Enhanced visible near-infrared photodiode and non-invasive physiological sensor

Information

  • Patent Grant
  • 11850024
  • Patent Number
    11,850,024
  • Date Filed
    Wednesday, August 4, 2021
    3 years ago
  • Date Issued
    Tuesday, December 26, 2023
    12 months ago
Abstract
Embodiments of the present disclosure include a photodiode that can detect optical radiation at a broad range of wavelengths. The photodiode can be used as a detector of a non-invasive sensor, which can be used for measuring physiological parameters of a monitored patient. The photodiode can be part of an integrated semiconductor structure that generates a detector signal responsive to optical radiation at both visible and infrared wavelengths incident on the photodiode. The photodiode can include a layer that forms part of an external surface of the photodiode, which is disposed to receive the optical radiation incident on the photodiode and pass the optical radiation to one or more other layers of the photodiode.
Description
RELATED APPLICATIONS

Any and all applications for which a domestic priority claim is identified in the Application Data Sheet of the present application are hereby incorporated by reference under 37 CFR 1.57.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates a block diagram of an example data collection system capable of non-invasively measuring one or more analytes of a patient.



FIG. 2 illustrates an example sensor operation process.



FIG. 3 illustrates an example schematic diagram of a semiconductor device.



FIG. 4 illustrates a graph of quantum efficiency versus optical radiation wavelength for various example photodiodes.





DETAILED DESCRIPTION
I. Introduction

This disclosure in part describes embodiments of non-invasive methods, devices, and systems for measuring a blood analyte, such as oxygen, carbon monoxide, methemoglobin, total hemoglobin, glucose, proteins, lipids, a percentage thereof (for example, saturation) or for measuring many other physiologically relevant patient characteristics. These characteristics can relate, for example, to pulse rate, hydration, trending information and analysis, and the like. In certain embodiments, a non-invasive sensor can interface with tissue at a measurement site, irradiate the tissue, and detect optical radiation after attenuation by the tissue.


This disclosure in part also describes embodiments of a semiconductor device, such as a photodiode, for detecting optical radiation at both visible and near-infrared wavelengths. The semiconductor device can, for example, be used as part of a non-invasive sensor to detect visible and near-infrared wavelengths of optical radiation after attenuation by tissue.


Because individual detectors (for example, individual photodiodes) of non-invasive sensors may be responsive to a limited range of wavelengths of optical radiation, multiple detectors may be used in combination, in some instances, to construct a non-invasive sensor that detects optical radiation at a broad range of wavelengths of optical radiation. For example, it is common to use both an InGaAs photodiode in combination with a Si photodiode in order to measure a broader range of wavelengths. However, each additional detector included in a non-invasive sensor can utilize additional space within the sensor and cause the sensor to be larger or more complicated to assemble. Also, having two sensors at two different positions can affect the optical radiation path length of the respective detected optical radiation of each detector. This inherently introduces inaccuracies and may require, for instance, some post-processing compensation to account for the inaccuracies. Moreover, each additional detector can consume space that may be used in another way, such as to increase the size of one or more other detectors so that a stronger signal may be obtained.


In some embodiments, a photodiode is disclosed herein that can detect optical radiation at a broad range of wavelengths obviating the necessity for two separate photodiodes as was previously utilized. The photodiode can be part of an integrated semiconductor structure that can generate a detector signal responsive to optical radiation at both visible and infrared wavelengths incident on the photodiode. The photodiode can include a window layer that forms part of an external surface of the photodiode. The external surface may be disposed to receive the optical radiation incident on the photodiode and pass the optical radiation to other layers of the photodiode. Advantageously, in certain embodiments, the thickness of the window layer can be minimized or the bandgap of the window layer can be maximized, or both, to increase the transmittance of the window layer for certain wavelengths of optical radiation and thus the responsiveness of photodiode to the certain wavelengths of optical radiation. For example, in one implementation, the photodiode can be an InGaAs photodiode with the window layer having a composition of InAlAs and a relatively thin thickness; this implementation can notably result in a high transmittance of optical radiation both in the near-infrared wavelengths and visible wavelengths.


The photodiode of the preceding paragraph can be used, for example, as a detector in a non-invasive sensor. In addition, advantageously, the photodiode of the preceding paragraph can enable a non-invasive sensor to be constructed which has fewer detectors because the photodiode may serve to detect optical radiation at wavelengths traditionally detected using two or more separate detectors. For example, when the photodiode may be an enhanced InGaAs photodiode, as described herein, with a window layer having a InAlAs composition and a relatively thin thickness, the photodiode can enable the non-invasive sensor to detect optical radiation traditionally detected using one Si photodiode and one traditional InGaAs photodiode with a window layer having a InP composition and a relatively thicker thickness of about 500 nm. As a result, the non-invasive sensor constructed in accordance with the teachings of this disclosure may include fewer detectors or the size of one or more of the detectors can be increased so that the one or more detectors provide greater signal strength. In one example, the surface area covered by the enhanced InGaAs photodiode within the non-invasive sensor can be doubled because the Si photodiode may not be included within the non-invasive sensor, thereby allowing the signal strength of a detector signal output by the enhanced InGaAs photodiode to be doubled over that of the traditional InGaAs photodiode when combined with the Si photodiode.


As used herein, optical radiation at visible wavelengths, in addition to having its ordinary meaning, can refer to optical radiation in the visible spectrum ranging from about 380 nm to about 750 nm. Additionally, as used herein, optical radiation at near-infrared wavelengths, in addition to having its ordinary meaning, can refer to optical radiation in the near-infrared spectrum ranging from about 750 nm to about 1700 nm.


For purposes of summarizing the disclosure, certain aspects, advantages and novel features have been described herein. It is to be understood that not necessarily all such advantages can be achieved in accordance with any particular embodiment. Thus, the embodiments can be embodied or carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other advantages as can be taught or suggested herein.


II. Patient Monitoring System with Non-Invasive Sensor


FIG. 1 illustrates an example of a data collection system 100. The data collection system 100 non-invasively can measure a blood analyte, such as oxygen, carbon monoxide, methemoglobin, total hemoglobin, glucose, proteins, glucose, lipids, a percentage thereof (e.g., saturation) or for measuring many other physiologically relevant patient characteristics. The data collection system 100 can also measure additional blood analytes or other physiological parameters useful in determining a state or trend of wellness of a patient.


The data collection system 100 can measure analyte concentrations, including glucose, at least in part by detecting optical radiation attenuated by a measurement site 102. The measurement site 102 can be any location on a patient's body, such as a finger, foot, ear lobe, or the like. For convenience, this disclosure is described primarily in the context of a finger measurement site 102. However, the features of the embodiments disclosed herein can be used with other measurement sites 102.


In the depicted embodiment, the data collection system 100 includes an optional tissue thickness adjuster or tissue shaper 105, which can include one or more protrusions, bumps, lenses, or other suitable tissue-shaping mechanisms. In certain embodiments, the tissue shaper 105 is a flat or substantially flat surface that can be positioned proximate the measurement site 102 and that can apply sufficient pressure to cause the tissue of the measurement site 102 to be flat or substantially flat. In other embodiments, the tissue shaper 105 is a convex or substantially convex surface with respect to the measurement site 102.


The data collection system 100 shown also includes an optional noise shield 103. The noise shield 103 can be adapted to reduce electromagnetic noise while increasing the transmittance of optical radiation from the measurement site 102 to one or more detectors 106. For example, the noise shield 103 can advantageously include a conductive coated glass or metal grid electrically communicating with one or more other shields of the sensor 101 or electrically grounded.


The measurement site 102 can be located somewhere along a non-dominant arm or a non-dominant hand, e.g., a right-handed person's left arm or left hand. In some patients, the non-dominant arm or hand can have less musculature and higher fat content, which can result in less water content in that tissue of the patient. Tissue having less water content can provide less interference with the particular wavelengths that are absorbed in a useful manner by blood analytes like glucose. Accordingly, in some embodiments, the data collection system 100 can be used on a person's non-dominant hand or arm.


The data collection system 100 can include a sensor 101 (or multiple sensors) that is coupled to a processing device or physiological monitor 109. In some implementations, the sensor 101 and the monitor 109 can be integrated together into a single unit. In other implementations, the sensor 101 and the monitor 109 can be separate from each other and communicate one with another in any suitable manner, such as via a wired or wireless connection. The sensor 101 and monitor 109 can be attachable and detachable from each other for the convenience of the user or caregiver, for ease of storage, sterility issues, or the like. The sensor 101 and the monitor 109 will now be further described.


In the depicted embodiment shown in FIG. 1, the sensor 101 includes an emitter 104, a set of detectors 106, and a front-end interface 108. The emitter 104 can serve as the source of optical radiation transmitted towards the measurement site 102. The emitter 104 can include one or more sources of optical radiation, such as light-emitting diodes (LEDs), laser diodes, incandescent bulbs with appropriate frequency-selective filters, combinations of the same, or the like. In an embodiment, the emitter 104 includes sets of optical sources that are capable of emitting visible and near-infrared optical radiation.


In some embodiments, the emitter 104 is used as a point optical source, and thus, the one or more optical sources of the emitter 104 can be located within a close distance to each other, such as within about a 2 mm to about 4 mm. The emitter 104 can be arranged in an array, such as is described in U.S. Patent Application Publication No. 2006/0211924, filed Sep. 21, 2006, titled “Multiple Wavelength Sensor Emitters,” the disclosure of which is hereby incorporated by reference in its entirety. In particular, the emitter 104 can be arranged at least in part as described in paragraphs [0061] through [0068] of the aforementioned publication, which paragraphs are hereby incorporated specifically by reference. Other relative spatial relationships can be used to arrange the emitter 104.


The emitter 104 of the data collection system 100 can emit, for example, combinations of optical radiation in various bands of interest. For instance, for analytes like glucose, the emitter 104 can emit optical radiation at three (3) or more wavelengths between about 1600 nm to about 1700 nm. Measurements at these wavelengths can be advantageously used to compensate or confirm the contribution of protein, water, and other non-hemoglobin species exhibited in measurements for analytes like glucose conducted between about 1600 nm and about 1700 nm. Of course, other wavelengths and combinations of wavelengths can be used to measure analytes or to distinguish other types of tissue, fluids, tissue properties, fluid properties, combinations of the same or the like.


The emitter 104 can emit optical radiation across other spectra for other analytes. In particular, the emitter 104 can employ optical radiation wavelengths to measure various blood analytes or percentages (e.g., saturation) thereof. For instance, the emitter 104 can emit optical radiation in the form of pulses at wavelengths about 905 nm, about 1050 nm, about 1200 nm, about 1300 nm, about 1330 nm, about 1610 nm, about 1640 nm, and about 1665 nm. In another embodiment, the emitter 104 can emit optical radiation ranging from about 860 nm to about 950 nm, about 950 nm to about 1100 nm, about 1100 nm to about 1270 nm, about 1250 nm to about 1350 nm, about 1300 nm to about 1360 nm, and about 1590 nm to about 1700 nm. Of course, the emitter 104 can transmit any of a variety of wavelengths of visible or near-infrared optical radiation.


The data collection system 100 also includes a driver 111 that drives the emitter 104. The driver 111 can be a circuit or the like that is controlled by the monitor 109. For example, the driver 111 can provide pulses of current to the emitter 104. In an embodiment, the driver 111 drives the emitter 104 in a progressive fashion, such as in an alternating manner. The driver 111 can drive the emitter 104 with a series of pulses of about 1 milliwatt (mW) for some wavelengths that can penetrate tissue relatively well and from about 40 mW to about 100 mW for other wavelengths that tend to be significantly absorbed in tissue. A wide variety of other driving powers and driving methodologies can be used in various embodiments.


The detectors 106 can capture and measure optical radiation from the measurement site 102. For example, the detectors 106 can capture and measure optical radiation transmitted from the emitter 104 that has been attenuated or reflected from the tissue in the measurement site 102. The detectors 106 can output a detector signal 107 responsive to the optical radiation captured or measured. The detectors 106 can be implemented using one or more photodiodes, phototransistors, or the like. Although the detectors 106 may be described as multiple detectors, in certain embodiments, the detectors 106 instead can be a single detector.


In one implementation, the detectors 106 can include one or more photodiodes, such as at least one of the photodiodes described with respect to FIG. 3. The photodiode can detect optical radiation at both visible and near-infrared wavelengths and generate one or more detector signals responsive to the detected optical radiation. The one or more detector signals can have a signal strength sufficient for the detector signal to be usable to determine measurement values for one or more physiological parameters of the patient from the optical radiation detected by the photodiode at both the visible and near-infrared wavelengths. For example, the photodiode can detect optical radiation having a wavelength of about 660 nm in the visible portion of the electromagnetic spectrum and optical radiation having a wavelength of about 1000 nm in the near-infrared portion of the electromagnetic spectrum and generate a detector signal based thereon.


One or more photodiodes of the detectors 106 can be defined in terms of area. In an embodiment, the area of one photodiode can be from about 1 mm2-5 mm2 (or higher) and capable of generating about 100 nanoamps (nA) or less of current resulting from measured optical radiation at full scale. In addition to having its ordinary meaning, the phrase “at full scale” can mean optical radiation saturation of a photodiode amplifier (not shown). The data collection system 100 can, for instance, measure from one photodiode an output current range of approximately about 2 nA to about 100 nA or more full scale. Various other sizes and types of photodiodes can be used with the embodiments of the present disclosure.


The detectors 106 can be arranged with different spatial configurations, such as to provide or not provide a variation of path lengths among at least some of the detectors 106. Some of the detectors 106 can have substantially, or from the perspective of the processing algorithm, effectively, the same path length from the emitter 104. In one example, the detectors 106 can be arranged as is described in U.S. Patent Application Publication No. 2010/0026995, filed Aug. 3, 2009, titled “Multi-stream Sensor for Noninvasive Measurement of Blood Constituents,” the disclosure of which is hereby incorporated by reference in its entirety. In particular, the detectors can be arranged at least in part as described with respect to FIGS. 3E and 12A-12H of the aforementioned publication, the associated paragraphs and figures of which are hereby incorporated specifically by reference.


The front-end interface 108 provides an interface that adapts the output of the detectors 106, which is responsive to desired physiological parameters. For example, the front-end interface 108 can adapt a signal 107 received from one or more of the detectors 106 into a form that can be processed by the monitor 109, for example, by a signal processor 110 in the monitor 109. The front-end interface 108 can also amplify current from the detectors 106 at desired signal-to-noise ratios (SNRs), such as to a SNR about 80 decibels (dB), 100 dB, or 120 dB in order to measure various desired analytes. The front-end interface 108 can have its components assembled in the sensor 101, in the monitor 109, in connecting cabling (if used), combinations of the same, or the like. The location of the front-end interface 108 can be chosen based on various factors including space desired for components, desired noise reductions or limits, desired heat reductions or limits, and the like.


The front-end interface 108 can be coupled to the detectors 106 and to the signal processor 110 using a bus, wire, electrical or optical cable, flex circuit, or some other form of signal connection. The front-end interface 108 can also be at least partially integrated with various components, such as the detectors 106. For example, the front-end interface 108 can include one or more integrated circuits that are on the same circuit board as the detectors 106. Other configurations can also be used.


The front-end interface 108 can be implemented using one or more amplifiers, such as transimpedance amplifiers, that are coupled to one or more analog to digital converters (ADCs) (which can be in the monitor 109), such as a sigma-delta ADC. A transimpedance-based front-end interface 108 can employ single-ended circuitry, differential circuitry, or a hybrid configuration. A transimpedance-based front-end interface 108 can be useful for its sampling rate capability and freedom in modulation/demodulation algorithms. For example, this type of front-end interface 108 can advantageously facilitate the sampling of the ADCs being synchronized with the pulses emitted from the emitter 104.


The ADC or ADCs can provide one or more outputs into multiple channels of digital information for processing by the signal processor 110 of the monitor 109. Each channel can correspond to a signal output from a detector 106.


As shown in FIG. 1, the monitor 109 can include the signal processor 110 and a user interface 112, such as a display. The monitor 109 can also include optional outputs alone or in combination with the user interface 112, such as a storage device 114 and a network interface 116. The signal processor 110 can include processing logic that determines measurements for desired analytes, such as glucose, based on the signals received from the detectors 106. The signal processor 110 can be implemented using one or more microprocessors or subprocessors (e.g., cores), digital signal processors, application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), combinations of the same, and the like.


The signal processor 110 can provide various signals that control the operation of the sensor 101. For example, the signal processor 110 can provide an emitter control signal to the driver 111. This control signal can be useful in order to synchronize, minimize, or reduce jitter in the timing of pulses emitted from the emitter 104. Accordingly, this control signal can be useful in order to cause optical radiation pulses emitted from the emitter 104 to follow a precise timing and consistent pattern. As also shown, an optional memory 113 can be included in the front-end interface 108 or in the signal processor 110. This memory 113 can serve as a buffer or storage location for the front-end interface 108 or the signal processor 110, among other uses.


The user interface 112 can provide an output, for example, on a display, for presentation to a user of the data collection system 100. The user interface 112 can be implemented as a touch-screen display, an LCD display, an organic LED display, or the like. In addition, the user interface 112 can be manipulated to allow for measurement on the non-dominant side of patient. For example, the user interface 112 can include a flip screen, a screen that can be moved from one side to another on the monitor 109, or can include an ability to reorient its display indicia responsive to user input or device orientation. In alternative embodiments, the data collection system 100 can be provided without a user interface 112 and can simply provide an output signal to a separate display or system.


A storage device 114 and a network interface 116 represent other optional output connections that can be included in the monitor 109. The storage device 114 can include any computer-readable medium, such as a memory device, hard disk storage, EEPROM, flash drive, or the like. The various software or firmware applications can be stored in the storage device 114, which can be executed by the signal processor 110 or another processor of the monitor 109. The network interface 116 can be a serial bus port (RS-232/RS-485), a Universal Serial Bus (USB) port, an Ethernet port, a wireless interface (e.g., WiFi such as any 802.1x interface, including an internal wireless card), or other suitable communication device(s) that allows the monitor 109 to communicate and share data with other devices. The monitor 109 can also include various other components not shown, such as a microprocessor, graphics processor, or controller to output the user interface 112, to control data communications, to compute data trending, or to perform other operations.


Although not shown in the depicted embodiment, the data collection system 100 can include various other components or can be configured in different ways. For example, the sensor 101 can have both the emitter 104 and detectors 106 on the same side of the measurement site 102 and use reflectance to measure analytes. The data collection system 100 can also include a sensor that measures the power of optical radiation emitted from the emitter 104. Moreover, although the detectors 106 may be initially constructed to include one of the photodiodes described with respect to FIG. 3, the detectors 106 may also instead be retrofitted with one of the photodiodes described with respect to FIG. 3 in some implementations.



FIG. 2 illustrates an example sensor operation process 200. The process 200 illustrates an example operation of the sensor 101 and may be implemented by the various components shown in the data collection system 100. For convenience, the process 200 is described in the context of the data collection system 100 but may instead be implemented by other systems described herein or other sensor systems not shown. The process 200 provides one example approach by which the sensor 101 can emit visible and near-infrared optical radiation wavelengths and detect with a photodiode, such as one of the photodiodes described with respect to FIG. 3, the optical radiation after attenuation by tissue of a patient. Advantageously, in certain embodiments, the process 200 enables the sensor 101 to output from the photodiode a detector signal responsive to both visible and near-infrared wavelengths after attenuation by the tissue.


At block 205, the emitter 104 can receive a drive signal from the driver 111. At block 210, the drive signal can cause the emitter 104 to irradiate tissue of a patient at wavelengths of visible optical radiation and near-infrared optical radiation. At block 215, a photodiode of the detectors 106 can detect the optical radiation after attenuation by the tissue. At block 220, the photodiode of the detectors 106 can generate one or more detector signals responsive to the detected optical radiation at the visible and near-infrared wavelengths. For instance, the photodiode can generate one signal responsive to the detected optical radiation at the visible wavelength and another signal responsive to the detected optical radiation at the near-infrared wavelength when the visible and near-infrared wavelengths are emitted at different times, or the photodiode can output can output a combined signal responsive to the detected optical radiation at the visible and near-infrared wavelengths when the visible and near-infrared wavelengths are emitted at substantially the same time. At block 225, the sensor 101 can output the one or more detector signals for processing by the signal processor 110 to determine measurement values for one or more physiological parameters of the patient.


III. Example Photodiodes


FIG. 3 illustrates an example schematic diagram of a semiconductor device 300. The semiconductor device 300 can, for instance, be part of an integrated semiconductor structure including one or more other components. The semiconductor device 300 includes a distal side metal contact 302 and a proximal side metal contact 314. The semiconductor device 300 further includes a semiconductor wafer 304, an absorption region 306, a detector window layer 308, a diffusion region 310, and a diffusion mask 312 that together can form a photodiode, such as a photodiode usable as one of the detectors 106 of FIG. 1. Optical radiation can enter the photodiode through the detector window layer 308 before passing to other layers of the photodiode, such as the absorption region 306. Although not illustrated, an anti-reflective coating can be applied to the surface of the photodiode, such as the detector window layer 308, to increase the transmittance of the photodiode.


In one implementation, the distal side metal contact 302 can be an n-type region contact and the proximal side metal contact 314 can be a p-type region contact. The semiconductor wafer 304 can, for instance, be an n-type InP wafer, which includes indium and phosphorous. The absorption region 306 can, for instance, be (i) an n-type or undoped InGaAs absorption region, which includes indium, gallium, and arsenic, (ii) an n-type or undoped InAlGaAs absorption region, which includes indium, aluminum, gallium, and arsenic, or (iii) an n-type or undoped InGaAsP region, which includes indium, gallium, arsenic, and phosphorous. The diffusion region 310 can, for instance, be a diffused region that turns n-type or undoped material into a p-type region to form a p-n semiconductor junction in selected areas defined by the diffusion mask 312. The diffusion mask 312 can, for instance, be a SiN or SiO2 diffusion mask. The photodiode, in one implementation, can accordingly be an InGaAs PIN photodiode.


The detector window layer 308 can be a layer that is sufficiently thin so that the detector window layer 308 passes visible optical radiation for detection by the photodiode and yet provides passivation of the absorption region 306 and the diffusion region 310, which can be a zinc-diffused P region, so that electron-hole pairs generated by the visible optical radiation, including short-wavelength optical radiation, near the surface of the photodiode (for example, in the P-region) have a lower recombination rate resulting in a quantum efficiency enhancement at visible wavelengths. For example, the detector window layer 308 can be a layer having a thickness of less than about 150 nm, such as a thickness ranging from about 25 nm to about 150 nm, from about 40 nm to about 130 nm, from about 50 nm to about 100 nm, or from about 45 nm to about 55 nm or a thickness of about 50 nm. Because the detector window layer 308 being thinner may result in more visible wavelengths passing into the photodiode, the detector window layer 308 can be desirably about 50 nm in certain implementations. The detector window layer 308 can be an epitaxially grown layer.


In one example, the detector window layer 308 can be an InP layer, which includes indium and phosphorous. The InP layer can have a bandgap of about 1.34 eV at 25° C. If the InP layer is about 400 nm thick, the external quantum efficiency at 660 nm can be about 8%. If the InP layer may be made thinner such as around 50 nm, the external quantum efficiency at 660 nm can be about 58%. Thinner layers, such as about window layers having a thickness of about 25 nm, can be made, but if made too thin, the microfabrication procedures used to make the photodiode may, in some instances, slightly etch or oxide the window layers, leaving no or minimal window layer so that the surface of the InGaAs or InAlGaAs photodiode may be unpassivated and have a lower quantum efficiency for visible wavelengths (for example, shorter wavelengths) due to enhanced recombination of photogenerated carriers in the layer at the unpassivated surface. There can thus exist an optimum InP layer thickness between 0 nm and about 50 nm for such devices, in particular implementations.


As another example, the detector window layer 308 can be an InAlAs layer, which includes indium, aluminum, and arsenic, which can either be of a composition whose atomic crystal lattice constant is lattice-matched or lattice mismatched to the absorption region 306 and semiconductor wafer 304. Advantageously, in certain embodiments, the InAlAs layer can be desirably thin to efficiently pass visible optical radiation for detection by the photodiode, similar to the InP layer example explained in the preceding paragraph. In one implementation, the InAlAs layer can be formed of a composition of In0.52Al0.48As that has a bandgap of about 1.52 eV at 25° C. and is lattice-matched to the semiconductor wafer 304. It has been determined that the In0.52Al0.48As layer can begin to strongly attenuate optical radiation at wavelengths shorter than about 817 nm as compared to an attenuation wavelength of about 920 nm at 25° C. for an InP layer and therefore can result in a relatively higher external quantum efficiency. In another implementation, the InAlAs layer can be formed of a composition of In0.46Al0.54As that has a larger bandgap of about 1.68 eV and is not lattice-matched to the semiconductor wafer 304. It has been determined that the In0.46Al0.54As layer can begin to strongly attenuate optical radiation at wavelengths shorter than about 739 nm and the external quantum efficiency for the photodiode with the In0.46Al0.54As layer may be about 78% at a wavelength about 660 nm. Because the detector window layer 308 having a higher bandgap can result in more visible optical radiation passing into the photodiode, the detector window layer 308 can be desirably composed of In0.46Al0.54As in certain implementations. Although the InAlAs composition may be lattice-mismatched to the crystal lattice constant of one or more of the underlying layers, is the layer can be generally sufficiently thin so that the layer may be strained to fit on the underlying crystal lattice without generation of dislocation defects, a condition that can be known as pseudomorphic growth. The following Table 1 summarizes some measured data for the above-referenced window layers of a similar photodiode structure and compares them to a model result for a photodiode structure with a window layer composed of InP with a thickness of 400 nm.













TABLE 1









External Quantum


Layer
Thick-
Band-
Lattice-
Efficiency at 660 nm


Composition
ness
gap
Matched
Wavelength







InP
400 nm
1.34 eV
Yes
 8%


InP
 50 nm
1.34 eV
Yes
58%


In0.46Al0.54As
 50 nm
1.68 eV
No
78%










FIG. 4 illustrates a graph 400 of quantum efficiency versus optical radiation wavelength for various example photodiodes. The graph 400 illustrates that the teachings of this disclosure can enable the construction of a photodiode that has a relatively higher quantum efficiency at both visible and near-infrared wavelengths compared to a traditional photodiode. As used herein, external quantum efficiency, in addition to having its ordinary meaning, can refer to the ratio of the number of charge carriers collected to the number of photons of a given energy shining on the photodiode from outside the photodiode. The external quantum efficiency, for instance, can be proportional to the amount of current that a photodiode produces when irradiated by photons of a particular wavelength.


The curve 402 depicts a model relationship between external quantum efficiency versus optical radiation wavelength for a traditional photodiode formed from the semiconductor device 300 where the absorption region 306 is an n-type InAlGaAs absorption region and the detector window layer 308 has a thickness of about 400 nm and is an InP layer. The curve 404 depicts the measured relationship between external quantum efficiency versus optical radiation wavelength for a photodiode formed from the semiconductor device 300 where the absorption region 306 is an n-type InAlGaAs absorption region and the detector window layer 308 has a thickness of about 50 nm and is an InP layer. The curve 406 depicts the measured relationship between external quantum efficiency versus optical radiation wavelength for a photodiode formed from the semiconductor device 300 where the absorption region 306 is an n-type InAlGaAs absorption region and the detector window layer 308 has a thickness of about 50 nm and is a lattice-mismatched In0.46Al0.54As layer.


As can be seen from curves 404 and 406 of the graph 400, the quantum efficiency of an enhanced photodiode constructed in accordance with teachings of this disclosure can notably have an external quantum efficiency of greater than about 30% (such as an external quantum efficiency ranging from about 30% to about 90%, from about 50% to about 85%, or from about 60% to about 80% or an external quantum efficiency of about 50%, about 60%, about 70%, about 80% or about 90%) at wavelengths ranging from about 450 nm to 850 nm. Such an enhanced photodiode can accordingly be used, for instance, to detect optical radiation at wavelengths ranging from about 450 nm to about 850 nm, as well as from about 850 nm to about 1400 nm or 1430 nm.


Although the curves 402, 404, and 406 depict the quantum efficiency versus optical radiation wavelength for a photodiode where the absorption region 306 is an n-type InAlGaAs absorption region, the absorption region 306 may in some cases instead be an n-type InGaAs absorption region as mentioned previously. If the curves 402, 404, and 406 were depicted for photodiodes including the n-type InGaAs absorption region, the responsiveness of the photodiodes would further extend to about 1700 nm rather than about 1430 nm as illustrated in the graph 400. Therefore, in such implementations, an enhanced photodiode can be used, for instance, to detect optical radiation at wavelengths ranging from about 450 nm to about 850 nm, as well as from about 850 nm to about 1700 nm. In such implementations, the enhanced photodiode can, for instance, have an external quantum efficiency of greater than about 70% (such as an external quantum efficiency ranging from about 70% to about 95%, from about 80% to about 95%, from about 85% to about 95%, or from about 90% to about 95% or an external quantum efficiency of about 70%, about 80%, about 85%, about 90%, or about 95%) at wavelengths ranging from about 1400 nm to 1700 nm.


As illustrated by the graph 400, an enhanced photodiode having the performance characteristics of the curve 404 can have an external quantum efficiency of about 9% at 400 nm, 28% at 450 nm, 41% at 500 nm, 49% at 550 nm, 52% at 600 nm, 55% at 650 nm, 58% at 700 nm, 62% at 750 nm, 65% at 800 nm, 71% at 850 nm, 75% at 900 nm, 82% at 950 nm, 85% at 1000 nm, 89% at 1050 nm, 89% at 1100 nm, 92% at 1150 nm, 92% at 1200 nm, 92% at 1250 nm, 92% at 1300 nm, 92% at 1350 nm, 85% at 1400 nm, and 5% at 1450 nm. In addition, as illustrated by the graph 400, an enhanced photodiode having the performance characteristics of the curve 406 can have an external quantum efficiency of about 12% at 400 nm, 40% at 450 nm, 65% at 500 nm, 75% at 550 nm, 77% at 600 nm, 78% at 650 nm, 80% at 700 nm, 82% at 750 nm, 86% at 800 nm, 88% at 850 nm, 90% at 900 nm, 91% at 950 nm, 92% at 1000 nm, 94% at 1050 nm, 93% at 1100 nm, 96% at 1150 nm, 96% at 1200 nm, 95% at 1250 nm, 94% at 1300 nm, 92% at 1350 nm, 85% at 1400 nm, and 10% at 1450 nm. Moreover, an enhanced photodiode constructed in accordance with the teachings of this disclosure can thus have an external quantum efficiency of at least the external quantum efficiency of the curve 404 or the curve 406 at the various wavelengths illustrated in FIG. 4, as well as at the additional range of wavelengths from about 1400 nm to 1700 nm as described herein. Furthermore, an enhanced photodiode constructed in accordance with the teachings of this disclosure can thus have an external quantum efficiency of at least 10% to 30% (for example, 10%, 15%, 20%, 25%, or 30%) at wavelengths ranging from 450 nm to 1400 nm, at least 10% to 65% (for example, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, or 65%) at wavelengths ranging from 500 nm to 1400 nm, at least 10% to 75% (for example, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, or 75%) at wavelengths ranging from 550 nm to 1400 nm, at least 10% to 75% (for example, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, or 75%) at wavelengths ranging from 600 nm to 1400 nm, at least 10% to 78% (for example, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, or 78%) at wavelengths ranging from 650 nm to 1400 nm, at least 15% to 80% (for example, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, or 80%) at wavelengths ranging from 700 nm to 1400 nm, at least 20% to 80% (for example, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, or 80%) at wavelengths ranging from 750 nm to 1400 nm, at least 25% to 85% (for example, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, or 85%) at wavelengths ranging from 800 nm to 1400 nm, at least 30% to 85% (for example, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, or 85%) at wavelengths ranging from 850 nm to 1400 nm, at least 55% to 85% (for example, 55%, 60%, 65%, 70%, 75%, 80%, or 85%) at wavelengths ranging from 900 nm to 1400 nm, at least 85% at wavelengths ranging from 950 nm to 1400 nm, or at least 90% at wavelengths ranging from 900 nm to 1350 nm.


As illustrated by the graph 400, an enhanced photodiode constructed in accordance with the teachings of this disclosure can have an external quantum efficiency ranging at least from about 9% to 12% at 400 nm, 28% to 40% at 450 nm, 41% to 65% at 500 nm, 49% to 75% at 550 nm, 52% to 77% at 600 nm, 55% to 78% at 650 nm, 58% to 80% at 700 nm, 62% to 82% at 750 nm, 65% to 86% at 800 nm, 71% to 88% at 850 nm, 75% to 90% at 900 nm, 82% to 91% at 950 nm, 85% to 92% at 1000 nm, 89% to 94% at 1050 nm, 89% to 93% at 1100 nm, 92% to 96% at 1150 nm, 92% to 96% at 1200 nm, 92% to 95% at 1250 nm, 92% to 94% at 1300 nm, 92% to 92% at 1350 nm, 85% to 85% at 1400 nm, and 5% to 10% at 1450 nm.


In some embodiments, when a photodiode has an external quantum efficiency at a particular wavelength that is below a threshold quantum efficiency level, an output current generated by the photodiode when irradiated by photons of the particular wavelength can be sufficiently low such that the photodiode may be considered to not detect the particular wavelength. This can, in some instances, be because the output current generated by the photodiode when irradiated by photons of the particular wavelength may be insufficient for use in confidently determining that the photodiode detected the particular wavelength. The threshold quantum efficiency level can vary, in certain embodiments, based at least on a system design in which the photodiode is used. For example, in certain medical device applications, such as in some example non-invasive sensor detector applications, the threshold quantum efficiency level can be about 30%, about 25%, about 20%, about 15%, or about 10%, such that when a photodiode detects particular wavelengths for which the photodiode has an external quantum efficiency below the threshold quantum efficiency level, the output current provided by the photodiode may be insufficient for the non-invasive sensor to confidently determine that the photodiode detected the particular wavelengths. Accordingly, in some instances, the photodiode may not be used to detect wavelengths for which the photodiode has an external quantum efficiency below the threshold quantum efficiency level, or the output current from the photodiode may be discarded as not providing usable information or information of sufficient quality if the output current is below a threshold current corresponding to the threshold quantum efficiency level.


Moreover, although some applications of the photodiode of the semiconductor device 300 are described in the context of a non-invasive sensor, the photodiode can be useful in numerous other applications. For example, the photodiode can be part of a spectrometer in industrial or manufacturing applications (for instance, in applications related to plastics, petroleum, chemical, or the like) and used to detect a broad range of electromagnetic radiation for detecting a spectrum of electromagnetic radiation. As another example, the photodiode can be part of a non-contact temperature measurement system and used to detect a broad range of electromagnetic radiation to determine a detected temperature. As a further example, the photodiode can be part of a flame monitoring or control system and used to detect one or more characteristics of a flame from the detected broad spectrum of electromagnetic radiation. Moreover, the photodiode can be part of a diode laser monitoring system (for instance, for telecommunications or lidar applications) and used to detect a broad range of electromagnetic radiation from one or more lasers.


IV. Terminology

Many other variations than those described herein will be apparent from this disclosure. For example, depending on the embodiment, certain acts, events, or functions of any of the algorithms described herein can be performed in a different sequence, can be added, merged, or left out altogether (e.g., not all described acts or events are necessary for the practice of the algorithms). Moreover, in certain embodiments, acts or events can be performed concurrently, e.g., through multi-threaded processing, interrupt processing, or multiple processors or processor cores or on other parallel architectures, rather than sequentially. In addition, different tasks or processes can be performed by different machines or computing systems that can function together.


The various illustrative logical blocks, modules, and algorithm steps described in connection with the embodiments disclosed herein can be implemented as electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. The described functionality can be implemented in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the disclosure.


The various illustrative logical blocks and modules described in connection with the embodiments disclosed herein can be implemented or performed by a machine, such as a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general purpose processor can be a microprocessor, but in the alternative, the processor can be a controller, microcontroller, or state machine, combinations of the same, or the like. A processor can include electrical circuitry configured to process computer-executable instructions. In another embodiment, a processor includes an FPGA or other programmable device that performs logic operations without processing computer-executable instructions. A processor can also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration. A computing environment can include any type of computer system, including, but not limited to, a computer system based on a microprocessor, a mainframe computer, a digital signal processor, a portable computing device, a device controller, or a computational engine within an appliance, to name a few.


The steps of a method, process, or algorithm described in connection with the embodiments disclosed herein can be embodied directly in hardware, in a software module stored in one or more memory devices and executed by one or more processors, or in a combination of the two. A software module can reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or any other form of non-transitory computer-readable storage medium, media, or physical computer storage known in the art. An example storage medium can be coupled to the processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium can be integral to the processor. The storage medium can be volatile or nonvolatile. The processor and the storage medium can reside in an ASIC.


Conditional language used herein, such as, among others, “can,” “might,” “may,” “e.g.,” and the like, unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements or states. Thus, such conditional language is not generally intended to imply that features, elements or states are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without author input or prompting, whether these features, elements or states are included or are to be performed in any particular embodiment. The terms “comprising,” “including,” “having,” and the like are synonymous and are used inclusively, in an open-ended fashion, and do not exclude additional elements, features, acts, operations, and so forth. Also, the term “or” is used in its inclusive sense (and not in its exclusive sense) so that when used, for example, to connect a list of elements, the term “or” means one, some, or all of the elements in the list. Further, the term “each,” as used herein, in addition to having its ordinary meaning, can mean any subset of a set of elements to which the term “each” is applied.


Terms such as “substantially,” “about,” “approximately” or the like as used in referring to a relationship between two objects is intended to reflect not only an exact relationship but also variances in that relationship that may be due to various factors such as the effects of environmental conditions, common error tolerances, manufacturing variances, or the like. It should further be understood that although some values or other relationships may be expressed herein without a modifier, these values or other relationships may also be exact or may include a degree of variation due to various factors such as the effects of environmental conditions, common error tolerances, or the like. For example, when referring to wavelengths of electromagnetic radiation, about a specified wavelength can, in some contexts, refer to a wavelength variation of around less than 1% (such as a variation of 1%, 0.8%, 0.5%, or 0.3%) from the specified wavelength. Accordingly, an about 660 nm wavelength can refer to 660 nm±6 nm, 660 nm±5 nm, 660 nm±3 nm, or 660 nm±2 nm. As another example, when referring to a thickness of a layer, about a specified thickness can, in some contexts, refer to a thickness variation of around less than 5% (such as a variation of 5%, 3%, 2%, 1%, or 0.1%) from the specified thickness. Accordingly, an about 50 nm thickness can refer to 50 nm±2.5 nm, 50 nm±1.5 nm, 50 nm±1 nm, or 50 nm±0.5 nm, or 50 nm±0.05 nm. As a further example, when referring to an eV of a bandgap, about a specified eV can, in some contexts, refer to an eV variation of around less than 2% (such as a variation of 2%, 1.5%, 1%, or 0.5%) from the specified eV. Accordingly, an about 1.52 eV bandgap can refer to 1.52 eV±0.03 eV, 1.52 eV±0.023 eV, 1.52 eV±0.015 eV, or 1.52 eV±0.008 eV. In another example, when referring to an external quantum efficiency of a layer, about a specified external quantum efficiency percentage can, in some contexts, refer to an external quantum efficiency percentage variation of around less than 3% (such as a variation of 3%, 2%, 1%, or 0.5%) from the specified external quantum efficiency percentage. Accordingly, an about 58% external quantum efficiency can refer to 58%±3%, 58%±2%, 58%±1%, or 58%±0.5%.


Disjunctive language such as the phrase “at least one of X, Y and Z,” unless specifically stated otherwise, is to be understood with the context as used in general to convey that an item, term, etc. may be either X, Y, or Z, or a combination thereof. Thus, such conjunctive language is not generally intended to imply that certain embodiments require at least one of X, at least one of Y and at least one of Z to each be present.


Unless otherwise explicitly stated, articles such as “a” or “an” should generally be interpreted to include one or more described items. Accordingly, phrases such as “a device configured to” are intended to include one or more recited devices. Such one or more recited devices can also be collectively configured to carry out the stated recitations. For example, “a processor configured to carry out recitations A, B and C” can include a first processor configured to carry out recitation A working in conjunction with a second processor configured to carry out recitations B and C.


While the above detailed description has shown, described, and pointed out novel features as applied to various embodiments, it will be understood that various omissions, substitutions, and changes in the form and details of the devices or algorithms illustrated can be made without departing from the spirit of the disclosure. As will be recognized, certain embodiments described herein can be embodied within a form that does not provide all of the features and benefits set forth herein, as some features can be used or practiced separately from others.

Claims
  • 1. A physiological sensor for measuring physiological parameters of a monitored patient, the physiological sensor comprising: a detector configured to generate a detector signal responsive to optical radiation incident on the detector after attenuation by a tissue of a patient,wherein the detector comprises a window layer, a diffusion region, an absorption region, and a semiconductor wafer, the absorption region being between the window layer and the semiconductor wafer,wherein the diffusion region is a p-type region and part of the window layer and the absorption region, andwherein the semiconductor wafer is a n-type region.
  • 2. The physiological sensor of claim 1, wherein the absorption region is adjacent to the semiconductor wafer and is an undoped region or the n-type region.
  • 3. The physiological sensor of claim 1, wherein the window layer is the p-type region.
  • 4. The physiological sensor of claim 1, wherein the window layer and the diffusion region form at least a portion of an exterior surface of the detector.
  • 5. The physiological sensor of claim 1, wherein the window layer and the diffusion region are configured to receive the optical radiation prior to the absorption region and the semiconductor wafer receiving the optical radiation.
  • 6. The physiological sensor of claim 1, wherein the absorption region is configured to receive the optical radiation prior to the semiconductor wafer receiving the optical radiation.
  • 7. The physiological sensor of claim 1, further comprising an anti-reflective coating on the window layer.
  • 8. The physiological sensor of claim 1, further comprising a diffusion mask on the window layer, the diffusion mask comprising silicon.
  • 9. The physiological sensor of claim 1, wherein the diffusion region is zinc-diffused.
  • 10. The physiological sensor of claim 1, further comprising: a first metal contact adjacent to the semiconductor wafer; anda second metal contact adjacent to the window layer.
  • 11. The physiological sensor of claim 10, wherein the first metal contact is the n-type region, and the second metal contact is the p-type region.
  • 12. The physiological sensor of claim 1, wherein the absorption region comprises indium, gallium, and arsenic, and the window layer comprises indium, aluminum, and arsenic.
  • 13. The physiological sensor of claim 1, wherein the absorption region comprises indium, gallium, and arsenic, and the window layer comprises indium and phosphorus.
  • 14. The physiological sensor of claim 1, wherein the window layer is not lattice matched to the semiconductor wafer, and the window layer is not lattice matched to the absorption region.
  • 15. The physiological sensor of claim 1, wherein the window layer is lattice matched to the semiconductor wafer.
  • 16. The physiological sensor of claim 1, wherein the detector has a surface area of at least 5 mm2 over which the detector is configured to detect the optical radiation after attenuation by the tissue.
  • 17. The physiological sensor of claim 1, wherein the window layer has a bandgap ranging from about 1.34 eV to about 1.9 eV at 25° C.
  • 18. The physiological sensor of claim 1, wherein the detector is configured to generate the detector signal to have a current of at least 100 nA.
  • 19. The physiological sensor of claim 1, further comprising: an emitter configured to emit the optical radiation at a visible wavelength and a near-infrared wavelength; anda sensor housing configured to support the emitter and the detector.
  • 20. The physiological sensor of claim 19, in combination with a patient monitor configured to determine a measurement value for a physiological parameter from the detector signal, the physiological parameter comprising a blood analyte.
US Referenced Citations (1100)
Number Name Date Kind
4960128 Gordon et al. Oct 1990 A
4964408 Hink et al. Oct 1990 A
5041187 Hink et al. Aug 1991 A
5069213 Hink et al. Dec 1991 A
5163438 Gordon et al. Nov 1992 A
5319355 Russek Jun 1994 A
5337744 Branigan Aug 1994 A
5341805 Stavridi et al. Aug 1994 A
D353195 Savage et al. Dec 1994 S
D353196 Savage et al. Dec 1994 S
5377676 Vari et al. Jan 1995 A
5412229 Kuhara May 1995 A
D359546 Savage et al. Jun 1995 S
5431170 Mathews Jul 1995 A
5436499 Namavar et al. Jul 1995 A
D361840 Savage et al. Aug 1995 S
D362063 Savage et al. Sep 1995 S
5452717 Branigan et al. Sep 1995 A
D363120 Savage et al. Oct 1995 S
5456252 Vari et al. Oct 1995 A
5479934 Imran Jan 1996 A
5482036 Diab et al. Jan 1996 A
5490505 Diab et al. Feb 1996 A
5494043 O'Sullivan et al. Feb 1996 A
5533511 Kaspari et al. Jul 1996 A
5534851 Russek Jul 1996 A
5561275 Savage et al. Oct 1996 A
5562002 Lalin Oct 1996 A
5590649 Caro et al. Jan 1997 A
5602924 Durand et al. Feb 1997 A
5632272 Diab et al. May 1997 A
5638816 Kiani-Azarbayjany et al. Jun 1997 A
5638818 Diab et al. Jun 1997 A
5645440 Tobler et al. Jul 1997 A
5671914 Kalkhoran et al. Sep 1997 A
5685299 Diab et al. Nov 1997 A
5726440 Kalkhoran et al. Mar 1998 A
D393830 Tobler et al. Apr 1998 S
5743262 Lepper, Jr. et al. Apr 1998 A
5747806 Khalil et al. May 1998 A
5750994 Schlager May 1998 A
5758644 Diab et al. Jun 1998 A
5760910 Lepper, Jr. et al. Jun 1998 A
5769785 Diab et al. Jun 1998 A
5782757 Diab et al. Jul 1998 A
5785659 Caro et al. Jul 1998 A
5791347 Flaherty et al. Aug 1998 A
5810734 Caro et al. Sep 1998 A
5823950 Diab et al. Oct 1998 A
5830131 Caro et al. Nov 1998 A
5833618 Caro et al. Nov 1998 A
5860919 Kiani-Azarbayjany et al. Jan 1999 A
5890929 Mills et al. Apr 1999 A
5904654 Wohltmann et al. May 1999 A
5919134 Diab Jul 1999 A
5934925 Tobler et al. Aug 1999 A
5940182 Lepper, Jr. et al. Aug 1999 A
5987343 Kinast Nov 1999 A
5995855 Kiani et al. Nov 1999 A
5997343 Mills et al. Dec 1999 A
6002952 Diab et al. Dec 1999 A
6010937 Karam et al. Jan 2000 A
6011986 Diab et al. Jan 2000 A
6027452 Flaherty et al. Feb 2000 A
6036642 Diab et al. Mar 2000 A
6040578 Malin et al. Mar 2000 A
6045509 Caro et al. Apr 2000 A
6066204 Haven May 2000 A
6067462 Diab et al. May 2000 A
6081735 Diab et al. Jun 2000 A
6088607 Diab et al. Jul 2000 A
6110522 Lepper, Jr. et al. Aug 2000 A
6110758 Estrera Aug 2000 A
6115673 Malin et al. Sep 2000 A
6124597 Shehada et al. Sep 2000 A
6128521 Marro et al. Oct 2000 A
6129675 Jay Oct 2000 A
6144868 Parker Nov 2000 A
6151516 Kiani-Azarbayjany et al. Nov 2000 A
6152754 Gerhardt et al. Nov 2000 A
6157850 Diab et al. Dec 2000 A
6165005 Mills et al. Dec 2000 A
6184521 Coffin, IV et al. Feb 2001 B1
6206830 Diab et al. Mar 2001 B1
6229856 Diab et al. May 2001 B1
6232609 Snyder et al. May 2001 B1
6236872 Diab et al. May 2001 B1
6241683 Macklem et al. Jun 2001 B1
6253097 Aronow et al. Jun 2001 B1
6255708 Sudharsanan et al. Jul 2001 B1
6256523 Diab et al. Jul 2001 B1
6263222 Diab et al. Jul 2001 B1
6278522 Lepper, Jr. et al. Aug 2001 B1
6280213 Tobler et al. Aug 2001 B1
6280381 Malin et al. Aug 2001 B1
6285896 Tobler et al. Sep 2001 B1
6301493 Marro et al. Oct 2001 B1
6308089 von der Ruhr et al. Oct 2001 B1
6317627 Ennen et al. Nov 2001 B1
6321100 Parker Nov 2001 B1
6325761 Jay Dec 2001 B1
6334065 Al-Ali et al. Dec 2001 B1
6343224 Parker Jan 2002 B1
6349228 Kiani et al. Feb 2002 B1
6360114 Diab et al. Mar 2002 B1
6368283 Xu et al. Apr 2002 B1
6371921 Caro et al. Apr 2002 B1
6377829 Al-Ali Apr 2002 B1
6388240 Schulz et al. May 2002 B2
6397091 Diab et al. May 2002 B2
6411373 Garside et al. Jun 2002 B1
6415167 Blank et al. Jul 2002 B1
6430437 Marro Aug 2002 B1
6430525 Weber et al. Aug 2002 B1
6463311 Diab Oct 2002 B1
6470199 Kopotic et al. Oct 2002 B1
6487429 Hockersmith et al. Nov 2002 B2
6501975 Diab et al. Dec 2002 B2
6505059 Kollias et al. Jan 2003 B1
6515273 Al-Ali Feb 2003 B2
6519487 Parker Feb 2003 B1
6525386 Mills et al. Feb 2003 B1
6526300 Kiani et al. Feb 2003 B1
6534012 Hazen et al. Mar 2003 B1
6541756 Schulz et al. Apr 2003 B2
6542764 Al-Ali et al. Apr 2003 B1
6580086 Schulz et al. Jun 2003 B1
6584336 Ali et al. Jun 2003 B1
6587196 Stippick et al. Jul 2003 B1
6587199 Luu Jul 2003 B1
6595316 Cybulski et al. Jul 2003 B2
6597932 Tian et al. Jul 2003 B2
6597933 Kiani et al. Jul 2003 B2
6606511 Ali et al. Aug 2003 B1
6632181 Flaherty et al. Oct 2003 B2
6635559 Greenwald et al. Oct 2003 B2
6639668 Trepagnier Oct 2003 B1
6640116 Diab Oct 2003 B2
6640117 Makarewicz et al. Oct 2003 B2
6643530 Diab et al. Nov 2003 B2
6650917 Diab et al. Nov 2003 B2
6654624 Diab et al. Nov 2003 B2
6658276 Kiani et al. Dec 2003 B2
6661161 Lanzo et al. Dec 2003 B1
6671531 Al-Ali Dec 2003 B2
6678543 Diab et al. Jan 2004 B2
6684090 Ali et al. Jan 2004 B2
6684091 Parker Jan 2004 B2
6697656 Al-Ali Feb 2004 B1
6697657 Shehada et al. Feb 2004 B1
6697658 Al-Ali Feb 2004 B2
RE38476 Diab et al. Mar 2004 E
6699194 Diab et al. Mar 2004 B1
6714804 Al-Ali et al. Mar 2004 B2
RE38492 Diab et al. Apr 2004 E
6721582 Trepagnier et al. Apr 2004 B2
6721585 Parker Apr 2004 B1
6725075 Al-Ali Apr 2004 B2
6728560 Kollias et al. Apr 2004 B2
6735459 Parker May 2004 B2
6738652 Mattu et al. May 2004 B2
6745060 Diab et al. Jun 2004 B2
6760607 Al-Ali Jul 2004 B2
6770028 Ali et al. Aug 2004 B1
6771994 Kiani et al. Aug 2004 B2
6788965 Ruchti et al. Sep 2004 B2
6792300 Diab et al. Sep 2004 B1
6813511 Diab et al. Nov 2004 B2
6816241 Grubisic Nov 2004 B2
6816741 Diab Nov 2004 B2
6822564 Al-Ali Nov 2004 B2
6826419 Diab et al. Nov 2004 B2
6830711 Mills et al. Dec 2004 B2
6850787 Weber et al. Feb 2005 B2
6850788 Al-Ali Feb 2005 B2
6852083 Caro et al. Feb 2005 B2
6861639 Al-Ali Mar 2005 B2
6876931 Lorenz et al. Apr 2005 B2
6898452 Al-Ali et al. May 2005 B2
6920345 Al-Ali et al. Jul 2005 B2
6931268 Kiani-Azarbayjany et al. Aug 2005 B1
6934570 Kiani et al. Aug 2005 B2
6939305 Flaherty et al. Sep 2005 B2
6943348 Coffin, IV Sep 2005 B1
6950687 Al-Ali Sep 2005 B2
6956649 Acosta et al. Oct 2005 B2
6961598 Diab Nov 2005 B2
6970792 Diab Nov 2005 B1
6979812 Al-Ali Dec 2005 B2
6985764 Mason et al. Jan 2006 B2
6990364 Ruchti et al. Jan 2006 B2
6993371 Kiani et al. Jan 2006 B2
6996427 Ali et al. Feb 2006 B2
6998247 Monfre et al. Feb 2006 B2
6999904 Weber et al. Feb 2006 B2
7003338 Weber et al. Feb 2006 B2
7003339 Diab et al. Feb 2006 B2
7015451 Dalke et al. Mar 2006 B2
7024233 Ali et al. Apr 2006 B2
7027849 Al-Ali Apr 2006 B2
7030749 Al-Ali Apr 2006 B2
7039449 Al-Ali May 2006 B2
7041060 Flaherty et al. May 2006 B2
7044918 Diab May 2006 B2
7048687 Reuss et al. May 2006 B1
7067893 Mills et al. Jun 2006 B2
D526719 Richie, Jr. et al. Aug 2006 S
7096052 Mason et al. Aug 2006 B2
7096054 Abdul-Hafiz et al. Aug 2006 B2
D529616 Deros et al. Oct 2006 S
7132641 Schulz et al. Nov 2006 B2
7133710 Acosta et al. Nov 2006 B2
7142901 Kiani et al. Nov 2006 B2
7149561 Diab Dec 2006 B2
7186966 Al-Ali Mar 2007 B2
7190261 Al-Ali Mar 2007 B2
7215984 Diab et al. May 2007 B2
7215986 Diab et al. May 2007 B2
7221971 Diab et al. May 2007 B2
7225006 Al-Ali et al. May 2007 B2
7225007 Al-Ali et al. May 2007 B2
RE39672 Shehada et al. Jun 2007 E
7239905 Kiani-Azarbayjany et al. Jul 2007 B2
7245953 Parker Jul 2007 B1
7254429 Schurman et al. Aug 2007 B2
7254431 Al-Ali et al. Aug 2007 B2
7254433 Diab et al. Aug 2007 B2
7254434 Schulz et al. Aug 2007 B2
7272425 Al-Ali Sep 2007 B2
7274955 Kiani et al. Sep 2007 B2
D554263 Al-Ali et al. Oct 2007 S
7280858 Al-Ali et al. Oct 2007 B2
7289835 Mansfield et al. Oct 2007 B2
7292883 De Felice et al. Nov 2007 B2
7295866 Al-Ali Nov 2007 B2
7328053 Diab et al. Feb 2008 B1
7332784 Mills et al. Feb 2008 B2
7340287 Mason et al. Mar 2008 B2
7341559 Schulz et al. Mar 2008 B2
7343186 Lamego et al. Mar 2008 B2
D566282 Al-Ali et al. Apr 2008 S
7355512 Al-Ali Apr 2008 B1
7356365 Schurman Apr 2008 B2
7371981 Abdul-Hafiz May 2008 B2
7373193 Al-Ali et al. May 2008 B2
7373194 Weber et al. May 2008 B2
7376453 Diab et al. May 2008 B1
7377794 Al-Ali et al. May 2008 B2
7377899 Weber et al. May 2008 B2
7383070 Diab et al. Jun 2008 B2
7395158 Monfre et al. Jul 2008 B2
7415297 Al-Ali et al. Aug 2008 B2
7428432 Ali et al. Sep 2008 B2
7438683 Al-Ali et al. Oct 2008 B2
7440787 Diab Oct 2008 B2
7454240 Diab et al. Nov 2008 B2
7467002 Weber et al. Dec 2008 B2
7469157 Diab et al. Dec 2008 B2
7471969 Diab et al. Dec 2008 B2
7471971 Diab et al. Dec 2008 B2
7483729 Al-Ali et al. Jan 2009 B2
7483730 Diab et al. Jan 2009 B2
7489958 Diab et al. Feb 2009 B2
7496391 Diab et al. Feb 2009 B2
7496393 Diab et al. Feb 2009 B2
D587657 Al-Ali et al. Mar 2009 S
7499741 Diab et al. Mar 2009 B2
7499835 Weber et al. Mar 2009 B2
7500950 Al-Ali et al. Mar 2009 B2
7509154 Diab et al. Mar 2009 B2
7509494 Al-Ali Mar 2009 B2
7510849 Schurman et al. Mar 2009 B2
7514725 Wojtczuk et al. Apr 2009 B2
7519406 Blank et al. Apr 2009 B2
7526328 Diab et al. Apr 2009 B2
D592507 Wachman et al. May 2009 S
7530942 Diab May 2009 B1
7530949 Al Ali et al. May 2009 B2
7530955 Diab et al. May 2009 B2
7563110 Al-Ali et al. Jul 2009 B2
7593230 Abul-Haj et al. Sep 2009 B2
7596398 Al-Ali et al. Sep 2009 B2
7606608 Blank et al. Oct 2009 B2
7618375 Flaherty et al. Nov 2009 B2
7620674 Ruchti et al. Nov 2009 B2
D606659 Kiani et al. Dec 2009 S
7629039 Eckerbom et al. Dec 2009 B2
7640140 Ruchti et al. Dec 2009 B2
7647083 Al-Ali et al. Jan 2010 B2
D609193 Al-Ali et al. Feb 2010 S
D614305 Al-Ali et al. Apr 2010 S
7697966 Monfre et al. Apr 2010 B2
7698105 Ruchti et al. Apr 2010 B2
RE41317 Parker May 2010 E
RE41333 Blank et al. May 2010 E
7729733 Al-Ali et al. Jun 2010 B2
7734320 Al-Ali Jun 2010 B2
7761127 Al-Ali et al. Jul 2010 B2
7761128 Al-Ali et al. Jul 2010 B2
7764982 Dalke et al. Jul 2010 B2
D621516 Kiani et al. Aug 2010 S
7791155 Diab Sep 2010 B2
7801581 Diab Sep 2010 B2
7822452 Schurman et al. Oct 2010 B2
RE41912 Parker Nov 2010 E
7844313 Kiani et al. Nov 2010 B2
7844314 Al-Ali Nov 2010 B2
7844315 Al-Ali Nov 2010 B2
7865222 Weber et al. Jan 2011 B2
7873497 Weber et al. Jan 2011 B2
7880606 Al-Ali Feb 2011 B2
7880626 Al-Ali et al. Feb 2011 B2
7891355 Al-Ali et al. Feb 2011 B2
7894868 Al-Ali et al. Feb 2011 B2
7899507 Al-Ali et al. Mar 2011 B2
7899518 Trepagnier et al. Mar 2011 B2
7904132 Weber et al. Mar 2011 B2
7909772 Popov et al. Mar 2011 B2
7910875 Ai-Ali Mar 2011 B2
7919713 Al-Ali et al. Apr 2011 B2
7937128 Al-Ali May 2011 B2
7937129 Mason et al. May 2011 B2
7937130 Diab et al. May 2011 B2
7941199 Kiani May 2011 B2
7951086 Flaherty et al. May 2011 B2
7957780 Lamego et al. Jun 2011 B2
7962188 Kiani et al. Jun 2011 B2
7962190 Diab et al. Jun 2011 B1
7976472 Kiani Jul 2011 B2
7988637 Diab Aug 2011 B2
7990382 Kiani Aug 2011 B2
7991446 Ali et al. Aug 2011 B2
8000761 Al-Ali Aug 2011 B2
8008088 Bellott et al. Aug 2011 B2
RE42753 Kiani-Azarbayjany et al. Sep 2011 E
8019400 Diab et al. Sep 2011 B2
8028701 Al-Ali et al. Oct 2011 B2
8029765 Bellott et al. Oct 2011 B2
8036727 Schurman et al. Oct 2011 B2
8036728 Diab et al. Oct 2011 B2
8046040 Ali et al. Oct 2011 B2
8046041 Diab et al. Oct 2011 B2
8046042 Diab et al. Oct 2011 B2
8048040 Kiani Nov 2011 B2
8050728 Al-Ali et al. Nov 2011 B2
RE43169 Parker Feb 2012 E
8118620 Al-Ali et al. Feb 2012 B2
8126528 Diab et al. Feb 2012 B2
8128572 Diab et al. Mar 2012 B2
8130105 Al-Ali et al. Mar 2012 B2
8145287 Diab et al. Mar 2012 B2
8150487 Diab et al. Apr 2012 B2
8175672 Parker May 2012 B2
8180420 Diab et al. May 2012 B2
8182443 Kiani May 2012 B1
8185180 Diab et al. May 2012 B2
8190223 Al-Ali et al. May 2012 B2
8190227 Diab et al. May 2012 B2
8203438 Kiani et al. Jun 2012 B2
8203704 Merritt et al. Jun 2012 B2
8204566 Schurman et al. Jun 2012 B2
8219172 Schurman et al. Jul 2012 B2
8224411 Al-Ali et al. Jul 2012 B2
8228181 Al-Ali Jul 2012 B2
8229532 Davis Jul 2012 B2
8229533 Diab et al. Jul 2012 B2
8233955 Al-Ali et al. Jul 2012 B2
8244325 Al-Ali et al. Aug 2012 B2
8255026 Al-Ali Aug 2012 B1
8255027 Al-Ali et al. Aug 2012 B2
8255028 Al-Ali et al. Aug 2012 B2
8260577 Weber et al. Sep 2012 B2
8265723 McHale et al. Sep 2012 B1
8274360 Sampath et al. Sep 2012 B2
8280473 Al-Ali Oct 2012 B2
8301216 Durkin Oct 2012 B2
8301217 Al-Ali et al. Oct 2012 B2
8306596 Schurman et al. Nov 2012 B2
8310336 Muhsin et al. Nov 2012 B2
8315683 Al-Ali et al. Nov 2012 B2
RE43860 Parker Dec 2012 E
8337403 Al-Ali et al. Dec 2012 B2
8346330 Lamego Jan 2013 B2
8353842 Al-Ali et al. Jan 2013 B2
8355766 MacNeish, III et al. Jan 2013 B2
8359080 Diab et al. Jan 2013 B2
8364223 Al-Ali et al. Jan 2013 B2
8364226 Diab et al. Jan 2013 B2
8374665 Lamego Feb 2013 B2
8385995 Al-Ali et al. Feb 2013 B2
8385996 Smith et al. Feb 2013 B2
8388353 Kiani et al. Mar 2013 B2
8399822 Al-Ali Mar 2013 B2
8401602 Kiani Mar 2013 B2
8405608 Al-Ali et al. Mar 2013 B2
8414499 Al-Ali et al. Apr 2013 B2
8418524 Al-Ali Apr 2013 B2
8423106 Lamego et al. Apr 2013 B2
8428967 Olsen et al. Apr 2013 B2
8430817 Al-Ali et al. Apr 2013 B1
8437825 Dalvi et al. May 2013 B2
8455290 Siskavich Jun 2013 B2
8457703 Al-Ali Jun 2013 B2
8457707 Kiani Jun 2013 B2
8463349 Diab et al. Jun 2013 B2
8466286 Bellott et al. Jun 2013 B2
8471713 Poeze et al. Jun 2013 B2
8473020 Kiani et al. Jun 2013 B2
8483787 Al-Ali et al. Jul 2013 B2
8489364 Weber et al. Jul 2013 B2
8498684 Weber et al. Jul 2013 B2
8504128 Blank et al. Aug 2013 B2
8509867 Workman et al. Aug 2013 B2
8515509 Bruinsma et al. Aug 2013 B2
8523781 Al-Ali Sep 2013 B2
8529301 Al-Ali et al. Sep 2013 B2
8532727 Ali et al. Sep 2013 B2
8532728 Diab et al. Sep 2013 B2
D692145 Al-Ali et al. Oct 2013 S
8547209 Kiani et al. Oct 2013 B2
8548548 Al-Ali Oct 2013 B2
8548549 Schurman et al. Oct 2013 B2
8548550 Al-Ali et al. Oct 2013 B2
8560032 Al-Ali et al. Oct 2013 B2
8560034 Diab et al. Oct 2013 B1
8570167 Al-Ali Oct 2013 B2
8570503 Vo et al. Oct 2013 B2
8571617 Reichgott et al. Oct 2013 B2
8571618 Lamego et al. Oct 2013 B1
8571619 Al-Ali et al. Oct 2013 B2
8577431 Lamego et al. Nov 2013 B2
8581732 Al-Ali et al. Nov 2013 B2
8584345 Al-Ali et al. Nov 2013 B2
8588880 Abdul-Hafiz et al. Nov 2013 B2
8600467 Al-Ali et al. Dec 2013 B2
8606342 Diab Dec 2013 B2
8626255 Al-Ali et al. Jan 2014 B2
8630691 Lamego et al. Jan 2014 B2
8634889 Al-Ali et al. Jan 2014 B2
8641631 Sierra et al. Feb 2014 B2
8652060 Al-Ali Feb 2014 B2
8663107 Kiani Mar 2014 B2
8666468 Al-Ali Mar 2014 B1
8667967 Al-Ali et al. Mar 2014 B2
8670811 O'Reilly Mar 2014 B2
8670814 Diab et al. Mar 2014 B2
8676286 Weber et al. Mar 2014 B2
8682407 Al-Ali Mar 2014 B2
RE44823 Parker Apr 2014 E
RE44875 Kiani et al. Apr 2014 E
8688183 Bruinsma et al. Apr 2014 B2
8690799 Telfort et al. Apr 2014 B2
8700112 Kiani Apr 2014 B2
8702627 Telfort et al. Apr 2014 B2
8706179 Parker Apr 2014 B2
8712494 MacNeish, III et al. Apr 2014 B1
8715206 Telfort et al. May 2014 B2
8718735 Lamego et al. May 2014 B2
8718737 Diab et al. May 2014 B2
8718738 Blank et al. May 2014 B2
8720249 Al-Ali May 2014 B2
8721541 Al-Ali et al. May 2014 B2
8721542 Al-Ali et al. May 2014 B2
8723677 Kiani May 2014 B1
8740792 Kiani et al. Jun 2014 B1
8754776 Poeze et al. Jun 2014 B2
8755535 Telfort et al. Jun 2014 B2
8755856 Diab et al. Jun 2014 B2
8755872 Marinow Jun 2014 B1
8761850 Lamego Jun 2014 B2
8764671 Kiani Jul 2014 B2
8768423 Shakespeare et al. Jul 2014 B2
8771204 Telfort et al. Jul 2014 B2
8777634 Kiani et al. Jul 2014 B2
8781543 Diab et al. Jul 2014 B2
8781544 Al-Ali et al. Jul 2014 B2
8781549 Al-Ali et al. Jul 2014 B2
8788003 Schurman et al. Jul 2014 B2
8790268 Al-Ali Jul 2014 B2
8801613 Al-Ali et al. Aug 2014 B2
8821397 Al-Ali et al. Sep 2014 B2
8821415 Al-Ali et al. Sep 2014 B2
8830449 Lamego et al. Sep 2014 B1
8831700 Schurman et al. Sep 2014 B2
8840549 Al-Ali et al. Sep 2014 B2
8847740 Kiani et al. Sep 2014 B2
8849365 Smith et al. Sep 2014 B2
8852094 Al-Ali et al. Oct 2014 B2
8852994 Wojtczuk et al. Oct 2014 B2
8868147 Stippick et al. Oct 2014 B2
8868150 Al-Ali et al. Oct 2014 B2
8870792 Al-Ali et al. Oct 2014 B2
8886271 Kiani et al. Nov 2014 B2
8888539 Al-Ali et al. Nov 2014 B2
8888701 LeBoeuf Nov 2014 B2
8888708 Diab et al. Nov 2014 B2
8892180 Weber et al. Nov 2014 B2
8897847 Al-Ali Nov 2014 B2
8909310 Lamego et al. Dec 2014 B2
8911377 Al-Ali Dec 2014 B2
8912909 Al-Ali et al. Dec 2014 B2
8920317 Al-Ali et al. Dec 2014 B2
8921699 Al-Ali et al. Dec 2014 B2
8922382 Al-Ali et al. Dec 2014 B2
8929964 Al-Ali et al. Jan 2015 B2
8942777 Diab et al. Jan 2015 B2
8948834 Diab et al. Feb 2015 B2
8948835 Diab Feb 2015 B2
8965471 Lamego Feb 2015 B2
8983564 Al-Ali Mar 2015 B2
8989831 Al-Ali et al. Mar 2015 B2
8996085 Kiani et al. Mar 2015 B2
8998809 Kiani Apr 2015 B2
9028429 Telfort et al. May 2015 B2
9037207 Al-Ali et al. May 2015 B2
9060721 Reichgott et al. Jun 2015 B2
9066666 Kiani Jun 2015 B2
9066680 Al-Ali et al. Jun 2015 B1
9072474 Al-Ali et al. Jul 2015 B2
9078560 Schurman et al. Jul 2015 B2
9084569 Weber et al. Jul 2015 B2
9095316 Welch et al. Aug 2015 B2
9106038 Telfort et al. Aug 2015 B2
9107625 Telfort et al. Aug 2015 B2
9107626 Al-Ali et al. Aug 2015 B2
9113831 Al-Ali Aug 2015 B2
9113832 Al-Ali Aug 2015 B2
9119595 Lamego Sep 2015 B2
9131881 Diab et al. Sep 2015 B2
9131882 Al-Ali et al. Sep 2015 B2
9131883 Al-Ali Sep 2015 B2
9131917 Telfort et al. Sep 2015 B2
9138180 Coverston et al. Sep 2015 B1
9138182 Al-Ali et al. Sep 2015 B2
9138192 Weber et al. Sep 2015 B2
9142117 Muhsin et al. Sep 2015 B2
9153112 Kiani et al. Oct 2015 B1
9153121 Kiani et al. Oct 2015 B2
9161696 Al-Ali et al. Oct 2015 B2
9161713 Al-Ali et al. Oct 2015 B2
9167995 Lamego et al. Oct 2015 B2
9176141 Al-Ali et al. Nov 2015 B2
9186102 Bruinsma et al. Nov 2015 B2
9192312 Al-Ali Nov 2015 B2
9192329 Al-Ali Nov 2015 B2
9192351 Telfort et al. Nov 2015 B1
9195385 Al-Ali et al. Nov 2015 B2
9211072 Kiani Dec 2015 B2
9211095 Al-Ali Dec 2015 B1
9218454 Kiani et al. Dec 2015 B2
9226696 Kiani Jan 2016 B2
9241662 Al-Ali et al. Jan 2016 B2
9245668 Vo et al. Jan 2016 B1
9259185 Abdul-Hafiz et al. Feb 2016 B2
9267572 Barker et al. Feb 2016 B2
9277880 Poeze et al. Mar 2016 B2
9289167 Diab et al. Mar 2016 B2
9295421 Kiani et al. Mar 2016 B2
9307928 Al-Ali et al. Apr 2016 B1
9323894 Kiani Apr 2016 B2
D755392 Hwang et al. May 2016 S
9326712 Kiani May 2016 B1
9333316 Kiani May 2016 B2
9339220 Lamego et al. May 2016 B2
9341565 Lamego et al. May 2016 B2
9351673 Diab et al. May 2016 B2
9351675 Al-Ali et al. May 2016 B2
9364181 Kiani et al. Jun 2016 B2
9368671 Wojtczuk et al. Jun 2016 B2
9370325 Al-Ali et al. Jun 2016 B2
9370326 McHale et al. Jun 2016 B2
9370335 Al-Ali et al. Jun 2016 B2
9375185 Ali et al. Jun 2016 B2
9386953 Al-Ali Jul 2016 B2
9386961 Al-Ali et al. Jul 2016 B2
9392945 Al-Ali et al. Jul 2016 B2
9397448 Al-Ali et al. Jul 2016 B2
9408542 Kinast et al. Aug 2016 B1
9436645 Al-Ali et al. Sep 2016 B2
9445759 Lamego et al. Sep 2016 B1
9466919 Kiani et al. Oct 2016 B2
9474474 Lamego et al. Oct 2016 B2
9480422 Al-Ali Nov 2016 B2
9480435 Olsen Nov 2016 B2
9492110 Al-Ali et al. Nov 2016 B2
9510779 Poeze et al. Dec 2016 B2
9517024 Kiani et al. Dec 2016 B2
9532722 Lamego et al. Jan 2017 B2
9538949 Al-Ali et al. Jan 2017 B2
9538980 Telfort et al. Jan 2017 B2
9549696 Lamego et al. Jan 2017 B2
9554737 Schurman et al. Jan 2017 B2
9560996 Kiani Feb 2017 B2
9560998 Al-Ali et al. Feb 2017 B2
9566019 Al-Ali et al. Feb 2017 B2
9579039 Jansen et al. Feb 2017 B2
9591975 Dalvi et al. Mar 2017 B2
9622692 Lamego et al. Apr 2017 B2
9622693 Diab Apr 2017 B2
D788312 Al-Ali et al. May 2017 S
9636055 Al Ali et al. May 2017 B2
9636056 Al-Ali May 2017 B2
9649054 Lamego et al. May 2017 B2
9662052 Al-Ali et al. May 2017 B2
9668679 Schurman et al. Jun 2017 B2
9668680 Bruinsma et al. Jun 2017 B2
9668703 Al-Ali Jun 2017 B2
9675286 Diab Jun 2017 B2
9687160 Kiani Jun 2017 B2
9693719 Al-Ali et al. Jul 2017 B2
9693737 Al-Ali Jul 2017 B2
9697928 Al-Ali et al. Jul 2017 B2
9717425 Kiani et al. Aug 2017 B2
9717458 Lamego et al. Aug 2017 B2
9724016 Al-Ali et al. Aug 2017 B1
9724024 Al-Ali Aug 2017 B2
9724025 Kiani et al. Aug 2017 B1
9730640 Diab et al. Aug 2017 B2
9743887 Al-Ali et al. Aug 2017 B2
9748307 Cheng Aug 2017 B2
9749232 Sampath et al. Aug 2017 B2
9750442 Olsen Sep 2017 B2
9750443 Smith et al. Sep 2017 B2
9750461 Telfort Sep 2017 B1
9775545 Al-Ali et al. Oct 2017 B2
9775546 Diab et al. Oct 2017 B2
9775570 Al-Ali Oct 2017 B2
9778079 Al-Ali et al. Oct 2017 B1
9782077 Lamego et al. Oct 2017 B2
9782110 Kiani Oct 2017 B2
9787568 Lamego et al. Oct 2017 B2
9788735 Al-Ali Oct 2017 B2
9788768 Al-Ali et al. Oct 2017 B2
9795300 Al-Ali Oct 2017 B2
9795310 Al-Ali Oct 2017 B2
9795358 Telfort et al. Oct 2017 B2
9795739 Al-Ali et al. Oct 2017 B2
9801556 Kiani Oct 2017 B2
9801588 Weber et al. Oct 2017 B2
9808188 Perea et al. Nov 2017 B1
9814418 Weber et al. Nov 2017 B2
9820691 Kiani Nov 2017 B2
9833152 Kiani et al. Dec 2017 B2
9833180 Shakespeare et al. Dec 2017 B2
9839379 Al-Ali et al. Dec 2017 B2
9839381 Weber et al. Dec 2017 B1
9847002 Kiani et al. Dec 2017 B2
9847749 Kiani et al. Dec 2017 B2
9848800 Lee et al. Dec 2017 B1
9848806 Al-Ali Dec 2017 B2
9848807 Lamego Dec 2017 B2
9861298 Eckerbom et al. Jan 2018 B2
9861304 Al-Ali et al. Jan 2018 B2
9861305 Weber et al. Jan 2018 B1
9867578 Al-Ali et al. Jan 2018 B2
9872623 Al-Ali Jan 2018 B2
9876320 Coverston et al. Jan 2018 B2
9877650 Muhsin et al. Jan 2018 B2
9877686 Al-Ali et al. Jan 2018 B2
9891079 Dalvi Feb 2018 B2
9895107 Al-Ali et al. Feb 2018 B2
9924893 Schurman et al. Mar 2018 B2
9924897 Abdul-Hafiz Mar 2018 B1
9936917 Poeze et al. Apr 2018 B2
9955937 Telfort May 2018 B2
9965946 Al-Ali et al. May 2018 B2
D820865 Muhsin et al. Jun 2018 S
9986952 Dalvi et al. Jun 2018 B2
D822215 Al-Ali et al. Jul 2018 S
D822216 Barker et al. Jul 2018 S
10010276 Al-Ali et al. Jul 2018 B2
10086138 Novak, Jr. Oct 2018 B1
10111591 Dyell et al. Oct 2018 B2
D833624 DeJong et al. Nov 2018 S
10123729 Dyell et al. Nov 2018 B2
D835282 Barker et al. Dec 2018 S
D835283 Barker et al. Dec 2018 S
D835284 Barker et al. Dec 2018 S
D835285 Barker et al. Dec 2018 S
10149616 Al-Ali et al. Dec 2018 B2
10154815 Al-Ali et al. Dec 2018 B2
10159412 Lamego et al. Dec 2018 B2
10188348 Al-Ali et al. Jan 2019 B2
RE47218 Al-Ali Feb 2019 E
RE47244 Kiani et al. Feb 2019 E
RE47249 Kiani et al. Feb 2019 E
10205291 Scruggs et al. Feb 2019 B2
10226187 Al-Ali et al. Mar 2019 B2
10231657 Al-Ali et al. Mar 2019 B2
10231670 Blank et al. Mar 2019 B2
RE47353 Kiani et al. Apr 2019 E
10279247 Kiani May 2019 B2
10292664 Al-Ali May 2019 B2
10299720 Brown et al. May 2019 B2
10327337 Schmidt et al. Jun 2019 B2
10327713 Barker et al. Jun 2019 B2
10332630 Al-Ali Jun 2019 B2
10383520 Wojtczuk et al. Aug 2019 B2
10383527 Al-Ali Aug 2019 B2
10388120 Muhsin et al. Aug 2019 B2
D864120 Forrest et al. Oct 2019 S
10441181 Telfort et al. Oct 2019 B1
10441196 Eckerbom et al. Oct 2019 B2
10448844 Al-Ali et al. Oct 2019 B2
10448871 Al-Ali et al. Oct 2019 B2
10456038 Lamego et al. Oct 2019 B2
10463340 Telfort et al. Nov 2019 B2
10471159 Lapotko et al. Nov 2019 B1
10505311 Al-Ali et al. Dec 2019 B2
10524738 Olsen Jan 2020 B2
10532174 Al-Ali Jan 2020 B2
10537285 Shreim et al. Jan 2020 B2
10542903 Al-Ali et al. Jan 2020 B2
10555678 Dalvi et al. Feb 2020 B2
10568514 Wojtczuk et al. Feb 2020 B2
10568553 O'Neil et al. Feb 2020 B2
RE47882 Al-Ali Mar 2020 E
10608817 Haider et al. Mar 2020 B2
D880477 Forrest et al. Apr 2020 S
10617302 Al-Ali et al. Apr 2020 B2
10617335 Al-Ali et al. Apr 2020 B2
10637181 Al-Ali et al. Apr 2020 B2
D886849 Muhsin et al. Jun 2020 S
D887548 Abdul-Hafiz et al. Jun 2020 S
D887549 Abdul-Hafiz et al. Jun 2020 S
10667764 Ahmed et al. Jun 2020 B2
D890708 Forrest et al. Jul 2020 S
10721785 Al-Ali Jul 2020 B2
10736518 Al-Ali et al. Aug 2020 B2
10750984 Pauley et al. Aug 2020 B2
D897098 Al-Ali Sep 2020 S
10779098 Iswanto et al. Sep 2020 B2
10827961 Iyengar et al. Nov 2020 B1
10827979 LeBoeuf Nov 2020 B2
10828007 Telfort et al. Nov 2020 B1
10832818 Muhsin et al. Nov 2020 B2
10849554 Shreim et al. Dec 2020 B2
10856750 Indorf Dec 2020 B2
D906970 Forrest et al. Jan 2021 S
D908213 Abdul-Hafiz et al. Jan 2021 S
10918281 Al-Ali et al. Feb 2021 B2
10932705 Muhsin et al. Mar 2021 B2
10932729 Kiani et al. Mar 2021 B2
10939878 Kiani et al. Mar 2021 B2
10956950 Al-Ali et al. Mar 2021 B2
D916135 Indorf et al. Apr 2021 S
D917046 Abdul-Hafiz et al. Apr 2021 S
D917550 Indorf et al. Apr 2021 S
D917564 Indorf et al. Apr 2021 S
D917704 Al-Ali et al. Apr 2021 S
10987066 Chandran et al. Apr 2021 B2
10991135 Al-Ali et al. Apr 2021 B2
D919094 Al-Ali et al. May 2021 S
D919100 Al-Ali et al. May 2021 S
11006867 Al-Ali May 2021 B2
D921202 Al-Ali et al. Jun 2021 S
11024064 Muhsin et al. Jun 2021 B2
11026604 Chen et al. Jun 2021 B2
D925597 Chandran et al. Jul 2021 S
D927699 Al-Ali et al. Aug 2021 S
11076777 Lee et al. Aug 2021 B2
11103134 Wojtczuk et al. Aug 2021 B2
11114188 Poeze et al. Sep 2021 B2
D933232 Al-Ali et al. Oct 2021 S
D933233 Al-Ali et al. Oct 2021 S
D933234 Al-Ali et al. Oct 2021 S
11145408 Sampath et al. Oct 2021 B2
11147518 Al-Ali et al. Oct 2021 B1
11185262 Al-Ali et al. Nov 2021 B2
11191484 Kiani et al. Dec 2021 B2
D946596 Ahmed Mar 2022 S
D946597 Ahmed Mar 2022 S
D946598 Ahmed Mar 2022 S
D946617 Ahmed Mar 2022 S
11272839 Al-Ali et al. Mar 2022 B2
11289199 Al-Ali Mar 2022 B2
RE49034 Al-Ali Apr 2022 E
11298021 Muhsin et al. Apr 2022 B2
D950580 Ahmed May 2022 S
D950599 Ahmed May 2022 S
D950738 Al-Ali et al. May 2022 S
11324445 LeBoeuf May 2022 B2
D957648 Al-Ali Jul 2022 S
11389093 Triman et al. Jul 2022 B2
11406286 Al-Ali et al. Aug 2022 B2
11417426 Muhsin et al. Aug 2022 B2
11439329 Lamego Sep 2022 B2
11445948 Scruggs et al. Sep 2022 B2
D965789 Al-Ali et al. Oct 2022 S
D967433 Al-Ali et al. Oct 2022 S
11464410 Muhsin Oct 2022 B2
11504058 Sharma et al. Nov 2022 B1
11504066 Dalvi et al. Nov 2022 B1
D971933 Ahmed Dec 2022 S
D973072 Ahmed Dec 2022 S
D973685 Ahmed Dec 2022 S
D973686 Ahmed Dec 2022 S
D974193 Forrest et al. Jan 2023 S
D979516 Al-Ali et al. Feb 2023 S
D980091 Forrest et al. Mar 2023 S
11596363 Lamego Mar 2023 B2
20010034477 Mansfield et al. Oct 2001 A1
20010039483 Brand et al. Nov 2001 A1
20020010401 Bushmakin et al. Jan 2002 A1
20020058864 Mansfield et al. May 2002 A1
20020133080 Apruzzese et al. Sep 2002 A1
20030013975 Kiani Jan 2003 A1
20030018243 Gerhardt et al. Jan 2003 A1
20030070707 King Apr 2003 A1
20030144582 Cohen et al. Jul 2003 A1
20030145884 King Aug 2003 A1
20030156288 Barnum et al. Aug 2003 A1
20030212312 Coffin, IV et al. Nov 2003 A1
20040106163 Workman, Jr. et al. Jun 2004 A1
20050055276 Kiani et al. Mar 2005 A1
20050234317 Kiani Oct 2005 A1
20060073719 Kiani Apr 2006 A1
20060161054 Reuss et al. Jul 2006 A1
20060189871 Al-Ali et al. Aug 2006 A1
20060211922 Al-Ali et al. Sep 2006 A1
20070073116 Kiani et al. Mar 2007 A1
20070180140 Welch et al. Aug 2007 A1
20070244377 Cozad et al. Oct 2007 A1
20070282478 Al-Ali et al. Dec 2007 A1
20080064965 Jay et al. Mar 2008 A1
20080070340 Borrelli Mar 2008 A1
20080094228 Welch et al. Apr 2008 A1
20080221418 Al-Ali et al. Sep 2008 A1
20090036759 Ault et al. Feb 2009 A1
20090093687 Telfort et al. Apr 2009 A1
20090095926 MacNeish, III Apr 2009 A1
20090247984 Lamego et al. Oct 2009 A1
20090275813 Davis Nov 2009 A1
20090275844 Al-Ali Nov 2009 A1
20100004518 Vo et al. Jan 2010 A1
20100030040 Poeze et al. Feb 2010 A1
20100099964 O'Reilly et al. Apr 2010 A1
20100160754 Durkin Jun 2010 A1
20100181484 Inada Jul 2010 A1
20100210930 Saylor Aug 2010 A1
20100218819 Farmer Sep 2010 A1
20100234718 Sampath et al. Sep 2010 A1
20100270257 Wachman et al. Oct 2010 A1
20110028806 Merritt et al. Feb 2011 A1
20110028809 Goodman Feb 2011 A1
20110040197 Welch et al. Feb 2011 A1
20110082711 Poeze et al. Apr 2011 A1
20110087081 Kiani et al. Apr 2011 A1
20110105854 Kiani et al. May 2011 A1
20110118561 Tari et al. May 2011 A1
20110125060 Telfort et al. May 2011 A1
20110137297 Kiani et al. Jun 2011 A1
20110172498 Olsen et al. Jul 2011 A1
20110208015 Welch et al. Aug 2011 A1
20110230733 Al-Ali Sep 2011 A1
20110291108 Shen Dec 2011 A1
20120123231 O'Reilly May 2012 A1
20120165629 Merritt et al. Jun 2012 A1
20120197093 LeBoeuf Aug 2012 A1
20120209082 Al-Ali Aug 2012 A1
20120209084 Olsen et al. Aug 2012 A1
20120226117 Lamego et al. Sep 2012 A1
20120262701 Said Oct 2012 A1
20120283524 Kiani et al. Nov 2012 A1
20120286328 Nishida Nov 2012 A1
20120319816 Al-Ali Dec 2012 A1
20130023775 Lamego et al. Jan 2013 A1
20130041591 Lamego Feb 2013 A1
20130060147 Welch et al. Mar 2013 A1
20130096405 Garfio Apr 2013 A1
20130096936 Sampath et al. Apr 2013 A1
20130243021 Siskavich Sep 2013 A1
20130253334 Al-Ali et al. Sep 2013 A1
20130296672 O'Neil et al. Nov 2013 A1
20130296713 Al-Ali et al. Nov 2013 A1
20130324808 Al-Ali et al. Dec 2013 A1
20130331660 Al-Ali et al. Dec 2013 A1
20130345921 Al-Ali et al. Dec 2013 A1
20140012100 Al-Ali et al. Jan 2014 A1
20140051953 Lamego et al. Feb 2014 A1
20140081175 Telfort Mar 2014 A1
20140120564 Workman et al. May 2014 A1
20140121482 Merritt et al. May 2014 A1
20140127137 Bellott et al. May 2014 A1
20140135588 Al-Ali et al. May 2014 A1
20140163344 Al-Ali Jun 2014 A1
20140163402 Lamego et al. Jun 2014 A1
20140166076 Kiani et al. Jun 2014 A1
20140171763 Diab Jun 2014 A1
20140180038 Kiani Jun 2014 A1
20140180154 Sierra et al. Jun 2014 A1
20140180160 Brown et al. Jun 2014 A1
20140187973 Brown et al. Jul 2014 A1
20140213864 Abdul-Hafiz et al. Jul 2014 A1
20140266790 Al-Ali et al. Sep 2014 A1
20140275808 Poeze et al. Sep 2014 A1
20140275835 Lamego et al. Sep 2014 A1
20140275871 Lamego et al. Sep 2014 A1
20140275872 Merritt et al. Sep 2014 A1
20140276115 Dalvi et al. Sep 2014 A1
20140288400 Diab et al. Sep 2014 A1
20140316217 Purdon et al. Oct 2014 A1
20140316218 Purdon et al. Oct 2014 A1
20140316228 Blank et al. Oct 2014 A1
20140323825 Al-Ali et al. Oct 2014 A1
20140323897 Brown et al. Oct 2014 A1
20140323898 Purdon et al. Oct 2014 A1
20140330092 Al-Ali et al. Nov 2014 A1
20140330098 Merritt et al. Nov 2014 A1
20140357966 Al-Ali et al. Dec 2014 A1
20150005600 Blank et al. Jan 2015 A1
20150011907 Purdon et al. Jan 2015 A1
20150012231 Poeze et al. Jan 2015 A1
20150031967 LeBoeuf Jan 2015 A1
20150032029 Al-Ali et al. Jan 2015 A1
20150038859 Dalvi et al. Feb 2015 A1
20150073241 Lamego Mar 2015 A1
20150080754 Purdon et al. Mar 2015 A1
20150087936 Al-Ali et al. Mar 2015 A1
20150094546 Al-Ali Apr 2015 A1
20150097701 Muhsin et al. Apr 2015 A1
20150099950 Al-Ali et al. Apr 2015 A1
20150099955 Al-Ali et al. Apr 2015 A1
20150101844 Al-Ali et al. Apr 2015 A1
20150106121 Muhsin et al. Apr 2015 A1
20150112151 Muhsin et al. Apr 2015 A1
20150116076 Al-Ali et al. Apr 2015 A1
20150165312 Kiani Jun 2015 A1
20150196249 Brown et al. Jul 2015 A1
20150216459 Al-Ali et al. Aug 2015 A1
20150238722 Al-Ali Aug 2015 A1
20150245773 Lamego et al. Sep 2015 A1
20150245794 Al-Ali Sep 2015 A1
20150257689 Al-Ali et al. Sep 2015 A1
20150272514 Kiani et al. Oct 2015 A1
20150351697 Weber et al. Dec 2015 A1
20150359429 Al-Ali et al. Dec 2015 A1
20150366507 Blank et al. Dec 2015 A1
20160029932 Al-Ali Feb 2016 A1
20160058347 Reichgott et al. Mar 2016 A1
20160066824 Al-Ali et al. Mar 2016 A1
20160081552 Wojtczuk et al. Mar 2016 A1
20160095543 Telfort et al. Apr 2016 A1
20160095548 Al-Ali et al. Apr 2016 A1
20160103598 Al-Ali et al. Apr 2016 A1
20160143548 Al-Ali May 2016 A1
20160166182 Al-Ali et al. Jun 2016 A1
20160166183 Poeze et al. Jun 2016 A1
20160192869 Kiani et al. Jul 2016 A1
20160196388 Lamego Jul 2016 A1
20160197436 Barker et al. Jul 2016 A1
20160213281 Eckerbom et al. Jul 2016 A1
20160228043 O'Neil et al. Aug 2016 A1
20160233632 Scruggs et al. Aug 2016 A1
20160234944 Schmidt et al. Aug 2016 A1
20160270735 Diab et al. Sep 2016 A1
20160283665 Sampath et al. Sep 2016 A1
20160287090 Al-Ali et al. Oct 2016 A1
20160287786 Kiani Oct 2016 A1
20160296169 McHale et al. Oct 2016 A1
20160310052 Al-Ali et al. Oct 2016 A1
20160314260 Kiani Oct 2016 A1
20160324486 Al-Ali et al. Nov 2016 A1
20160324488 Olsen Nov 2016 A1
20160327984 Al-Ali et al. Nov 2016 A1
20160328528 Al-Ali et al. Nov 2016 A1
20160331332 Al-Ali Nov 2016 A1
20160367173 Dalvi et al. Dec 2016 A1
20160374621 LeBoeuf Dec 2016 A1
20170000394 Al-Ali et al. Jan 2017 A1
20170007134 Al-Ali et al. Jan 2017 A1
20170007198 Al-Ali et al. Jan 2017 A1
20170014083 Diab et al. Jan 2017 A1
20170014084 Al-Ali et al. Jan 2017 A1
20170024748 Haider Jan 2017 A1
20170027456 Kinast et al. Feb 2017 A1
20170042488 Muhsin Feb 2017 A1
20170055851 Al-Ali Mar 2017 A1
20170055882 Al-Ali et al. Mar 2017 A1
20170055887 Al-Ali Mar 2017 A1
20170055896 Al-Ali Mar 2017 A1
20170079594 Telfort et al. Mar 2017 A1
20170086723 Al-Ali et al. Mar 2017 A1
20170143281 Olsen May 2017 A1
20170147774 Kiani May 2017 A1
20170156620 Al-Ali et al. Jun 2017 A1
20170173632 Al-Ali Jun 2017 A1
20170187146 Kiani et al. Jun 2017 A1
20170188919 Al-Ali et al. Jul 2017 A1
20170196464 Jansen et al. Jul 2017 A1
20170196470 Lamego et al. Jul 2017 A1
20170202490 Al-Ali et al. Jul 2017 A1
20170224262 Al-Ali Aug 2017 A1
20170228516 Sampath et al. Aug 2017 A1
20170245790 Al-Ali et al. Aug 2017 A1
20170251974 Shreim et al. Sep 2017 A1
20170251975 Shreim et al. Sep 2017 A1
20170258403 Abdul-Hafiz et al. Sep 2017 A1
20170311891 Kiani et al. Nov 2017 A1
20170325728 Al-Ali et al. Nov 2017 A1
20170332976 Al-Ali Nov 2017 A1
20170340293 Al-Ali et al. Nov 2017 A1
20170360310 Kiani Dec 2017 A1
20170367632 Al-Ali et al. Dec 2017 A1
20180008146 Al-Ali et al. Jan 2018 A1
20180014752 Al-Ali et al. Jan 2018 A1
20180028124 Al-Ali et al. Feb 2018 A1
20180055385 Al-Ali Mar 2018 A1
20180055390 Kiani et al. Mar 2018 A1
20180055430 Diab et al. Mar 2018 A1
20180055450 LeBoeuf Mar 2018 A1
20180064381 Shakespeare et al. Mar 2018 A1
20180069776 Lamego et al. Mar 2018 A1
20180103874 Lee et al. Apr 2018 A1
20180116575 Perea et al. May 2018 A1
20180125368 Lamego et al. May 2018 A1
20180125430 Al-Ali et al. May 2018 A1
20180130325 Kiani et al. May 2018 A1
20180132769 Weber et al. May 2018 A1
20180132770 Lamego May 2018 A1
20180242926 Muhsin et al. Aug 2018 A1
20180247353 Al-Ali et al. Aug 2018 A1
20180247712 Muhsin et al. Aug 2018 A1
20180256087 Al-Ali et al. Sep 2018 A1
20180300919 Muhsin et al. Oct 2018 A1
20180310822 Indorf et al. Nov 2018 A1
20180310823 Al-Ali et al. Nov 2018 A1
20190015023 Monfre Jan 2019 A1
20190053764 LeBoeuf Feb 2019 A1
20190117070 Muhsin et al. Apr 2019 A1
20190200941 Chandran et al. Jul 2019 A1
20190239787 Pauley et al. Aug 2019 A1
20190320906 Olsen Oct 2019 A1
20190374139 Kiani et al. Dec 2019 A1
20190374713 Kiani et al. Dec 2019 A1
20200060869 Telfort et al. Feb 2020 A1
20200111552 Ahmed Apr 2020 A1
20200113435 Muhsin Apr 2020 A1
20200113488 Al-Ali et al. Apr 2020 A1
20200113496 Scruggs et al. Apr 2020 A1
20200113497 Triman et al. Apr 2020 A1
20200113520 Abdul-Hafiz et al. Apr 2020 A1
20200138288 Al-Ali et al. May 2020 A1
20200138368 Kiani et al. May 2020 A1
20200163597 Dalvi et al. May 2020 A1
20200196877 Vo et al. Jun 2020 A1
20200253474 Muhsin et al. Aug 2020 A1
20200253544 Belur Nagaraj et al. Aug 2020 A1
20200275841 Telfort et al. Sep 2020 A1
20200288983 Telfort et al. Sep 2020 A1
20200321793 Al-Ali et al. Oct 2020 A1
20200329983 Al-Ali et al. Oct 2020 A1
20200329984 Al-Ali et al. Oct 2020 A1
20200329993 Al-Ali et al. Oct 2020 A1
20200330037 Al-Ali et al. Oct 2020 A1
20210022628 Telfort et al. Jan 2021 A1
20210104173 Pauley et al. Apr 2021 A1
20210113121 Diab et al. Apr 2021 A1
20210117525 Kiani et al. Apr 2021 A1
20210118581 Kiani et al. Apr 2021 A1
20210121582 Krishnamani et al. Apr 2021 A1
20210161465 Barker et al. Jun 2021 A1
20210236729 Kiani et al. Aug 2021 A1
20210256267 Ranasinghe et al. Aug 2021 A1
20210256835 Ranasinghe et al. Aug 2021 A1
20210275101 Vo et al. Sep 2021 A1
20210290060 Ahmed Sep 2021 A1
20210290072 Forrest Sep 2021 A1
20210290080 Ahmed Sep 2021 A1
20210290120 Al-Ali Sep 2021 A1
20210290177 Novak, Jr. Sep 2021 A1
20210290184 Ahmed Sep 2021 A1
20210296008 Novak, Jr. Sep 2021 A1
20210330228 Olsen et al. Oct 2021 A1
20210386382 Olsen et al. Dec 2021 A1
20210402110 Pauley et al. Dec 2021 A1
20220026355 Normand et al. Jan 2022 A1
20220039707 Sharma et al. Feb 2022 A1
20220053892 Al-Ali et al. Feb 2022 A1
20220071562 Kiani Mar 2022 A1
20220096603 Kiani et al. Mar 2022 A1
20220151521 Krishnamani et al. May 2022 A1
20220160265 Sankhala May 2022 A1
20220218244 Kiani et al. Jul 2022 A1
20220287574 Telfort et al. Sep 2022 A1
20220296161 Al-Ali et al. Sep 2022 A1
20220361819 Al-Ali et al. Nov 2022 A1
20220379059 Yu et al. Dec 2022 A1
20220392610 Kiani et al. Dec 2022 A1
20230028745 Al-Ali Jan 2023 A1
20230038389 Vo Feb 2023 A1
20230045647 Vo Feb 2023 A1
20230058052 Al-Ali Feb 2023 A1
20230058342 Kiani Feb 2023 A1
20230069789 Koo et al. Mar 2023 A1
20230087671 Telfort et al. Mar 2023 A1
20230110152 Forrest et al. Apr 2023 A1
20230111198 Yu et al. Apr 2023 A1
20230115397 Vo et al. Apr 2023 A1
20230116371 Mills et al. Apr 2023 A1
Non-Patent Literature Citations (2)
Entry
10Gbps DualBand InGaAs PIN Photodiode, Global Communication Semiconductors, Mar. 2012, in 2 pages.
Standard InGaAs Photodiodes IG17-Series, Laser Components, V2, Aug. 2014, in 11 pages.
Related Publications (1)
Number Date Country
20220022751 A1 Jan 2022 US
Provisional Applications (1)
Number Date Country
62052420 Sep 2014 US
Continuations (3)
Number Date Country
Parent 16743864 Jan 2020 US
Child 17394147 US
Parent 16505364 Jul 2019 US
Child 16743864 US
Parent 14858639 Sep 2015 US
Child 16505364 US