The invention relates to structures having an insulating space that is evacuated by an applied vacuum and sealed.
It is well known that vacuum provides an excellent thermal insulator. Vacuum-sealed spaces have been incorporated in a wide variety of structures including cryogenic devices, such as medical probes, and high temperature devices, such as heat exchangers. It is also known to include gas-absorbing material, most commonly a “non-evaporable getter” material, within the vacuum-sealed space in order to achieve a sealed vacuum deeper than the vacuum of the chamber in which the insulating space is evacuated. The getter material, which may comprise metals such as zirconium, titanium, niobium, tantalum, and vanadium, as well as alloys of those metals, may be loosely contained within the vacuum space or, alternatively, coated on the inside of one or more of the surfaces defining the vacuum space.
The presence of the getter material in the vacuum space, whether loosely contained or as a coating, will limit the minimum possible width of the vacuum space. In applications where the width of the vacuum space is small, such as that encountered in many medical devices, space constraints prohibit the use of getter material in the vacuum space. The ability to form a deep vacuum in such applications without the need for getter material is therefore highly desirable.
According to the invention, an article comprises first and second walls spaced at a distance to define an insulating space therebetween and a vent communicating with the insulating space to provide an exit pathway for gas molecules from the insulating space. The vent is sealable for maintaining a vacuum within the insulating space following evacuation of gas molecules through the vent. The distance between the first and second walls is variable in a portion of the insulating space adjacent the vent such that gas molecules within the insulating space are directed towards the vent during evacuation of the insulating space. The direction of the gas molecules towards the vent imparts to the gas molecules a greater probability of egress than ingress with respect to the insulating space, thereby providing a deeper vacuum without requiring a getter material in the insulating space. It should be understood that a getter may be present, but that a getter is optional.
According to one embodiment, one of the walls of the article includes a portion that converges toward the other wall adjacent the vent such that the distance between the walls is minimum adjacent the location at which the vent communicates with the insulating space. The first and second walls may be provided by first and second tubes arranged substantially concentrically to define an annular space therebetween. Alternatively, one of the walls may define a substantially rectangular insulating space for a container. It is not a requirement, however, that the walls be concentric with one another.
According to another embodiment, the vent is defined by an opening in one of the walls of the article and the other wall includes a portion opposite the vent that is arranged such that a normal line at any location within that portion is directed substantially towards the vent. The article may be a Dewar including an upper substantially cylindrical portion and a lower substantially spherical portion. The opening provided in an outer wall in the lower portion and an inner wall including an indented portion opposite the vent.
For the purpose of illustrating the invention, there is shown in the drawings a form that is presently preferred; it being understood, however, that this invention is not limited to the precise arrangements and instrumentalities shown.
The present invention may be understood more readily by reference to the following detailed description taken in connection with the accompanying figures and examples, which form a part of this disclosure. It is to be understood that this invention is not limited to the specific devices, methods, applications, conditions or parameters described and/or shown herein, and that the terminology used herein is for the purpose of describing particular embodiments by way of example only and is not intended to be limiting of the claimed invention. Also, as used in the specification including the appended claims, the singular forms “a,” “an,” and “the” include the plural, and reference to a particular numerical value includes at least that particular value, unless the context clearly dictates otherwise. The term “plurality”, as used herein, means more than one. When a range of values is expressed, another embodiment includes from the one particular value and/or to the other particular value.
As used in the specification and in the claims, the term “comprising” may include the embodiments “consisting of” and “consisting essentially of” The terms “comprise(s),” “include(s),” “having,” “has,” “can,” “contain(s),” and variants thereof, as used herein, are intended to be open-ended transitional phrases, terms, or words that require the presence of the named ingredients/steps and permit the presence of other ingredients/steps. However, such description should be construed as also describing compositions or processes as “consisting of” and “consisting essentially of” the enumerated ingredients/steps, which allows the presence of only the named ingredients/steps, along with any impurities that might result therefrom, and excludes other ingredients/steps.
Similarly, when values are expressed as approximations, by use of the antecedent “about,” it will be understood that the particular value forms another embodiment.
As used herein, the terms “about” and “at or about” mean that the amount or value in question can be the value designated some other value approximately or about the same. It is generally understood, as used herein, that it is the nominal value indicated ±10% variation unless otherwise indicated or inferred. The term is intended to convey that similar values promote equivalent results or effects recited in the claims. That is, it is understood that amounts, sizes, formulations, parameters, and other quantities and characteristics are not and need not be exact, but can be approximate and/or larger or smaller, as desired, reflecting tolerances, conversion factors, rounding off, measurement error and the like, and other factors known to those of skill in the art. In general, an amount, size, formulation, parameter or other quantity or characteristic is “about” or “approximate” whether or not expressly stated to be such. It is understood that where “about” is used before a quantitative value, the parameter also includes the specific quantitative value itself, unless specifically stated otherwise.
Numerical values in the specification and claims of this application reflect average values for a composition that may contain individual polymers of different characteristics. Furthermore, unless indicated to the contrary, the numerical values should be understood to include numerical values which are the same when reduced to the same number of significant figures and numerical values which differ from the stated value by less than the experimental error of conventional measurement technique of the type described in the present application to determine the value.
All ranges disclosed herein are inclusive of the recited endpoint and independently combinable (for example, the range of “from 2 grams to 10 grams” is inclusive of the endpoints, 2 grams and 10 grams, and all the intermediate values). The endpoints of the ranges and any values disclosed herein are not limited to the precise range or value; they are sufficiently imprecise to include values approximating these ranges and/or values.
As used herein, approximating language may be applied to modify any quantitative representation that may vary without resulting in a change in the basic function to which it is related. Accordingly, a value modified by a term or terms, such as “about” and “substantially,” may not be limited to the precise value specified, in some cases. In at least some instances, the approximating language may correspond to the precision of an instrument for measuring the value.
The modifier “about” should also be considered as disclosing the range defined by the absolute values of the two endpoints. For example, the expression “from about 2 to about 4” also discloses the range “from 2 to 4.” The term “about” may refer to plus or minus 10% of the indicated number. For example, “about 10%” may indicate a range of 9% to 11%, and “about 1” may mean from 0.9-1.1. Other meanings of “about” may be apparent from the context, such as rounding off, so, for example “about 1” may also mean from 0.5 to 1.4.
All ranges are inclusive and combinable, and it should be understood that steps may be performed in any order.
It is to be appreciated that certain features of the invention which are, for clarity, described herein in the context of separate embodiments, may also be provided in combination in a single embodiment. Conversely, various features of the invention that are, for brevity, described in the context of a single embodiment, may also be provided separately or in any subcombination. Further, reference to values stated in ranges include each and every value within that range.
The present invention increases the depth of vacuum that can be sealed within an insulation space by providing a geometry adjacent an exit having a guiding effect on gas molecules during an evacuation process. As will be described in greater detail, the geometry according to the invention provides for removal of a greater number of gas molecules from the space than could otherwise be achieved without the use of a getter material. The elimination of the need for a getter material in the evacuated space to achieve deep vacuums is a significant benefit of the present invention. By eliminating the need for getter material, the invention provides for deepened vacuums in insulated spaces in which this was not previously possible because of space constraints. Such insulated spaces include those for devices of miniature scale or devices having insulating spaces of extremely narrow width.
As explained in U.S. Pat. Nos. 7,681,299 and 7,374,063 (incorporated herein by reference in their entireties for any and all purposes), the geometry of an insulating space may be such that it guides gas molecules within the space toward a vent or other exit from the space. The width of the vacuum insulating space need not be not uniform throughout the length of the space. The space may include an angled portion such that one surface that defines the space converges toward another surface that defines the space. As a result, the distance separating the surfaces may vary adjacent the vent such the distance is at a minimum adjacent the location at which the vent communicates with the vacuum space. The interaction between gas molecules and the variable-distance portion during conditions of low molecule concentration serves to direct the gas molecules toward the vent.
The molecule-guiding geometry of the space provides for a deeper vacuum to be sealed within the space than that which is imposed on the exterior of the structure to evacuate the space. This somewhat counterintuitive result of deeper vacuum within the space is achieved because the geometry of the present invention significantly increases the probability that a gas molecule will leave the space rather than enter. In effect, the geometry of the insulating space functions like a check valve to facilitate free passage of gas molecules in one direction (via the exit pathway defined by vent) while blocking passage in the opposite direction.
Another benefit associated with the deeper vacuums provided by the geometry of insulating space is that it is achievable without the need for a getter material within the evacuated space. The ability to develop such deep vacuums without a getter material provides for deeper vacuums in devices of miniature scale and devices having insulating spaces of narrow width where space constraints would limit the use of a getter material.
Other vacuum-enhancing features may also be included, such as low-emissivity coatings on the surfaces that define the vacuum space. The reflective surfaces of such coatings, generally known in the art, tend to reflect heat-transferring rays of radiant energy. Limiting passage of the radiant energy through the coated surface enhances the insulating effect of the vacuum space.
In some embodiments, an article may comprise first and second walls spaced at a distance to define an insulating space therebetween and a vent communicating with the insulating space to provide an exit pathway for gas molecules from the insulating space. The vent is sealable for maintaining a vacuum within the insulating space following evacuation of gas molecules through the vent. The distance between the first and second walls is variable in a portion of the insulating space adjacent the vent such that gas molecules within the insulating space are directed towards the vent during evacuation of the insulating space. The direction of the gas molecules towards the vent imparts to the gas molecules a greater probability of egress than ingress with respect to the insulating space, thereby providing a deeper vacuum without requiring a getter material in the insulating space.
The construction of structures having gas molecule guiding geometry according to the present invention is not limited to any particular category of materials. Suitable materials for forming structures incorporating insulating spaces according to the present invention include, for example, metals, ceramics, metalloids, or combinations thereof.
The convergence of the space provides guidance of molecules in the following manner. When the gas molecule concentration becomes sufficiently low during evacuation of the space such that structure geometry becomes a first order effect, the converging walls of the variable distance portion of the space channel gas molecules in the space toward the vent. The geometry of the converging wall portion of the vacuum space functions like a check valve or diode because the probability that a gas molecule will leave the space, rather than enter, is greatly increased.
The effect that the molecule-guiding geometry of structure has on the relative probabilities of molecule egress versus entry may be understood by analogizing the converging-wall portion of the vacuum space to a funnel that is confronting a flow of particles. Depending on the orientation of the funnel with respect to the particle flow, the number of particles passing through the funnel would vary greatly. It is clear that a greater number of particles will pass through the funnel when the funnel is oriented such that the particle flow first contacts the converging surfaces of the funnel inlet rather than the funnel outlet.
Various examples of devices incorporating a converging wall exit geometry for an insulating space to guide gas particles from the space like a funnel are provided herein. It should be understood that the gas guiding geometry of the invention is not limited to a converging-wall funneling construction and may, instead, utilize other forms of gas molecule guiding geometries. Some exemplary vacuum-insulated spaces (and related techniques for forming and using such spaces) may be found in United States published patent applications 2017/0253416; 2017/0225276; 2017/0120362; 2017/0062774; 2017/0043938; 2016/0084425; 2015/0260332; 2015/0110548; 2014/0090737; 2012/0090817; 2011/0264084; 2008/0121642; and 2005/0211711, all by A. Reid, and all incorporated herein by reference in their entireties for any and all purposes.
Referring to the drawings, where like numerals identify like elements, there is shown in
It should be understood that in some embodiments, an inner tube may flare outwards toward the outer tube thus forming the vent between the two tubes. In such an embodiment, the inner tube can be said to be converging (or even diverging) toward the outer tube.
It should be understood that space 16 may be empty; i.e., may contain only a vacuum. In some embodiments, space 16 may optionally include an additional insulation material, e.g., a porous foam, an aerogel, or other such insulating material. An insulating material is suitably one that at least partially maintains its porous structure during processing of the article, i.e., during brazing, vacuum furnace processing, and the like. The insulating material may confer additional insulating performance onto structure 10 beyond the insulating performance conferred by a vacuum in space 16.
Microporous insulation may be, e.g., made by compacting silica or alumina particles/fibers. The particles/fibers in such insulation may have a cross-sectional dimension (diameter, length, and the like) in the range of from about 5 to about 25 nm. A microporous insulation may, by volume, comprise form about 70 to about 90% air, which air is normally contained within minute pores between particles. The pore size in a microporous insulation may be such that the majority of the pores have a size comparable to or below the mean free path of air molecules at standard atmospheric pressure, which is about 70 nm. A microporous (or other) insulation used in the disclosed technology may have a W/m*K value (measured at about 200 deg C.) of from about 0.002 to about 0.010 or even to about 0.1.
The following is a table of thermal conductivity (as a function of temperature) for one example, non-limiting microporous insulation:
Without being bound to any particular theory, some insulation (including microporous insulations) may exhibit further improved performance when placed within an evacuated space
A structure according to the present disclosure may optionally include a thermal pathway (which may also be termed a “thermal short”) that places an inner wall (e.g., inner tube 12 in
A thermal pathway may be created in a number of ways. In one embodiment, the thermal pathway comprises an amount of a conducting material that bridges the walls that define an insulating space. As an example, conductive segment 22a in
As shown in
A thermal pathway may also be created (again by reference to
The vent 18 is sealable in order to maintain a vacuum within the insulating space following removal of gas molecules in a vacuum-sealing process. In its presently preferred form, the space 16 of structure 10 is sealed by brazing tubes 12, 14 together. The use of brazing to seal the evacuation vent of a vacuum-sealed structure is generally known in the art. To seal the vent 18, a brazing material (not shown) is positioned between the tubes 12, 14 adjacent their ends in such a manner that, prior to the brazing process, the evacuation path defined by the vent 18 is not blocked by the material. During the evacuation process, however, sufficient heat is applied to the structure 10 to melt the brazing material such that it flows by capillary action into the evacuation path defined by vent 18. The flowing brazing material seals the vent 18 and blocks the evacuation path. A brazing process for sealing the vent 18, however, is not a requirement of the invention. Alternative methods of sealing the vent 18 could be used, such as a metallurgical or chemical processes.
The geometry of the structure 10 effects gas molecule motion in the insulating space 16 in the following manner. A major assumption of Maxwell's gas law regarding molecular kinetic behavior is that, at higher concentrations of gas molecules, the number of interactions occurring between gas molecules will be large in comparison to the number of interactions that the gas molecules have with a container for the gas molecules. Under these conditions, the motion of the gas molecules is random and, therefore, is not affected by the particular shape of the container. When the concentration of the gas molecules becomes low, however, as occurs during evacuation of an insulating space for example, molecule-to-molecule interactions no longer dominate and the above assumption of random molecule motion is no longer valid. As relevant to the invention, the geometry of the vacuum space becomes a first order system effect rather than a second order system effect when gas molecule concentration is reduced during evacuation because of the relative increase in gas molecule-to-container interactions.
The geometry of the insulating space 16 guides gas molecules within the space 16 toward the vent 18. As shown in
The molecule guiding geometry of space 16 provides for a deeper vacuum to be sealed within the space 16 than that which is imposed on the exterior of the structure 10 to evacuate the space. This somewhat counterintuitive result of deeper vacuum within the space 16 is achieved because the geometry of the present invention significantly increases the probability that a gas molecule will leave the space rather than enter. In effect, the geometry of the insulating space 16 functions like a check valve to facilitate free passage of gas molecules in one direction (via the exit pathway defined by vent 18) while blocking passage in the opposite direction.
An important benefit associated with the deeper vacuums provided by the geometry of insulating space 16 is that it is achievable without the need for a getter material within the evacuated space 16. The ability to develop such deep vacuums without a getter material provides for deeper vacuums in devices of miniature scale and devices having insulating spaces of narrow width where space constraints would limit the use of a getter material.
Although not required, a getter material could be used in an evacuated space having gas molecule guiding structure according to the invention. Other vacuum enhancing features could also be included, such as low-emissivity coatings on the surfaces that define the vacuum space. The reflective surfaces of such coatings, generally known in the art, tend to reflect heat-transferring rays of radiant energy. Limiting passage of the radiant energy through the coated surface enhances the insulating effect of the vacuum space.
The construction of structures having gas molecule guiding geometry according to the present invention is not limited to any particular category of materials. Suitable materials for forming structures incorporating insulating spaces according to the present invention include, for example, metals, ceramics, metalloids, or combinations thereof.
Referring again to the structure 10 shown in
The effect that the molecule guiding geometry of structure 10 has on the relative probabilities of molecule egress versus entry may be understood by analogizing the converging-wall portion of the vacuum space 16 to a funnel that is confronting a flow of particles. Depending on the orientation of the funnel with respect to the particle flow, the number of particles passing through the funnel would vary greatly. It is clear that a greater number of particles will pass through the funnel when the funnel is oriented such that the particle flow first contacts the converging surfaces of the funnel inlet rather than the funnel outlet.
Various examples of devices incorporating a converging wall exit geometry for an insulating space to guide gas particles from the space like a funnel are shown in
Insulated Probes
Referring to
The structure 22 may be useful, for example, in an insulated surgical probe. In such an application, it may be desirable that the structure 22 be bent as shown to facilitate access of an end of the probe to a particular target site. Preferably, the concentrically arranged tubes 24, 26 of structure 22 comprise a flexible material and have been bent such that the resulting angle between the central axes of the opposite ends of the structure is approximately 45 degrees. It is not a requirement that one or more walls be formed of a flexible material.
To enhance the insulating properties of the sealed vacuum layer, an optical coating 38 having low-emissivity properties may be applied to the outer surface of the inner tube 24. The reflective surface of the optical coating limits passage of heat-transferring radiation through the coated surface. The optical coating may comprise copper, a material having a desirably low emissivity when polished. Copper, however, is subject to rapid oxidation, which would detrimentally increase its emissivity. Highly polished copper, for example, can have an emissivity as low as approximately 0.02 while heavily oxidized copper may have an emissivity as high as approximately 0.78.
To facilitate application, cleaning, and protection of the oxidizing coating, the optical coating is preferably applied to the inner tube 24 using a radiatively-coupled vacuum furnace prior to the evacuation and sealing process. When applied in the elevated-temperature, low-pressure environment of such a furnace, any oxide layer that is present will be dissipated, leaving a highly cleaned, low-emissivity surface, which will be protected against subsequent oxidation within the vacuum space 28 when the evacuation path is sealed.
Referring to
When concentrically arranged tubes, such as those forming the vacuum spaces of the probes structures 22 and 40 of
Each of the structures of
Joule-Thomson Devices
Referring to
The cooling device 60 includes an outer jacket 74 having a cylindrical portion 76 closed at an end by a substantially hemispherical portion 78. The cylindrical portion 76 of the outer jacket 74 is concentrically arranged with tube 66 to define an annular insulating space 82 therebetween. Tube 66 includes an angled portion 84 that converges toward outer jacket 74 adjacent an evacuation path 86. The variable distance portion of the insulating space 82 differs from those of the structures shown in
The annular inlet 68 directs gas having relatively high pressure and low velocity to the diffuser 72 where it is expanded and cooled in the expansion chamber 80. As a result, the end of the cooling device 60 is chilled. The expanded low-temperature/low-pressure is exhausted through the interior of the inner tube 64. The return of the low-temperature gas via the inner tube 64 in this manner quenches the inlet gas within the gas inlet 68. The vacuum insulating space 82, however, retards heat absorption by the quenched high-pressure side, thereby contributing to overall system efficiency.
This reduction in heat absorption may be enhanced by applying a coating of emissive radiation shielding material on the outer surface of tube 66. The invention both enhances heat transfer from the high-pressure/low-velocity region to the low-pressure/low-temperature region and also provides for size reductions not previously possible due to quench area requirements necessary for effectively cooling the high pressure gas flow.
The angled portion 70 of tube 64, which forms the diffuser 72, may be adapted to flex in response to pressure applied by the inlet gas. In this manner, the size of the opening defined by the diffuser 72 between tubes 64 and 66 may be varied in response to variation in the gas pressure within inlet 68. An inner surface 88 of tube 64 provides an exhaust port (not seen) for removal of the relatively low-pressure gas from the expansion chamber 80.
Referring to
Referring to
Referring to
The construction of the gas inlet 97 of cooling device 91 adjacent the expansion chamber 105 differs from that of the cooling devices shown in
A coating 115 of material having a relatively large thermal conductivity, preferably copper, is formed on at least a portion of the inner surface of tube 93 to facilitate efficient transfer of thermal energy to the tube 93.
Non-Annular Devices
Each of the insulating structures of
The vacuum insulated storage container 120 of
The storage container 120 may also include an electrical potential storage system (battery/capacitor), and a Proportional Integrating Derivative (PID) temperature control system for driving a thermoelectric (TE) cooler or heater assembly. The TE generator section of the storage container would preferably reside in a shock and impact resistant outer sleeve containing the necessary convection ports and heat/light collecting coatings and or materials to maintain the necessary thermal gradients for the TE System. The TE cooler or heater and its control package would preferably be mounted in a removable subsection of a hinged cover for the storage container 120. An endothermic chemical reaction device (e.g., a “chemical cooker”) could also be used with a high degree of success because its reaction rate would relate to temperature, and its effective life would be prolonged because heat flux across the insulation barrier would be exceptionally low.
Commercially available TE generator devices are capable of producing approximately 1 mW/in2 with a device gradient of 20 deg. K and approximately 6 mW/in2 with a device gradient of 40 deg. K. Non-linear efficiency curves are common for these devices. This is highly desirable for high ambient temperature cooling applications for this type of system, but may pose problems for low temperature heating applications.
High end coolers have conversion efficiencies of approximately 60%. For example a 10 inch diameter container 10 inches in height having 314 in2 of surface area and a convective gradient of 20 deg. K would have a total dissipation capacity of approximately 30 mW. A system having the same mechanical design with a 40 deg. K convective gradient would have a dissipation capacity of approximately 150 mW.
Examples of potential uses for the above-described insulated container 120 include storage and transportation of live serums, transportation of donor organs, storage and transportation of temperature products, and thermal isolation of temperature sensitive electronics.
Alternate Molecule Guiding Geometry
The present invention is not limited to the converging geometry incorporated in the insulated structure shown in
A lower portion 146 of the inner wall 136 opposite vent 144 is indented towards the interior 138, and away from the vent 144. The indented portion 146 forms a corresponding portion 148 of the insulating space 142 in which the distance between the inner and outer walls 136, 140 is variable. The indented portion 146 of inner wall 136 presents a concave curved surface 150 in the insulating space 142 opposite the vent 144. Preferably the indented portion 146 of inner wall 136 is curved such that, at any location of the indented portion a normal line to the concave curved surface 150 will be directed substantially towards the vent 144. In this fashion, the concave curved surface 150 of the inner wall 136 is focused on vent 144. The guiding of the gas molecules towards the vent 144 that is provided by the focused surface 150 is analogous to a reflector returning a focused beam of light from separate light rays directed at the reflector. In conditions of low gas molecule concentration, in which structure becomes a first order system effect, the guiding effect provided by the focused surface 150 serves to direct the gas molecules in a targeted manner toward the vent 144. The targeting of the vent 144 by the focused surface 150 of inner wall 136 in this manner increases the probability that gas molecules will leave the insulating space 142 instead of entering thereby providing deeper vacuum in the insulating space than vacuum applied to an exterior of the Dewar 130.
Conductive segment 1022 then gives rise to a region of low temperature on the outer tube 1004, while the remainder of outer tube 1004 remains at essentially ambient temperature. (A marking may be placed onto outer wall 1004 to identify the region of low temperature.)
A thermal pathway may be created in a number of ways. In one embodiment, the thermal pathway comprises an amount of a conducting material that bridges the walls that define an insulating space. As an example, conductive segment 1022 in
As shown in
Other Applications
The present invention has application for providing insulating layers in a wide range of thermal devices ranging from devices operating at cryogenic temperatures to high temperature devices. A non-limiting list of examples includes insulation for heat exchangers, flowing or static cryogenic materials, flowing or static warm materials, temperature-maintained materials, flowing gases, and temperature-controlled processes.
This invention allows direct cooling of specific micro-circuit components on a circuit. In the medical field, the present invention has uses in cryogenic or heat-therapy surgery, and insulates healthy tissue from the effects of extreme temperatures. An insulted container, such as container 120, will allow the safe transport over long distances and extended time of temperature critical therapies and organs.
The following embodiments are exemplary only and do not limit the scope of the present disclosure or the attached claims.
An insulated article comprising: a first wall bounding an interior volume; a second wall spaced at a distance from the first wall to define an insulating space therebetween; a vent communicating with the insulating space to provide an exit pathway for gas molecules from the space, the vent being sealable for maintaining a vacuum within the insulating space following evacuation of gas molecules through the vent, the distance between the first and second walls being variable in a portion of the insulating space adjacent the vent such that gas molecules within the insulating space are directed towards the vent by the variable-distance portion of the first and second walls during the evacuation of the insulating space, the directing of the gas molecules by the variable-distance portion of the first and second walls imparting to the gas molecules a greater probability of egress from the insulating space than ingress; and an amount of an insulating material disposed within the insulating space between the first wall and the second wall.
The insulated article according to Embodiment 1, wherein one of the walls includes a portion that converges toward the other wall adjacent the vent, and wherein the distance between the walls is at a minimum adjacent the location at which the vent communicates with the insulating space.
The insulated article according to any of Embodiments 1-2, wherein the converging wall portion of the one of the walls is located adjacent an end of the associated tube.
The insulated article according to any of Embodiments 1-3, wherein the wall including the converging portion is provided by an outer one of the tubes.
The insulated article according to any of Embodiments 1-4 further comprising a coating disposed on a surface of the one of the walls, the coating formed by a material having an emissivity that is less than that of the wall on which it is disposed.
The insulated article according to any of Embodiments 1-5, wherein the amount of an insulating material comprises a porous material.
The insulated article according to any of Embodiments 1-6, wherein the amount of an insulating material has a thermal conductivity of from about 0.002 to about 0.1 W/m*K.
The insulated article according to any of Embodiments 1-7, wherein the amount of an insulating material comprises alumina, silica, or both.
The insulated article according to any of Embodiments 1-8, wherein the amount of an insulating material comprises fibers, particles, or both.
The insulated article according to any of Embodiments 1-9, wherein the amount of an insulating material comprises from about 70 to about 90% void space, by volume.
An insulated article comprising: a first wall bounding an interior volume; a second wall spaced at a distance from the first wall to define an insulating space therebetween, a vent communicating with the insulating space to provide an exit pathway for gas molecules from the space, the vent being sealable for maintaining a vacuum within the insulating space following evacuation of gas molecules through the vent, the distance between the first and second walls being variable in a portion of the insulating space adjacent the vent such that gas molecules within the insulating space are directed towards the vent by the variable-distance portion of the first and second walls during the evacuation of the insulating space, the directing of the gas molecules by the variable-distance portion of the first and second walls imparting to the gas molecules a greater probability of egress from the insulating space than ingress, the article further comprising an amount of an insulating material disposed in the insulating space between the first and second tubes.
The insulated article of Embodiment 11, wherein the layer comprises an amount of an insulating material disposed within the insulating space between the first wall and the second wall.
The insulated article according to any of Embodiments 11-12, wherein the amount of an insulating material comprises a porous material.
The insulated article according to any of Embodiments 11-13, wherein the amount of an insulating material has a thermal conductivity of from about 0.002 to about 0.1 W/m*K.
The insulated article according to any of Embodiments 11-14, wherein the amount of an insulating material comprises alumina, silica, or both.
The insulated article according to any of Embodiments 11-15, wherein the amount of an insulating material comprises fibers, particles, or both.
The insulated article according to any of Embodiments 11-16, wherein the amount of an insulating material comprises from about 70 to about 90% void space, by volume.
The foregoing describes the invention in terms of embodiments foreseen by the inventors for which an enabling description was available, notwithstanding that insubstantial modifications of the invention, not presently foreseen, may nonetheless represent equivalents thereto.
This application is the National Stage Application of International Patent Application No. PCT/US2017/061558 filed Nov. 14, 2017 which claims the benefit of and priority to U.S. Provisional Patent Application No. 62/422,196, “Enhanced Vacuum-Insulated Articles with Microporous Insulation” (filed Nov. 15, 2016), the entireties of which applications are incorporated herein by reference for any and all purposes.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2017/061558 | 11/14/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/093781 | 5/24/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1362805 | Kruse | Dec 1920 | A |
1457504 | Cullen et al. | Jun 1923 | A |
2085737 | Joseph Cereghino | Jul 1937 | A |
2225660 | Rogers | Dec 1940 | A |
2362893 | Durst | Nov 1944 | A |
2363893 | Monier | Nov 1944 | A |
2573594 | Nofzinger | Oct 1951 | A |
2666979 | Van Dusen | Jan 1954 | A |
2722336 | Aaron et al. | Nov 1955 | A |
2807074 | Schroeder | Sep 1957 | A |
2867242 | Harris et al. | Jan 1959 | A |
3119238 | Chamberlain et al. | Jan 1964 | A |
3146005 | Peyton | Aug 1964 | A |
3195564 | Carney et al. | Jul 1965 | A |
3265236 | Norman et al. | Aug 1966 | A |
3460512 | Keichler et al. | Aug 1969 | A |
3510323 | Wismer et al. | May 1970 | A |
3706208 | Kadi et al. | Dec 1972 | A |
3736936 | Basiulis et al. | Jun 1973 | A |
3760142 | Schoenthaler | Sep 1973 | A |
4055268 | Barthel | Oct 1977 | A |
4117201 | Keifert | Sep 1978 | A |
4157779 | Arashi et al. | Jun 1979 | A |
4200199 | Perkins et al. | Apr 1980 | A |
4332401 | Stephenson et al. | Jun 1982 | A |
4396211 | McStravick et al. | Aug 1983 | A |
4399919 | Posnansky et al. | Aug 1983 | A |
4450872 | Orcutt | May 1984 | A |
4491347 | Gustafson | Jan 1985 | A |
4515397 | Nowobilski et al. | May 1985 | A |
4653469 | Miyaji et al. | Mar 1987 | A |
4696104 | Vanzetti et al. | Sep 1987 | A |
4746054 | Moats et al. | May 1988 | A |
4758222 | McCoy | Jul 1988 | A |
4838859 | Strassmann | Jun 1989 | A |
4903631 | Morris | Feb 1990 | A |
4919299 | Haines | Apr 1990 | A |
4997124 | Kitabatake et al. | Mar 1991 | A |
5038706 | Morris | Aug 1991 | A |
5052816 | Nakamura et al. | Oct 1991 | A |
5108390 | Potocky et al. | Apr 1992 | A |
5206705 | Tokura | Apr 1993 | A |
5235817 | Gallagher et al. | Aug 1993 | A |
5285559 | Thompson et al. | Feb 1994 | A |
5411897 | Harvey et al. | May 1995 | A |
5520682 | Baust et al. | May 1996 | A |
5524630 | Crowley | Jun 1996 | A |
5573140 | Satomi et al. | Nov 1996 | A |
5573532 | Chang et al. | Nov 1996 | A |
5600752 | Lopatinsky | Feb 1997 | A |
5650020 | Ohta et al. | Jul 1997 | A |
5674218 | Rubinsky et al. | Oct 1997 | A |
5742048 | Kobayashi et al. | Apr 1998 | A |
5862973 | Wasserman | Jan 1999 | A |
5869801 | Paton et al. | Feb 1999 | A |
5870823 | Bezama et al. | Feb 1999 | A |
6050443 | Tung | Apr 2000 | A |
6095405 | Kim et al. | Aug 2000 | A |
6109518 | Mueller et al. | Aug 2000 | A |
6139571 | Fuller et al. | Oct 2000 | A |
6145547 | Villatte | Nov 2000 | A |
6166907 | Chien | Dec 2000 | A |
6186390 | Tadauchi et al. | Feb 2001 | B1 |
6216745 | Augustynowicz et al. | Apr 2001 | B1 |
6360935 | Flake | Mar 2002 | B1 |
6706037 | Zvuloni et al. | Mar 2004 | B2 |
6755823 | Lalonde | Jun 2004 | B2 |
6875209 | Zvuloni et al. | Apr 2005 | B2 |
6936045 | Yu et al. | Aug 2005 | B2 |
7064429 | Bemmerl et al. | Jun 2006 | B2 |
7139172 | Bezama et al. | Nov 2006 | B2 |
7150743 | Zvuloni et al. | Dec 2006 | B2 |
7203064 | Mongia et al. | Apr 2007 | B2 |
7207985 | Duong et al. | Apr 2007 | B2 |
7258161 | Cosley et al. | Aug 2007 | B2 |
7298623 | Kuczynski et al. | Nov 2007 | B1 |
RE40049 | Li | Feb 2008 | E |
7334630 | Goodson et al. | Feb 2008 | B2 |
7354434 | Zvuloni et al. | Apr 2008 | B2 |
7356434 | Wu et al. | Apr 2008 | B2 |
7361187 | Duong et al. | Apr 2008 | B2 |
7374063 | Reid | May 2008 | B2 |
7393350 | Maurice | Jul 2008 | B2 |
7419085 | Fukunaka et al. | Sep 2008 | B2 |
7451785 | Taira et al. | Nov 2008 | B2 |
7460369 | Blish, II | Dec 2008 | B1 |
7485117 | Damasco et al. | Feb 2009 | B2 |
7497365 | Kimura et al. | Mar 2009 | B2 |
7510534 | Burdorff et al. | Mar 2009 | B2 |
7515415 | Monfarad et al. | Apr 2009 | B2 |
7608071 | Duong et al. | Oct 2009 | B2 |
7621889 | Duong et al. | Nov 2009 | B2 |
7621890 | Duong et al. | Nov 2009 | B2 |
7681299 | Reid | Mar 2010 | B2 |
7909227 | Duong et al. | Mar 2011 | B2 |
7980171 | Groll | Jul 2011 | B2 |
8231613 | Baxter et al. | Jul 2012 | B2 |
8353332 | Reid | Jan 2013 | B2 |
8434665 | Motomura et al. | May 2013 | B2 |
9243726 | Reid | Jan 2016 | B2 |
9463918 | Reid | Oct 2016 | B2 |
9874303 | Reid | Jan 2018 | B2 |
20010030225 | Nagata | Oct 2001 | A1 |
20020114937 | Albert et al. | Aug 2002 | A1 |
20030079554 | Van Cleve | May 2003 | A1 |
20030146224 | Fujii et al. | Aug 2003 | A1 |
20040116851 | Johansen et al. | Jun 2004 | A1 |
20040129756 | Zakel et al. | Jul 2004 | A1 |
20040181136 | McDaniel et al. | Sep 2004 | A1 |
20040226979 | Sato et al. | Nov 2004 | A1 |
20050211711 | Reid | Sep 2005 | A1 |
20060054234 | White | Mar 2006 | A1 |
20060054243 | Walton | Mar 2006 | A1 |
20060061092 | Keyes | Mar 2006 | A1 |
20060071052 | Conlon et al. | Apr 2006 | A1 |
20060076389 | Kemper et al. | Apr 2006 | A1 |
20060086773 | Sanftleben et al. | Apr 2006 | A1 |
20060282039 | Duong et al. | Dec 2006 | A1 |
20070102477 | Prince | May 2007 | A1 |
20070102478 | Prince | May 2007 | A1 |
20070235497 | Hsu | Oct 2007 | A1 |
20070235498 | Hsu | Oct 2007 | A1 |
20070235499 | Hsu | Oct 2007 | A1 |
20070246510 | Hsu | Oct 2007 | A1 |
20080006598 | Fujii et al. | Jan 2008 | A1 |
20080036076 | Ouyang | Feb 2008 | A1 |
20080061111 | Kiriyama | Mar 2008 | A1 |
20080083816 | Leinbach et al. | Apr 2008 | A1 |
20080121642 | Reid | May 2008 | A1 |
20080147055 | Duong et al. | Jun 2008 | A1 |
20080169037 | Ziegler | Jul 2008 | A1 |
20080197170 | Prince | Aug 2008 | A1 |
20080285230 | Bojan et al. | Nov 2008 | A1 |
20090031659 | Kalfon | Feb 2009 | A1 |
20090065499 | England | Mar 2009 | A1 |
20090068070 | Hashimoto et al. | Mar 2009 | A1 |
20090123221 | Marshall | May 2009 | A1 |
20090152331 | Schmitt et al. | Jun 2009 | A1 |
20100057064 | Baust et al. | Mar 2010 | A1 |
20100057067 | Baust et al. | Mar 2010 | A1 |
20100076421 | Baust et al. | Mar 2010 | A1 |
20100096037 | Lee et al. | Apr 2010 | A1 |
20100258290 | Bass | Oct 2010 | A1 |
20110056582 | Walle et al. | Mar 2011 | A1 |
20110178514 | Levin et al. | Jul 2011 | A1 |
20110264084 | Reid | Oct 2011 | A1 |
20120085070 | Chou et al. | Apr 2012 | A1 |
20120090817 | Reid | Apr 2012 | A1 |
20120175007 | Pan et al. | Jul 2012 | A1 |
20120184901 | Nguyen et al. | Jul 2012 | A1 |
20120228364 | Vegelahn | Sep 2012 | A1 |
20120282792 | Schloegl | Nov 2012 | A1 |
20120318808 | McCormick | Dec 2012 | A1 |
20130105496 | Jung | May 2013 | A1 |
20130199757 | Meyer et al. | Aug 2013 | A1 |
20140008417 | Visser et al. | Jan 2014 | A1 |
20140012243 | Burnett et al. | Jan 2014 | A1 |
20140090737 | Reid | Apr 2014 | A1 |
20140177146 | Barizza et al. | Jun 2014 | A1 |
20140182608 | Egoyants et al. | Jul 2014 | A1 |
20140275767 | Baust | Sep 2014 | A1 |
20150110548 | Reid | Apr 2015 | A1 |
20150149800 | Gendler et al. | May 2015 | A1 |
20150151893 | Wengreen et al. | Jun 2015 | A1 |
20150159800 | Kimura et al. | Jun 2015 | A1 |
20150168050 | Cur et al. | Jun 2015 | A1 |
20150260332 | Reid | Sep 2015 | A1 |
20150271927 | Cocklin et al. | Sep 2015 | A1 |
20150345930 | Ikeda et al. | Dec 2015 | A1 |
20150356730 | Grove et al. | Dec 2015 | A1 |
20160044963 | Saleem | Feb 2016 | A1 |
20160084425 | Reid | Mar 2016 | A1 |
20160279725 | Azdasht | Sep 2016 | A1 |
20160314220 | Sachdev et al. | Oct 2016 | A1 |
20160317220 | Guo | Nov 2016 | A1 |
20160341360 | Uraguchi et al. | Nov 2016 | A1 |
20160354853 | Azdasht | Dec 2016 | A1 |
20160368072 | Senga et al. | Dec 2016 | A1 |
20170043938 | Reid | Feb 2017 | A1 |
20170062774 | Reid et al. | Mar 2017 | A1 |
20170106414 | Hamilton | Apr 2017 | A1 |
20170120362 | Reid et al. | May 2017 | A1 |
20170165773 | Azdasht et al. | Jun 2017 | A1 |
20170225276 | Reid | Aug 2017 | A1 |
20170253416 | Reid | Sep 2017 | A1 |
20170305641 | Bodum | Oct 2017 | A1 |
20170358079 | Gillies et al. | Dec 2017 | A1 |
20180106414 | Reid | Apr 2018 | A1 |
20180106529 | Cur et al. | Apr 2018 | A1 |
Number | Date | Country |
---|---|---|
202001825 | Oct 2011 | CN |
10019420 | Oct 2001 | DE |
0611614 | Aug 1994 | EP |
1294022 | Mar 2003 | EP |
2550313 | Feb 1985 | FR |
2105226 | Mar 1983 | GB |
06-142909 | May 1994 | JP |
3654249 | Jun 2005 | JP |
2005-224832 | Aug 2005 | JP |
3962782 | Aug 2007 | JP |
2008-045956 | Feb 2008 | JP |
0325476 | Mar 2003 | WO |
2009068255 | Jun 2009 | WO |
2013034455 | Mar 2013 | WO |
2015091003 | Jun 2015 | WO |
2017152045 | Sep 2017 | WO |
2018093773 | May 2018 | WO |
2018093776 | May 2018 | WO |
2018093781 | May 2018 | WO |
2019010385 | Jan 2019 | WO |
2019014463 | Jan 2019 | WO |
2019040885 | Feb 2019 | WO |
2020112976 | Jun 2020 | WO |
Entry |
---|
https://en.wikipedia.org/wiki/Sodium-sulfur_battery_Jun. 11, 2018, 5 pages. |
Overview of NAS Battery for Load Management; CEC Energy Storage Workshop, Feb. 2005, pp. 1-22. |
National Research Council, “Assessment of Research Needs for Advanced Battery Systems”, 1982, 203 pages. |
Hodkinson et al., “Lightweight Electric/Hybrid Vehicle Design”, 2001, 4 pages. |
Guidotti et al., “Characterization of Vacuum-Multifoil Insulation for Long-Life Thermal Batteries”, U.S. Department of Energy, Office of Scientific and Technical Information, Apr. 17, 2000, 3 pages. |
Daniel et al., “Handbook of Battery Materials”, Wiley-VCH Publishers, 2011, vol. 1, 3 pages. |
Database WPI Week 201179 Thomson Scientific, London, GB; AN 2011-N98729 XP002794699, & CN 202 001 825 U (LINS) Oct. 5, 2011 (Oct. 5, 2011). |
DeVuyst, et al: Respiratory health effects of man-made vitreous (mineral) fibres; European Respiratory Journal, 1995, 8, 2149-2173. |
Muttifoil Insulation; 1 page. |
U.S. Patent Application filed Apr. 23, 2010 by Concept Group Inc., U.S. Appl. No. 12/766,397. |
Number | Date | Country | |
---|---|---|---|
20190338883 A1 | Nov 2019 | US |
Number | Date | Country | |
---|---|---|---|
62422196 | Nov 2016 | US |