in turbulent kinetic energy is started in the backstep, e.g., where intermediate portion 114 and backstep portion 116 meet, and continues out into the local mixing portion of the flowfield. The characteristics of a drilled hole air swirler, e.g., air swirler 202, on a pressure atomizer such as pressure atomizer 238, include local mixing characteristics with improved mixing efficiency relative to traditional configurations. This improved mixing results in a noted reduction in the emissions of the pollutant NOx relative to conventional configurations. Moreover, the velocity profiles at the exit of the disclosed mixers are better mixed compared to traditional nozzles which have much larger jet-like portions in their velocity profiles. The increased mixing results in much lower peak temperatures, which in turn reduces the NOx emissions.
Those skilled in the art will readily appreciate that the geometries shown and described herein are for air swirlers. However, the concept is not limited to air swirlers since those skilled in the art having the benefit of this disclosure will readily be able to apply the techniques described herein to gas and liquid fuel circuits and the like. In addition, the concepts taught herein may readily be applied beyond the field of gas turbine fuel injectors. For example, those skilled in the art will readily appreciate how to adapt the techniques disclosed herein to any suitable device which is intended to mix or distribute gaseous and/or liquid materials such as in exhaust nozzles for aircraft engine exits, afterburners, chemical/material processing, and the like.
The methods and systems of the present disclosure, as described above and shown in the drawings provide for superior turbulent mixing. While the apparatus and methods of the subject disclosure have been shown and described with reference to preferred embodiments, those skilled in the art will readily appreciate that changes and/or modifications may be made thereto without departing from the spirit and scope of the subject disclosure.
This application claims the benefit of priority under 35 U.S.C. §119(e) to U.S. Provisional Application No. 62/117,778, filed Feb. 18, 2015, and Provisional Application No. 62/117,814, filed Feb. 18, 2015, each of which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
62117778 | Feb 2015 | US | |
62117814 | Feb 2015 | US |