This invention pertains to the field of printing.
In color electrophotography, a full color image is built up by sequentially transferring individual color separation toner images in registration onto a receiver and fusing the toner and receiver. A clear toner can also be provided over the color separation toner images. Such a clear toner protects the color separation toner images from damage due to environmental conditions or from incidental contact.
A clear toner can also improve the gloss of the full color image. Gloss is an optical property that represents the extent to which a surface such as an exterior surface of a fused toner image reflects light at an angle that mirrors an angle of incidence of that light. Several factors can influence the gloss of a toner image fused to a receiver. The primary factors include the general uniformity of the refractive index of the toner used to form the exterior surface of the fused toner image, the flatness of the exterior surface of the fused toner image, and in certain circumstances, the gloss of the receiver.
It will be appreciated that a full color toner image can have an exterior surface that includes toner from any of the color separation toner toners as may be necessary to provide the desired combination of colors and the index of refraction of the toner that is present at an upper layer of the full color toner image can vary with the index of refraction of the color separation toner that is last applied at each layer of the toner stack. Light that strikes the exterior surface at an angle of incidence can be reflected at different angles because of such differences in the index of refraction. Accordingly, a more uniform index of refraction can be provided at an exterior surface of a fused color toner image by providing a common clear toner over the color separation toners.
It is known in the art to apply such a clear layer to color separation images using a clear coating apparatus that applies, for example, a generally uniform coating of a clear material and that fixes the clear material to the toner image by exposing this material to ultraviolet light. For example, Schulze-Hagenest, et al., disclose UV-curable toners for use to form durable prints on paper and cardboard substrates in UV-cured Toners for Printing and Coating on Paper-like Substrates, 13th International Conference on Digital Printing Technologies (Imaging Science and Technology, 1997) pp. 168-172. Also described is apparatus for the UV curing (crosslinking) of such UV-curable toners at elevated temperatures, i.e., above the glass transition temperature (T.sub.g) of the toner. A radiant fusing step, using IR radiation to heat the toner, is followed by a separate UV curing step in which the toner is in a molten or quasi-molten state. The IR pre-fusing provides a smooth film, while the subsequent UV curing reaction is very rapid. UV-crosslinkable toner formulations are disclosed in U.S. Pat. No. 6,608,987 issued to Bartscher, et al. and in U.S. Pat. No. 5,905,012 issued to De Meutter, et al.
In another example, U.S. Pat. No. 5,926,679, issued to May, et al., discloses that a clear (non-marking) toner layer can be laid down on a photoconductive member (e.g., imaging cylinder) prior to forming a marking particle toner image thereon, and that a clear toner layer can be laid down as a last layer on top of a marking particle toner image prior to transfer of the image to an intermediate transfer member (e.g., blanket cylinder). It is also disclosed that a clear toner layer can be laid down on a blanket cylinder prior to transferring a marking particle toner image from a photoconductive member. In one aspect of this patent, a non-imagewise clear toner layer is bias-developed on to an intermediate transfer member using a uniform charger and a non-marking toner development station. A first monocolor toner image corresponding to one of the marking toners is transferred to the ITM (on top of the clear toner) from a primary imaging member which may be a roller or a web but is preferably a roller. Subsequently, a second monocolor toner image corresponding to another of the marking toners is transferred to the ITM (on top of and in registration with the first toner image) and so forth until a completed multicolor image stack has been transferred on top of the clear toner on the ITM. The ITM is then positioned at a sintering exposure station; where a sintering radiation is turned on to sinter the toner image for a predetermined length of time.
The clear toner that is applied to the color separation toner images in accordance with such methods can provide the protective function and can also create a generally uniform index of refraction at the exterior surface of a fused toner image formed on the receiver after fusing to provide improved gloss performance.
However, differences in the amount of color separation toner applied to form different colors form what are known as toner stacks and can cause different the toner stacks to have a different toner stack heights. The difference between toner stack heights can cause relief differentials to exist in the exterior surface of the fused toner image. The relief differentials disrupt the flatness of the exterior surface of such a color toner image. These relief differentials cause light to reflect along different paths and this, in turn, reduces the apparent gloss of the fused toner image.
This effect can be illustrated by reference to
For example, a peak area 10 on surface 8 that corresponds to high density color image elements is shown in
It will be appreciated from this that the application of a clear toner in amounts that vary inversely with an amount of color toner in a toner stack can reduce these relief differentials and improve gloss. Accordingly, there have been various attempts to use imagewise application of a clear toner to help form a fused toner image having reduced relief differentials. Often this is done by determining a pattern of clear toner that is calculated to provide reduced relief differentials when applied to the toner stacks formed by the color separation toner images that will be applied to a receiver. This pattern is then converted into the form of image data that can be printed by a printing module to provide a toner image that has reduced relief differentials after fusing.
For example, U.S. Pat. No. 5,234,783, issued on Aug. 10, 1993, in the name of Yee S. Ng, et al., describes a process where a gloss of a printed image is improved by applying gloss improving clear toner image to the color toner stacks forming the image. The gloss producing clear toner image provides clear toner in amounts that vary inversely according to the amounts of toner provided by the color separation images providing ultimately an even height toner image. Similarly, U.S. Pat. No. 7,016,621, issued on Mar. 21, 2006 in the name of Yee S. Ng, describes the formation of a toner image wherein back-transfer artifacts are reduced or eliminated without the need or expense of providing uniform coverage of clear toner to the print wherein a five color tandem printer is used to print fewer than five colors. In this patent, the first four printing stations are used to print a color toner image having a range of stack heights and a fifth station is used to deposit a clear toner image having less clear toner in areas of the color separation toner images having more color separation toner and more clear toner in areas of the color toner image having lower amounts of color separation toner.
Such relief reducing applications of toner are known as inverse mask toner images. The use of inverse mask toner images provides high gloss outcomes by helping to cause exterior surface 8 of a fused color toner image to have a consistent index of refraction and reduced relief differentials. Such inverse mask methods can require the use of a printing module to selectively apply clear toner to specific color toner stacks, requires calculation to determine which toner stack are to receive the amounts of clear toner applied according to the inverse mask, requires that the clear toner is carefully written and transferred in register to the underlying color toner stacks. These steps can require precise calculation, electrical and mechanical control.
It will also be understood that in an electrophotographic printer, a development process is used to deposit toner onto a surface. In this process, a development station supplying charged toner is provided in close proximity to an engine pixel location on a primary imaging member. The difference of potential is established across the toner and the picture element location. Toner deposits onto to the engine pixel location according to the difference of potential therebetween. However, the difference of potential decreases as charged toner transfers to the picture element location. Accordingly, while the net difference of potential at the start of a development step can be high, this net difference of potential decreases as development progresses, slowing the development process and effectively limiting the overall amount of toner developed onto picture element locations of the primary imaging member.
Development efficiency can be characterized as a ratio of a difference of potential between a development station and the engine pixel location during development and a difference of potential between development station and the toned pixel. Development efficiency limitations can be particularly noticeable when the difference of potential between a development station and the charge at the engine pixel location being developed is relatively low or where development efficiency varies during development of an image. Further, in toner images that use multiple layers of color toner, there can be significant differences in the development efficiencies for each layer of toner applied. These development efficiency differences can exacerbate relief differences that already exist between large toner piles formed in high difference of potential areas and comparatively low difference of potential areas that will have low toner stack heights.
Various schemes are known in the art to provide improved development efficiency. These typically seek to improve the development efficiency of a single toner by positioning multiple development stations along a primary imaging member in order to present the same toner to the same portions of a primary imaging member multiple times effectively increasing the amount of time during which development can occur and allowing full development at lower potentials. The overall development efficiencies of each color separation will be closer to a desired development efficiency. Examples of such methods include U.S. Pat. No. 3,724,442 issued to Latone et al.; U.S. Pat. No. 3,927,641 issued to Handa, U.S. Pat. No. 4,041,903 issued to Katakura et al. Such approaches can improve toner development efficiency but are not suitable for the formation of an inverse mask.
What are needed therefore are new methods and apparatuses for applying an inverse masking toner to toner stacks formed from one or more color separation toners forming a toner image in amounts that vary inversely with the amount of color separation toner in the toner stacks to form an exterior surface of the fused toner image that has a more uniform index of refraction and reduced relief differentials. Another need in the art is for methods and apparatuses to be provided that allow application of inverse masking toner to compensate for development efficiency limitations. Still another need in the art is for methods and apparatuses to be provided that allow the formation of such an inverse mask toner without requiring calculation of second toner amounts based on analysis of color separation data, without requiring an image printing module to selectively position the inverse masking toner relative to the toner stacks or to adjustably control the amount of inverse mask toner applied to particular toner stacks.
What are needed therefore are new methods for providing a protective and gloss improving toner to toner stacks formed from one or more color separation toners to form an exterior surface of the fused toner image that has a more uniform index of refraction and reduced relief differentials. Another need in the art is for methods to be provided that allow for such a protective and gloss improving toner to provide some compensation for development efficiency limitations.
Still another need in the art is for methods to be provided that allow the application of such a protective and gloss improving toner in specific amounts on specific toner stacks in toned portions of a receiver. Prior art requires precise registration with the toner stacks formed in the color toner image. Even minor mis-registration can yield highly unpredictable results that can increase relief differentials and decrease rather than increase gloss.
Yet another need in the art is for methods to be provided that allow the application of gloss improving toner to reduce relief differentials without requiring calculation of toner amounts based on analysis of color separation data, without requiring an image printing module to selectively position the gloss improving or protective toner relative to the toner stacks or to adjustably control the amount of protective and gloss improving toner applied to particular toner stacks.
Methods for printing are provided. In one aspect selected engine pixel locations on a primary imaging member are charged with an image modulated difference of potential of a first polarity between a higher potential and a lower potential relative to a ground and a first development difference of potential is established between the higher potential and the lower potential at a first development station to form a first net development difference of potential between the first development station and individual engine pixel locations on the primary imaging member with the first net development potential being the image modulated difference of potential at the engine pixel location less the first development difference of potential. A first toner charged at second polarity that is opposite from the first polarity is positioned at the first development station such that the first toner is electrostatically urged to deposit in the individual engine pixel locations according to the first net development difference of potential for the individual engine pixel locations. A second development difference of potential of the first polarity is established at a second development station to form a second net development difference of potential between the second development station and individual engine pixel locations on the primary imaging member, with the second net development difference of potential being the image modulated difference of potential at the individual engine pixel location less the second development difference of potential and less any difference of potential relative to ground of any first toner at the individual engine pixel location. A second toner having a charge of the second polarity is positioned at the second development station such that the second toner is electrostatically urged by the second net development difference of potential to deposit on engine pixel locations having first toner. The second development difference of potential is less than the first development difference of potential to cause the second toner to deposit on the engine pixel locations having first toner in an amount according to the second net development difference of potential.
Toner 24 is a material or mixture that contains toner particles and that can form an image, pattern, or indicia when electrostatically deposited on an imaging member including a photoreceptor, photoconductor, electrostatically-charged, or magnetic surface. As used herein, “toner particles” are the particles that are electrostatically transferred by print engine 22 to form a pattern of material on a receiver 26 to convert an electrostatic latent image into a visible image or other pattern of toner 24 on receiver. Toner particles can also include clear particles that have the appearance of being transparent or that while being generally transparent impart a coloration or opacity. Such clear toner particles can provide for example a protective layer on an image or can be used to create other effects and properties on the image. The toner particles are fused or fixed to bind toner 24 to a receiver 26.
Toner particles can have a range of diameters, e.g. less than 4 μm, on the order of 5-15 μm, up to approximately 30 μm, or larger. When referring to particles of toner 24, the toner size or diameter is defined in terms of the median volume weighted diameter as measured by conventional diameter measuring devices such as a Coulter Multisizer, sold by Coulter, Inc. The volume weighted diameter is the sum of the mass of each toner particle multiplied by the diameter of a spherical particle of equal mass and density, divided by the total particle mass. Toner 24 is also referred to in the art as marking particles or dry ink. In certain embodiments, toner 24 can also comprise particles that are entrained in a liquid carrier.
Typically, receiver 26 takes the form of paper, film, fabric, metallicized or metallic sheets or webs. However, receiver 26 can take any number of forms and can comprise, in general, any article or structure that can be moved relative to print engine 22 and processed as described herein.
Print engine 22 has one or more printing modules, shown in
Print engine 22 and a receiver transport system 28 cooperate to deliver one or more toner image 25 in registration to form a composite toner image 27 such as the one shown formed in
In
Printer 20 is operated by a printer controller 82 that controls the operation of print engine 22 including but not limited to each of the respective printing modules 40, 42, 44, 46, and 48, receiver transport system 28, receiver supply 32, and transfer subsystem 50, to cooperate to form toner images 25 in registration on a receiver 26 or an intermediate in order to yield a composite toner image 27 on receiver 26 and to cause fuser 60 to fuse composite toner image 27 on receiver 26 to form a print 70 as described herein or otherwise known in the art.
Printer controller 82 operates printer 20 based upon input signals from a user input system 84, sensors 86, a memory 88 and a communication system 90. User input system 84 can comprise any form of transducer or other device capable of receiving an input from a user and converting this input into a form that can be used by printer controller 82. Sensors 86 can include contact, proximity, electromagnetic, magnetic, or optical sensors and other sensors known in the art that can be used to detect conditions in printer 20 or in the environment-surrounding printer 20 and to convert this information into a form that can be used by printer controller 82 in governing printing, fusing, finishing or other functions.
Memory 88 can comprise any form of conventionally known memory devices including but not limited to optical, magnetic or other movable media as well as semiconductor or other forms of electronic memory. Memory 88 can contain for example and without limitation image data, print order data, printing instructions, suitable tables and control software that can be used by printer controller 82.
Communication system 90 can comprise any form of circuit, system or transducer that can be used to send signals to or receive signals from memory 88 or external devices 92 that are separate from or separable from direct connection with printer controller 82. External devices 92 can comprise any type of electronic system that can generate signals bearing data that may be useful to printer controller 82 in operating printer 20.
Printer 20 further comprises an output system 94, such as a display, audio signal source or tactile signal generator or any other device that can be used to provide human perceptible signals by printer controller 82 to feedback, informational or other purposes.
Printer 20 prints images based upon print order information. Print order information can include image data for printing and printing instructions from a variety of sources. In the embodiment of
In the embodiment of printer 20 that is illustrated in
Primary imaging system 110 includes a primary imaging member 112. In the embodiment of
In the embodiment of
Charging subsystem 120 is configured as is known in the art, to apply charge to photoreceptor 114. The charge applied by charging subsystem 120 creates a generally uniform initial difference of potential Vepl relative to ground. The initial difference of potential Vepl has a first polarity which can, for example, be a negative polarity. Here, charging subsystem 120 includes a grid 126 that is selected and driven by a power source (not shown) to charge photoreceptor 114. Other charging systems can also be used.
In this embodiment, an optional meter 128 is provided that measures the electrostatic charge on photoreceptor 114 after initial charging and that provides feedback to, in this example, printer controller 82, allowing printer controller 82 to send signals to adjust settings of the charging subsystem 120 to help charging subsystem 120 to operate in a manner that creates a desired initial difference of potential Vi on photoreceptor 114. In other embodiments, a local controller or analog feedback circuit or the like can be used for this purpose.
Writing subsystem 130 is provided having a writer 132 that forms charge patterns on a primary imaging member 112. In this embodiment, this is done by exposing primary imaging member 112 to electromagnetic or other radiation that is modulated according to color separation image data to form a latent electrostatic image (e.g., of a color separation corresponding to the color of toner deposited at printing module 48) and that causes primary imaging member 112 to have image modulated charge patterns thereon.
In the embodiment shown in
As used herein, an “engine pixel” is the smallest addressable unit of primary imaging system 110 or in this embodiment on photoreceptor 114 which writer 132 (e.g., a light source, laser or LED) can expose with a selected exposure different from the exposure of another engine pixel. Engine pixels can overlap, e.g., to increase addressability in the slow-scan direction (S). Each engine pixel has a corresponding engine pixel location on an image and the exposure applied to the engine pixel location is described by an engine pixel level. The engine pixel level is determined based upon the density of the color separation image being printed by printing module 48.
Writing subsystem 130 is a write-white or charged-area development (CAD) system where image wise modulation of the primary imaging member 112 is performed according to a model under which a toner is charged to have a second polarity that is the opposite of the first polarity of the charge on primary imaging member 112. As is used herein difference of potential refers to a difference of potential between the cited member and ground unless otherwise specified as the difference of potential between two members. In the CAD system, the charged toner of the second polarity is urged to primary imaging member 112 by a net difference of potential between a first development station 140 and individual engine pixel locations on a the primary imaging member 112 during development. In the embodiment of
Accordingly, in a CAD system, toner develops on the primary imaging member 112 at engine pixel locations that have a difference of potential Vepl that is greater than a development difference of potential and does not develop on the primary imaging member 112 at locations that have a difference of potential Vepl that is lower than a development difference of potential used to develop a toner at these engine pixel locations. It will be appreciated that in this regard, any or all of printer controller 82, color separation processor 104 and half tone processor 106 process image information and printing instructions in ways that cause image modulated differences of potential to be generated according to this CAD model.
Engine pixel locations having an image modulated difference of potential that is greater than a development difference of potential therefore correspond to areas of primary imaging member 112 onto which toner will be deposited during development while areas having an image modulated potential that is below the development difference of potential are not developed with toner.
After writing, primary imaging member 112 has an image modulated difference of potential at each engine pixel location Vepl that varies between a higher potential Vh that can be at or less than the initial difference of potential Vi reflecting in this embodiment, a difference of potential at an engine pixel location that has not been exposed, and that can be above a lower level Vl reflecting in this embodiment a lower difference of potential at an engine pixel location that has been exposed by an exposure at an upper range of available exposure settings.
Another meter 134 is optionally provided in this embodiment and measures charge within a non-image test patch area of photoreceptor 114 after the photoreceptor 114 has been exposed to writer 132 to provide feedback related to differences of potential created using writer 132 and photoreceptor 114. Other meters and components (not shown) can be included to monitor and provide feedback regarding the operation of other systems described herein so that appropriate control can be provided.
First development station 140 has a first toning shell 142 that provides a first developer having a first toner 158 near primary imaging member 112. First toner 158 is charged and has a second polarity that is the opposite of the first polarity of the initial charge Vi on primary imaging member 112 and as any image modulated potential Vepl of the engine pixel locations on primary imaging member 112. First development station 140 also has a first supply system 146 for providing charged first toner 158 to first toning shell 142 and a first power supply 150 for providing a bias for first toning shell 142. First supply system 146 can be of any design that maintains or that provides appropriate levels of charged first toner 158 at first toning shell 142 during development. Similarly, first power supply 150 can be of any design that can maintain the bias described herein. In the embodiment illustrated here, first power supply 150 is shown optionally connected to printer controller 82 which can be used to control the operation of first power supply 150.
The bias at first toning shell 142 creates a first development difference of potential VD1 of the second polarity relative to ground. The first development difference of potential VD1 forms a first net development difference of potential Vnet1 between first toning shell 142 and individual engine pixel locations on primary imaging member 112. The first net development difference of potential Vnet1 is the image modulated difference of potential Vepl at the engine pixel location less the first development difference of potential VD1.
First toner 158 on first toning shell 142 develops on individual engine pixel locations of primary imaging member 112 in amounts according to the first net development potential VD1. These amounts can, for example, increase along with increases in the first net development difference of potential Vnet1 for each individual engine pixel location and such increases can occur monotonically with increases in the first net development difference of potential Vnet1. Such development produces a first toner image 25 on primary imaging member 112 having first toner quantities associated with the engine pixel locations that correspond to the engine pixel levels for the engine pixel locations.
The electrostatic forces that cause first toner 158 to deposit onto primary imaging member 112 can include Coulombic forces between charged toner particles and the charged electrostatic latent image, and Lorentz forces on the charged toner particles due to the electric field produced by the bias voltages.
In one example embodiment, first development station 140 employs a two-component developer that includes toner particles and magnetic carrier particles. In this embodiment, first development station 140 includes a magnetic core 144 to cause the magnetic carrier particles near first toning shell 142 to form a “magnetic brush,” as known in the electrophotographic art. Magnetic core 144 can be stationary or rotating, and can rotate with a speed and direction the same as or different than the speed and direction of first toning shell 142. Magnetic core 144 can be cylindrical or non-cylindrical, and can include a single magnet or a plurality of magnets or magnetic poles disposed around the circumference of magnetic core 144. Alternatively, magnetic core 144 can include an array of solenoids driven to provide a magnetic field of alternating direction. Magnetic core 144 preferably provides a magnetic field of varying magnitude and direction around the outer circumference of first toning shell 142. Further details of magnetic core 144 can be found in U.S. Pat. No. 7,120,379 to Eck et al., issued Oct. 10, 2006, and in U.S. Publication No. 2002/0168200 to Stelter et al., published Nov. 14, 2002, the disclosures of which are incorporated herein by reference. In other embodiments, first development station 140 can also employ a mono-component developer comprising toner, either magnetic or non-magnetic, without separate magnetic carrier particles. In further embodiments, first development station 140 can take other known forms that can perform development in any manner that is consistent with what is described and claimed herein.
As is shown in
Once that toner image 25 has deposited on primary imaging member 112 or onto intermediate transfer member 162, adhesion forces such as van der Waals forces resist separation of toner image 25 from these members unless another force is provided that overcomes these adhesion forces. In the embodiment of
Returning to
In this embodiment, toner layer enhancement system 200 has a second development station 202 having a second toning shell 204 that provides a second developer having a second toner 208 near primary imaging member 112. Second toner 208 is charged and has a potential of the same second polarity as first toner 158. Second development station 202 also has a second toner supply system 206 for providing the charged second toner 208 to second toning shell 204 and a second power supply 210 that biases second toning shell 204 relative to ground. Second toner supply system 206 can be of any design that maintains or that provides appropriate levels of charged second toner 208 at a second toning shell 204 during development. Similarly, second power supply 210 can be of any design that can maintain the bias described herein on second toning shell 204. In the embodiment illustrated here, second power supply 210 is shown optionally connected to printer controller 82 which can be used to control operation of second power supply 210.
In general, printing modules 40-48 having such a toner overcoat system 200 can be operated as described above to create a first toner image 25 on photoreceptor 114 of primary imaging member 112 as is shown in
As is also shown in
Second toner 208 on second toning shell 204 deposits on an individual engine pixel location on primary imaging member 112 in an amount according to the second net development difference of potential Vnet2. This amount, can for example, include a first amount that reflect the difference between first development difference of potential VD1 and second amount second development difference of potential VD2 and that monotonically increases as a function of the net second development difference of potential Vnet2 where the initial difference of potential Vi is less than the second development difference of potential VD2 and the second development difference of potential VD2 is less than the first development difference of potential VD1.
As is used herein with reference to differences of potential, the terms greater than or less than, refer to a comparison of the magnitudes of the potential and not the sign. Thus, for example, a difference of potential of −350 volts is greater than a difference of potential of −250 volts.
The electrostatic forces that cause second toner 208 to deposit onto primary imaging member 112 can include Coulombic forces between charged toner particles and the charged electrostatic latent image, and Lorentz forces on the charged toner particles due to the electric field produced by the bias voltages. Second development station 202 can optionally employ a two-component developer or a one component developer and a magnetic core as described generally above with reference to first development system 140.
As is noted above, first development station 142 can be subject to development efficiency limitations. Accordingly, the first toner difference of potential Vft provided by first toner 158 at a picture element location can be less than the first net development difference of potential Vnet1 created at this picture element location during development of first toner 158. When this occurs, the first toner potential Vft provided by first toner 158 at the engine pixel location plus the image modulated difference of potential at the engine pixel location Vepl are less than the first development difference of potential VD1.
However, when such an engine pixel location is exposed to the second development difference of potential VD2, a net second difference in potential Vnet2 is created that is modulated as a function of the first toner difference of potential Vft at the engine pixel location. This modulation as a function of the first toner difference of potential Vft occurs because the net second development difference of potential Vnet2 increases as compared to what the second net difference of potential Vnet2 would be if a development efficiency of unity had been achieved during development of first toner 158 which would have provided sufficient amounts of charged first toner 158 at each image modulated engine pixel location to form a first toner difference of potential Vft that would have been equal to first net development difference of potential Vnet1. Toner layer enhancement system 200 therefore has the ability to automatically increase the amount of second toner 208 deposited at a picture element location in a manner that is modulated based upon the amount of first toner 158 at the picture element location and therefore increases the amount of second toner 208 developed at an engine pixel location automatically when there is a development efficiency induced shortfall. Further because in this embodiment, the second development difference of potential VD2 is less than the first development difference of potential VD1 a controllable amount of second toner 208 is selectively applied to each of the toner stacks. These effects are conceptually illustrated in
Second toner 208 is different than first toner 158. This can take many forms, in one embodiment, first toner 158 can have first color characteristics while the second toner 208 has different second color characteristics. In one example of this type, the first toner 158 can be a toner of a first color having a first hue and the second toner 208 can be a toner having the first color and a second different hue.
First toner 158 and second toner 208 can have different material properties. For example, in one embodiment first toner 158 can have a first viscosity and the second toner 158 can have a second viscosity that is different from the first viscosity. In another embodiment, first toner 158 can have a different glass transition temperature than second toner 208. In one example of this type, the second toner 208 can have a lower glass transition temperature than the first toner 158. In certain embodiments, second toner 208 can take the form of a toner that is clear, transparent or semi-transparent when fused. In other embodiments, second toner 208 can have finite transmission densities when fused.
First toner 158 and second toner 208 can be differently sized. For example, and without limitation, first toner 158 can comprise toner particles of a size between 4 microns and 9 microns while the second toner 208 can have toner particles of a size between 10 microns and 20 microns or more. First toner 158 and second toner 208 can also have other different properties such as different shapes, can be formed using different processes, or can be provided with additional additives, coatings or other materials known in the art that influence the development, transfer or fusing of toner.
As is shown in
In general then a printer 20 having printing module such as module 48 having a can use toner enhancement system 200 to provide, a second toner 208 on a first toner 158 of a different type in a manner that automatically inversely adapts to an amount of first toner 158 on which the second toner 208 is applied and that automatically and precisely registers second toner 208 with first toner 158 without necessarily being applied to portions of the receiver 26 that are not toned with first toner 158 all without requiring the use of a printing module.
A first development difference of potential VD1 of the first polarity is established at first toning shell 142 using, in this example, first power supply 150. The first development difference of potential VD1 is provided in a range between the higher difference of potential Vh and the lower difference of potential Vl. This creates a first net development difference of potential Vnet1 defined by the difference between the first development difference of potential VD1 at first toning shell 142 and the individual image modulated difference of potential Vepl at the engine pixel locations on primary imaging member 112. The first net development difference of potential Vnet1 for an engine pixel location is the image modulated difference of potential Vepl at the engine pixel location less any first development difference of potential VD1 (step 232).
Particles of first toner 158 are charged to the second polarity and positioned between first toning shell 142 and the engine pixel locations so that the first net development difference potential Vnet1 electrostatically urges first toner 158 to deposit first toner 158 at individual engine pixel locations according to the first net development potential Vnet1 for the individual picture element locations (step 234).
A second development difference of potential VD2 of the first polarity is established between second toning shell 204 and ground using for example, second power supply 210. This creates a second net development difference of potential Vnet2 between the second toning shell 204 and the individual engine pixel locations on primary imaging member 112. The second net development difference of potential Vnet2 for the individual image pixel locations is the image modulated difference of potential Vepl at the individual engine pixel location less the second development difference of potential VD2, less a difference of potential of the first toner Vft at the individual engine pixel location.
Second toner 208 having a charge of the second polarity is positioned so that the second net development potential Vnet2 electrostatically urges second toner 208 to deposit on the engine pixel locations to form a first toner image 25 having second toner 208 at each picture element location in amounts that are modulated by the second net development potential Vnet2 (step 238).
When the second toner 208 is presented, the second development difference of potential VD2 is less than the first development difference of potential VD1 but greater than a lower difference of potential Vl on the primary imaging member 112. This causes at least a first amount of second toner 208 to deposit on individual engine pixel locations having the first toner 158 according to a difference of potential between first development potential VD1 and second development potential VD2 and to provide a second amount of second toner 208 at individual pixel locations having the first toner 158 according to the second net difference of potential Vnet2 between second development difference of potential VD2, the potential Vft of any first toner 158 at an individual engine pixel location and the image modulated potential Vepl at the individual engine pixel locations. When second net development difference of potential Vnet2 increases the amount of second toner 208 increases.
However, since second development difference of potential VD2 is greater than a lower difference of potential Vl, no second toner 208 deposits on portions of primary imaging member 112 that are exposed during writing at the higher range of exposures and that therefore have lower difference of potential. Thus, using the method of
When primary imaging member 112 is moved past first development station 140, first toner 158 deposits at engine pixel location 252 until an amount of the charged first toner 158 deposited at engine pixel location 252 reaches a first toner potential Vft that is determined by the first net development difference of potential Vnet1 between first development difference of potential VD1 and the image modulated difference of potential Vepl at engine pixel location 252 less a development shortfall 262 that arises due to a development efficiency that is less than unity.
As is further shown in
In this embodiment, second development difference of potential VD2 is set at a level that is less than first development difference of potential VD1 but not less than lower difference of potential Vl. Accordingly, the amount of second toner 208 that deposits on an individual engine pixel location 252 during second development is modulated by the first toner difference of potential Vft of first toner 158 that is at engine pixel location 252. The second toner 208 is applied to each of the engine pixel locations in an amount that is modulated, at least in part based on a difference of potential Vft of a first toner 158 at the engine pixel location. This result is achieved without requiring the use of a separate printing module and the attendant need to generate an image to be printed by the separate printing module to apply second toner 208 in an imagewise fashion.
When primary imaging member 112 is moved past first development station 140, first toner 158 deposits at engine pixel location 254 until first toner 158 at engine pixel location 254 reaches a first toner difference of potential Vft that is generally the same as first net development difference of potential Vnet1 of the image modulated difference of potential Vepl less first development difference of potential VD1 and less a development shortfall 272 that arises due to development efficiency being less than unity.
As is further shown in
In this embodiment, second development difference of potential VD2 is set at a level that is less than first development difference of potential VD1 and less than initial difference of potential Vi and greater than the lower difference of potential Vl. Accordingly as has been illustrated in
Similarly, for the purposes of
As is shown in
However, as is shown in
It will be appreciated from this that in a CAD writing system that has the first development station 140 and toner layer enhancement system 200 as disclosed herein and that can provide selected engine pixel locations with a charge of a lower difference of potential VI that is generally less than first development difference of potential VD1 and a second development difference of potential VD2, second toner 208 will not be attracted to engine pixel locations such as engine pixel location 250 of
In this way, second toner 208 can be used only where necessary and only to an extent necessary to provide a consistent coating of second toner 208 at what will be an uppermost layer of any engine pixel location having first toner 158 developed thereon and a fused after transfer using transfer subsystem 50. This can provide toner image with a generally consistent index of refraction to improve one of the two factors influencing gloss as described above.
Further, precise registration of the second toner 208 with the first toner 158 at the engine pixel location becomes possible without requiring imagewise placement of the second toner because the electrostatic forces that urge transfer of an amount of the second toner 208 to an engine pixel location such as engine pixel locations 250, 252 or 254 automatically develop desired amounts of second toner 208 at these engine pixel locations as a function of the same difference of potential at the engine pixel location Vepl used to develop the first toner and as a function of first tone 158r actually located on the primary imaging member 112.
As is also shown in
It will also be appreciated that in certain embodiments, it can be useful for a printer 20 to generate prints 70 that have, effectively, an overcoat of second toner 208 even in portions of receiver 26 that that do not have first toner 158 developed thereon. This can be done for example where receiver 26 has a post fused gloss that is not consistent with the post fused gloss of a second toner 208. In such a case or for other reasons, adjustment of the second development difference of potential VD2 below the lower difference of potential Vl allows coverage of the receiver 26 with second toner 208.
This is illustrated in
As can be seen from
As has been discussed elsewhere herein the second development difference of potential exceeds the first development difference of potential VD1. In one embodiment second development difference of potential VD2 is much smaller than the first development difference of potential VD1. This advantageously creates a relatively thick layer of second toner 208, and further allows additional net second development difference of potential Vnet2 during the development of second toner 208 to enable higher efficiency development at least during a portion of the second development.
In the embodiments described above, second toner 208 has been described as being applied onto one or more first toners 158. First toner 158 is referred to in various places as a color toner, or that provides differently colored toners or that form images according to color separation images. This has been done for convenience only and is not limiting. A first toner 158 can be applied according to any type of image or pattern and the color of the first toner 158 is not critical. Without limitation, a first toner 158 can be applied according to any first toner pattern such as a pattern that defines a structure that is to be formed on receiver 26 or an arrangement of toners that are of a type or that are applied in patterns that are intended to achieve functional outcomes such as forming structures, optical elements, electrical circuit components or circuits or desirable arrangements of biological material or components thereof.
This application relates to commonly assigned, copending U.S. application Ser. No. ______ (Docket No. 96671RRS), filed ______, entitled: “ENHANCEMENT OF DISCHARGED AREA DEVELOPED TONER LAYER”; U.S. application Ser. No. ______ (Docket No. 96774RRS), filed ______, entitled: “BALANCING DISCHARGE AREA DEVELOPED AND TRANSFERRED TONER”; U.S. application Ser. No. ______ (Docket No. 96777RRS), filed ______, entitled: “BALANCING CHARGE AREA DEVELOPED AND TRANSFERRED TONER”; U.S. application Ser. No. ______ (Docket No. 96778RRS), filed ______, entitled: “PRINTER WITH DISCHARGE AREA DEVELOPED TONER BALANCING”; and U.S. application Ser. No. ______ (Docket. No. 96779RRS), filed ______, entitled: “PRINTER WITH CHARGE AREA DEVELOPED TONER BALANCING”; each of which is hereby incorporated by reference.