This application is a continuation under 35 U.S.C. §365(c) and 35 U.S.C. §120 of international application PCT/EP2004/000871 filed Jan. 31, 2004. This application also claims priority under 35 U.S.C. §119 of DE 103 05 306.9 filed Feb. 10, 2003 and DE 10351 321.3 filed Oct. 31, 2003, which are incorporated herein by reference in their entireties.
Not Applicable
Not Applicable
(1) Field of the Invention
The present patent application relates to the enhancement of the cleaning performance of laundry detergents in the washing of textiles by the use of a combination of a certain nonionic soil release-capable cellulose derivative and carboxymethylcellulose.
In addition to the ingredients which are indispensable for the washing process, such as surfactants and builder materials, laundry detergents generally comprise further constituents which can be summarized under the term washing assistants and which comprise such different active substance groups as foam regulators, graying inhibitors, bleaches, bleach activators and dye transfer inhibitors. Such assistants also include substances which impart to the laundry fibers soil-repellant properties and which, if present during the washing operation, are capable of promoting the soil release capability of the remaining laundry detergent constituents. The same applies mutatis mutandis to cleaning compositions for hard surfaces. Such soil release-capable substances are often referred to as “soil release” substances or, owing to their capability of modifying the treated surface, for example of the fiber, in a soil-repellant manner, as “soil repellants”. For example, the U.S. Pat. No. 4,136,038 discloses the soil release-capable action of methylcellulose. The European patent application EP 0 213 729 discloses the reduced redeposition in the case of use of laundry detergents which comprise a combination of soap and nonionic surfactant comprising alkylhydroxyalkylcellulose. The European patent application EP 0 213 730 discloses textile treatment compositions which comprise cationic surfactants and nonionic cellulose ethers having HLB values of from 3.1 to 3.8. The U.S. Pat. No. 4,000,093 discloses laundry detergents which comprise from 0.1% by weight to 3% by weight of alkylcellulose, hydroxyalkylcellulose or alkylhydroxyalkylcellulose, and also from 5% by weight to 50% by weight of surfactants, the surfactant component consisting substantially of C10- to C13-alkyl sulfate and having up to 5% by weight of C14-alkyl sulfate and fewer than 5% by weight of alkyl sulfate having alkyl radicals of C15 and higher. The U.S. Pat. No. 4,174,305 discloses laundry detergents which comprise from 0.1% by weight to 3% by weight of alkylcellulose, hydroxyalkylcellulose or alkylhydroxyalkylcellulose, and also from 5% by weight to 50% by weight of surfactant, the surfactant component consisting substantially of C10- to C12-alkylbenzenesulfonate and having fewer than 5% by weight of alkylbenzenesulfonate having alkyl radicals of C13 and higher. The European patent application EP 0 634 481 relates to a laundry detergent which comprises alkali metal percarbonate and one or more nonionic cellulose derivatives. Among the latter, explicitly disclosed are merely hydroxyethylcellulose, hydroxypropylcellulose and methylcellulose, and also, within the examples, the methylhydroxyethylcellulose Tylose® MH50, the hydroxypropylmethylcellulose Methocel® F4M and hydroxybutylmethylcellulose. The European patent EP 0 271 312 (P&G) relates to soil release-capable active substances, and among these cellulose alkyl ethers and cellulose hydroxylalkyl ethers (having DS from 1.5 to 2.7 and molar masses of from 2000 to 100 000) such as methylcellulose and ethylcellulose, which are to be used with peroxygen bleach in a weight ratio (based on the active oxygen content of the bleach) of from 10:1 to 1:10. The European patent EP 0 948 591 B1 discloses a laundry detergent in liquid or granular form which imparts to fabrics and textiles which are washed therewith textile appearance advantages such as pilling/fuzz reduction, counteraction of dye fading, improved attrition resistance and/or enhanced softness, and which contains from 1 to 80% by weight of surfactant, from 1 to 80% by weight of organic or inorganic builder, from 0.1 to 80% by weight of a hydrophobically modified nonionic cellulose ether having a molar mass of from 10 000 to 2 000 000, the modification in the presence of optionally oligomerized (degree of oligomerization up to 20) ethyleneoxy or 2-propyleneoxy ether units and of C8-24-alkylsubstituents, and the alkylsubstituents having to be present in amounts of 0.1-5% by weight based on the cellulose ether material.
Owing to their chemical similarity to polyester fibers, particularly effective soil release-capable active ingredients in the case of textiles composed of this material are copolyesters which contain dicarboxylic acid units, alkylene glycol units and polyalkylene glycol units. Soil release-capable copolyesters of the type mentioned and also their use in laundry detergents have been known for some time.
For example, the German laid-open specification DT 16 17 141 describes a washing process using polyethylene terephthalate-polyoxyethylene glycol copolymers. The German laid-open specification DT 22 00 911 relates to laundry detergents which comprise nonionic surfactant and a copolymer composed of polyoxyethylene glycol and polyethylene terephthalate. The German laid-open specification DT 22 53 063 mentions acidic textile modifying compositions which comprise a copolymer composed of a dibasic carboxylic acid and an alkylene polyglycol or cycloalkylene polyglycol, and also optionally an alkylene glycol or cycloalkylene glycol. Polymers composed of ethylene terephthalate and polyethylene oxide terephthalate in which the polyethylene glycol units have molar masses of from 750 to 5000 and the molar ratio of ethylene terephthalate to polyethylene oxide terephthalate is from 50:50 to 90:10, and their use in laundry detergents are described in the German patent DE 28 57 292. Polymers having molar mass from 15 000 to 50 000 and composed of ethylene terephthalate and polyethylene oxide terephthalate, the polyethylene glycol units having molar masses of from 1000 to 10 000 and the molar ratio of ethylene terephthalate to polyethylene oxide terephthalate being from 2:1 to 6:1, can be used in laundry detergents according to the German laid-open specification DE 33 24 258. The European patent EP 066 944 relates to textile treatment compositions which comprise a copolyester composed of ethylene glycol, polyethylene glycol, aromatic dicarboxylic acid and sulfonated aromatic dicarboxylic acid in certain molar ratios. The European patent EP 185 427 discloses polyesters which are end-capped by methyl or ethyl groups and have ethylene terephthalate and/or propylene terephthalate and polyethylene oxide terephthalate units, and laundry detergents which comprise such soil release polymers. The European patent EP 241 984 relates to a polyester which, in addition to oxyethylene groups and terephthalic acid units, also contains substituted ethylene units and glycerol units. The European patent EP 241 985 discloses polyesters which, in addition to oxyethylene groups and terephthalic acid units, contain 1,2-propylene, 1,2-butylene and/or 3-methoxy-1,2-propylene groups and also glycerol units, and are end group-capped with C1- to C4-alkyl groups. The European patent EP 253 567 relates to soil release polymers which have a molar mass of from 900 to 9000 and are composed of ethylene terephthalate and polyethylene oxide terephthalate, the polyethylene glycol units having molar masses of from 300 to 3000 and the molar ratio of ethylene terephthalate to polyethylene oxide terephthalate being from 0.6 to 0.95. The European patent application EP 272 033 discloses polyesters which are at least partly end group-capped by C1-4-alkyl or acyl radicals and have polypropylene terephthalate and polyoxyethylene terephthalate units. The European patent EP 274 907 describes terephthalate-containing soil release polyesters which are end group-capped by sulfoethyl. In the European patent application EP 357 280, soil release polyesters having terephthalate, alkylene glycol and poly-C2-4-glycol units are prepared by sulfonation of unsaturated end groups. The German patent application DE 26 55 551 describes the reaction of such polyesters with isocyanate-containing polymers and the use of the thus prepared polymers against the reattachment of soil in the course of washing of synthetic fibers. The German patent application DE 28 46 984 discloses laundry detergents which comprise, as a soil release-capable polymer, a reaction product of a polyester with a prepolymer containing terminal isocyanate groups, obtained from a diisocyanate and a hydrophilic nonionic macrodiol.
The majority of the polymers known from this extensive prior art have the disadvantage that, in the case of textiles which do not consist or at least do not consist in the predominant portion of polyester, they only have insufficient, if any, effectiveness. However, a large part of modern textiles consists of cotton or cotton-polyester polyester mixed fabrics, so that there is a need for soil release-capable polymers having better activity in the case of greasy stains on such textiles.
(2) Description of Related Art including Information Disclosed under 37 C.F.R. §1.97 and 1.98.
Not Applicable
It has now been found that, surprisingly, the soil release action of nonionic cellulose derivatives can be improved when they are used in combination with carboxymethylcellulose.
The invention therefore provides for the use of a combination of soil release-capable cellulose derivative which is obtainable by alkylation and hydroxyalkylation of cellulose, and carboxymethylated cellulose for enhancing the cleaning performance of laundry detergents in the washing of textiles.
Not Applicable
When “cellulose derivative” is discussed hereinbelow, this always means the soil release-capable cellulose derivative which is obtainable by alkylation and hydroxyalkylation of cellulose. To distinguish carboxymethylcellulose (even though it is also a derivative of cellulose) from the former, the latter is always referred to using this term or using “carboxymethylated cellulose”.
The washing performance-enhancing effect of the combination, to be used in accordance with the invention of the soil release-capable cellulose derivative mentioned and carboxymethylated cellulose is particularly marked in the case of repeated use, i.e. in particular for the removal of stains from appropriate textiles which have already been washed and/or after-treated in the presence of the cellulose derivative, optionally in the simultaneous presence of the carboxymethylated cellulose, before they have been soiled. In connection with the after-treatment, it should be pointed out that the positive aspect indicated can also be realized when the textile, after the actual washing operation which in this case may also have been performed with the aid of a laundry detergent without said cellulose derivative, is contacted with an after-treatment composition, for example in a fabric softening step, which comprises a combination to be used in accordance with the invention. In this procedure too, the washing performance-enhancing effect of the combination to be used in accordance with the invention occurs in the next washing operation even when no laundry detergent comprising said cellulose derivative is again used.
Preferred soil release-capable cellulose derivatives are those which have been alkylated with C1 to C10 groups, in particular C1 to C3 groups, and additionally bear C2 to C10 hydroxyalkyl groups, in particular C2 to C3 hydroxyalkyl groups. These can be obtained in a known manner by reacting cellulose with appropriate alkylating agents, for example alkyl halides or alkyl sulfates, and subsequent reaction with appropriate alkylene oxides, for example ethylene oxide and/or propylene oxide. In a preferred embodiment of the invention, the cellulose derivative contains on average from 0.5 to 2.5, in particular from 1 to 2, alkyl groups, and from 0.02 to 0.5, in particular from 0.05 to 0.3, hydroxyalkyl group per anhydroglycose monomer unit. The mean molar mass of the cellulose derivatives used in accordance with the invention is preferably in the range from 10 000 D to 150 000 D, in particular from 40 000 D to 120 000 D and more preferably in the range from 80 000 D to 110 000 D. The determination of the degree of polymerization and of the molecular weight of the soil release-capable cellulose derivative is based on the determination of the limiting viscosity number on sufficiently dilute aqueous solutions by means of an Ubbelohde capillary viscometer (Oc capillary). Using a constant [H. Staudinger and F. Reinecke, “Über Molekulargewichtsbestimmung an Celluloseethern” [on molecular weight determination of cellulose ethers], Liebigs Annalen der Chemie 535, 47 (1938)] and a correction factor [F. Rodriguez and L. A. Goettler, “The flow of Moderately Concentrated Polymer Solutions in Water”, Transactions of the Society of Rheology VIII, 3 17 (1964)] it is possible to calculate therefrom the degree of polymerization and taking into account the degrees of substitution (DS and MS), the corresponding molecular weight. The same applies mutatis mutandis to carboxymethylcellulose which can be prepared in a known manner by reacting, for example, chloroacetic acid with cellulose. It preferably contains from 0.4 to 0.8, in particular from 0.5 to 0.7, carboxymethyl group per anhydroglycose monomer unit.
As stated, the cellulose derivatives used in accordance with the invention can be prepared in a simple manner and are both ecologically and toxicologically safe. In combination with the likewise readily obtainable and both ecologically and toxicologically safe carboxymethylcellulose, they lead to significantly better removal of especially grease and cosmetic stains on cotton or cotton-containing fabrics than is the case when compounds known to date for this purpose are used. Alternatively, significant amounts of surfactants can be saved for equal grease removal capability.
In the context of a washing process, the inventive use may be such that the cellulose derivative and carboxymethylcellulose are added separately to a laundry detergent-containing liquor, or the cellulose derivative and/or carboxymethylcellulose are introduced into the liquor as a constituent of the laundry detergent, particular preference being given to both a certain amount of the cellulose derivative and of the carboxymethylcellulose being a constituent of the laundry detergent. The invention therefore further provides a laundry detergent composition which comprises a soil release-capable cellulose derivative which is obtainable by alkylation and hydroxyalkylation of cellulose, and carboxymethylated cellulose in a weight ratio in the range from 1:1.6 to 1:5, in particular from 1:1.8 to 1:3. In the context of a laundry after-treatment process, the inventive use may accordingly be such that cellulose derivative and/or carboxymethylcellulose are added separately to the rinse liquor, or both or at least one of the two are introduced as a constituent of the laundry after-treatment composition, in particular a fabric softener.
Laundry detergents which comprise a combination to be used in accordance with the invention may comprise all customary other constituents of such compositions which do not interact in an undesired manner with the constituents of the combination essential to the invention. Preference is given to incorporating the cellulose derivative into laundry detergents in amounts of from 0.1% by weight to 5% by weight, in particular from 0.5% by weight to 2.5% by weight.
A further aspect of the invention relates to the enhancement of the cleaning performance of laundry detergents in the washing of textiles which consist of cotton or comprise cotton.
It has been found that, surprisingly, the combination used in accordance with the invention positively influences the action of certain other laundry detergent and cleaning composition ingredients and that, conversely, the action of the combination used in accordance with the invention is enhanced by certain other laundry detergent ingredients. These effects occur in particular in the case of active enzymatic ingredients, in particular proteases and lipases, in the case of water-insoluble inorganic builders, in the case of water-soluble inorganic and organic builders, in particular based on oxidized carbohydrates, in the case of peroxygen-based bleaches, in particular in the case of alkali metal percarbonates and in the case of synthetic sulfate- and sulfonate-type anionic surfactants, which is why preference is given to the use of at least one of the further ingredients mentioned together with the combination to be used in accordance with the invention.
In a preferred embodiment, such a composition comprises nonionic surfactant selected from fatty alkyl polyglycosides, fatty alkyl polyalcoxylates, in particular ethoxylates and/or propoxylates, fatty acid polyhydroxy amides and/or ethoxylation and/or propoxylation products or fatty alkyl amines, vicinal diols, fatty acid alkyl esters and/or fatty acid amides and mixtures thereof, in particular in an amount in the range from 2% by weight to 25% by weight.
A further embodiment of such compositions includes the presence of synthetic sulfate- and/or sulfonate-type anionic surfactant, in particular fatty alkyl sulfate, fatty alkyl ether sulfate, sulfo fatty acid esters and/or sulfo fatty acid disalts, in particular in an amount in the range from 2% by weight to 25% by weight. The anionic surfactant is preferably selected from the alkyl or alkenyl sulfates or the alkyl or alkenyl ether sulfates, in which the alkyl or alkenyl group has from 8 to 22, in particular from 12 to 18, carbon atoms.
The useful nonionic surfactants include the alkoxylates, in particular the ethoxylates and/or propoxylates, of saturated or mono- or polyunsaturated linear or branched-chain alcohols having from 10 to 22 carbon atoms, preferably from 12 to 18 carbon atoms. The degree of alkoxylation of the alcohols is generally between 1 and 20, preferably between 3 and 10. They can be prepared in a known manner by reacting the appropriate alcohols with the appropriate alkylene oxides. Especially suitable are the derivatives of fatty alcohols, although they are branched-chain isomers, in particular what are known as oxo alcohols, can also be used to prepare usable alkoxylates. Accordingly usable are the alkoxylates, in particular the ethoxylates, of primary alcohols with linear radicals, especially dodecyl, tetradecyl, hexadecyl or octadecyl radicals, and mixtures thereof. Also usable are corresponding alkoxylation products of alkylamines, vicinal diols and carboxamides which correspond to the alcohols mentioned with regard to the alkyl moiety. Also useful are the ethylene oxide and/or propylene oxide insertion products of fatty acid alkyl esters, as can be prepared by the process specified in the international patent application WO 90/13533, and also fatty acid polyhydroxy amides, as can be prepared by the processes of the U.S. Pat. No. 1,985,424, U.S. Pat. No. 2,016,962 and U.S. Pat. No. 2,703,798 and of the international patent application WO 92/06984. Alkylpolyglycosides which are suitable for incorporation into the inventive compositions are compounds of the general formula (G)n-OR12 in which R12 is an alkyl or alkenyl radical having from 8 to 22 carbon atoms, G is a glycose unit and n is from 1 to 10. Such compounds and their preparation are described, for example, in the European patent applications EP 92 355, EP 301 298, EP 357 969 and EP 362 671, or the U.S. Pat. No. 3,547,828. The glycoside component (G)n is oligo- or polymers composed of naturally occurring aldose or ketose monomers, which include in particular glucose, mannose, fructose, galactose, talose, gulose, altrose, allose, idose, ribose, arabinose, xylose and lyxose. The oligomers consisting of such glycosidically linked monomers are characterized, apart from by the type of sugars present therein, by the number thereof, known as the degree of oligomerization. The degree of oligomerization n, as a parameter to be determined analytically, generally assumes fractional numerical values; it is from 1 to 10, and below a value of 1.5 in the case of the glycosides used with preference, in particular between 1.2 and 1.4. Owing to the good availability, a preferred monomer unit is glucose. The alkyl or alkenyl moiety R12 of the glycosides preferably likewise stems from readily obtainable derivatives of renewable raw materials, in particular from fatty alcohols, although the branched-chain isomers, in particular oxo alcohols, can also be used to prepare usable glycosides. Accordingly usable are in particular the primary alcohols having linear octyl, decyl, dodecyl, tetradecyl, hexadecyl or octadecyl radicals and mixtures thereof. Particularly preferred alkylglycosides contain a coconut fatty alkyl radical, i.e. mixtures having substantially R12=dodecyl and R12=tetradecyl.
Nonionic surfactant is present in compositions which comprise a combination used in accordance with the invention preferably in amounts of from 1% by weight to 30% by weight, in particular from 1% by weight to 25% by weight, amounts in the upper part of this range being encountered mainly in liquid laundry detergents and particulate laundry detergents preferentially containing somewhat smaller amounts of up to 5% by weight.
Instead of this or in addition, the compositions may comprise further surfactants, preferably sulfate- or sulfonate-type synthetic anionic surfactants, for example alkylbenzenesulfonates, in amounts of preferably not more than 20% by weight, in particular from 0.1% by weight to 18% by weight, based in each case on overall composition. Synthetic anionic surfactants particularly suitable for use in such compositions are the alkyl and/or alkenyl sulfates having from 8 to 22 carbon atoms, which bear an alkali metal, ammonium or alkyl- or hydroxyalkyl-substituted ammonium ion as a countercation. Preference is given to the derivatives of fatty alcohols having in particular from 12 to 18 carbon atoms and their branched-chain analogs, known as the oxo alcohols. The alkyl and alkenyl sulfates can be prepared in a known manner by reaction of the corresponding alcohol component with a customary sulfation reagent, in particular sulfur trioxide or chlorosulfonic acid, and subsequent neutralization with alkali metal, ammonium or alkyl- or hydroxyalkyl-substituted ammonium bases. Such alkyl and/or alkenyl sulfates are present in the compositions which comprise an inventive urethane-based polymer preferably in amounts of from 0.1% by weight to 15% by weight, in particular from 0.5% by weight to 10% by weight.
The usable sulfate-type surfactants also include the sulfated alkoxylation products of the alcohols mentioned, known as ether sulfates. Such ether sulfates contain preferably from 2 to 30, in particular from 4 to 10, ethylene glycol groups per molecule. The suitable sulfonate-type anionic surfactants include the a-sulfo esters obtainable by reaction of fatty acid esters with sulfur trioxide and subsequent neutralization, in particular the sulfonation products derived from fatty acids having from 8 to 22 carbon atoms, preferably from 12 to 18 carbon atoms, and linear alcohols having from 1 to 6 carbon atoms, preferably from 1 to 4 carbon atoms, and also the sulfo fatty acids arising from these by hydrolysis in a formal sense.
Useful further optional surfactant ingredients include soaps, suitable soaps being saturated fatty acid soaps such as the salts of lauric acid, myristic acid, palmitic acid or stearic acid, and also soaps derived from natural fatty acid mixtures, for example coconut, palm kernel or tallow fatty acids. In particular, preference is given to soap mixtures which are composed of from 50% by weight to 100% by weight of saturated C12-C18 fatty acid soaps and up to 50% by weight of oleic acid soap. Soap is present preferably in amounts of from 0.1% by weight to 5% by weight. Especially in liquid compositions which comprise a polymer used in accordance with the invention, higher amounts of soap of generally up to 20% by weight may, however, also be present.
If desired, the compositions may also comprise betaines and/or cationic surfactants which, if present, are used preferably in amounts of from 0.5% by weight to 7% by weight. Among these, the ester quats discussed below are particularly preferred.
In a further embodiment, a composition which comprises a combination to be used in accordance with the invention comprises water-soluble and/or water-insoluble builders, in particularly selected from alkali metal aluminosilicate, crystalline alkali metal silicate having a modulus greater than 1, monomeric polycarboxylate, polymeric polycarboxylate and mixtures thereof, in particular in amounts in the range from 2.5% by weight to 60% by weight.
A composition which comprises a combination to be used in accordance with the invention contains preferably from 20% by weight to 55% by weight of water-soluble and/or water-insoluble, organic and/or inorganic builders. The water-soluble organic builder substances include in particular those from the class of the polycarboxylic acids, in particular citric acid and sugar acids, and of the polymeric (poly)carboxylic acids, in particular the polycarboxylates obtainable by oxidation of polysaccharides of the international patent application WO 93/161 10, polymeric acrylic acids, methacrylic acids, maleic acids and copolymers thereof, which may also contain small fractions of polymerizable substances without carboxylic acid functionality in copolymerized form. The relative molecular mass of the homopolymers of unsaturated carboxylic acids is generally between 5000 and 200 000, that of the copolymers between 2000 and 200 000, preferably from 50 000 to 120 000, based on the free acid. A particularly preferred acrylic acid-maleic acid copolymer has a relative molecular mass of from 50 000 to 100 000. Suitable, although less preferred, compounds of this class are copolymers of acrylic acid or methacrylic acid with vinyl ethers, such as vinyl methyl ether, vinyl esters, ethylene, propylene and styrene, in which the fraction of the acid is at least 50% by weight. The water-soluble organic builder substances used may also be terpolymers which contain, as monomers, two carboxylic acids and/or salts thereof and also, as a third monomer, vinyl alcohol and/or a vinyl alcohol derivative or a carbohydrate. The first acidic monomer or its salt derives from a monoethylenically unsaturated C3-C8-carboxylic acid and preferably from a C3-C4-monocarboxylic acid, in particular from (meth)acrylic acid. The second acidic monomer or its salt may be a derivative of a C4-C8-dicarboxylic acid, particular preference being given to maleic acid. The third monomeric unit is formed in this case by vinyl alcohol and/or preferably an esterified vinyl alcohol. Preference is given in particular to vinyl alcohol derivatives which constitute an ester of short-chain carboxylic acids, for example of C1-C4-carboxylic acids, with vinyl alcohols. Preferred terpolymers contain from 60% by weight to 95% by weight, in particular from 70% by weight to 90% by weight, of (meth)acrylic acid or (meth)acrylate, more preferably acrylic acid or acrylate, and maleic acid or maleate, and also from 5% by weight to 40% by weight, preferably from 10% by weight to 30% by weight, of vinyl alcohol and/or vinyl acetate. Very particular preference is given to terpolymers in which the weight ratio of (meth)acrylic acid or (meth)acrylate to maleic acid or maleate is between 1:1 and 4:1, preferably between 2:1 and 3:1 and in particular between 2:1 and 2.5:1. Both the amounts and the weight ratios are based on the acids. The second acidic monomer or its salt may also be a derivative of an allylsulfonic acid which is 2-substituted by an alkyl radical, preferably by a C1-C4-alkyl radical, or an aromatic radical which preferably derives from benzene or benzene derivatives. Preferred terpolymers contain from 40% by weight to 60% by weight, in particular from 45 to 55% by weight, of (meth)acrylic acid or (meth)acrylate, more preferably acrylic acid or acrylate, from 10% by weight to 30% by weight, preferably from 15% by weight to 25% by weight, of methallylsulfonic acid or methallylsulfonate, and, as a third monomer, from 15% by weight to 40% by weight, preferably from 20% by weight to 40% by weight, of a carbohydrate. This carbohydrate may be, for example, a mono-, di-, oligo- or polysaccharide, preference being given to mono-, di- or oligosaccharides, particular preference to sucrose. The use of the third monomer is presumed to incorporate intended breakage sites in the polymer, which are responsible for good biodegradability of the polymer. These terpolymers can be prepared in particular by processes which are described in the German patent DE 42 21 381 and the German patent application DE 43 00 772, and generally have a relative molecular mass between 1000 and 200 000, preferably between 200 and 50 000 and in particular between 3000 and 10 000. Especially for the preparation of liquid compositions, they may be used in the form of aqueous solutions, preferably in the form of 30 to 50 percent by weight aqueous solutions. All polycarboxylic acids mentioned are used generally in the form of their water-soluble salts, in particular their alkali metal salts.
Such organic builder substances are present preferably in amounts of up to 40% by weight, in particular up to 25% by weight and more preferably from 1% by weight to 5% by weight. Amounts close to the upper limit mentioned are used preferentially in pasty or liquid, in particular aqueous, compositions.
The water-insoluble, water-dispersible inorganic builder materials used are in particular crystalline or amorphous alkali metal aluminosilicates, in amounts of up to 50% by weight, preferably not more than 40% by weight, and in particular from 1% by weight to 5% by weight in liquid compositions. Among these, preference is given to the crystalline aluminosilicates in laundry detergent quality, in particular zeolite NaA and optionally NaX. Amounts close to the upper limit mentioned are used preferentially in solid, particulate compositions. Suitable aluminosilicates have in particular no particles having a particle size above 30 mm and consist preferably to an extent of at least 80% by weight of particles having a size below 10 mm. Their calcium binding capacity, which can be determined according to the specifications of the German patent DE 24 12 837, lies in the range from 100 to 200 mg of CaO per gram. Suitable substitutes or partial substitutes for the aluminosilicate mentioned are crystalline alkali metal silicates which may be present alone or in a mixture with amorphous silicates. The alkali metal silicates which can be used as builders in the compositions preferably have a molar ratio of alkali metal oxide to SiO2 of below 0.95, in particular from 1:1.1 to 1:12, and may be present in amorphous or crystalline form. Preferred alkali metal silicates are the sodium silicates, in particular the amorphous sodium silicates, having a molar Na2O:SiO2 ratio of from 1:2 to 1:2.8. Such amorphous alkali metal silicates are commercially available, for example, under the name Portil®. Those having a molar Na2O:SiO2 ratio of from 1:1.9 to 1:2.8 can be prepared by the process of the European patent application EP 0 425 427. In the preparation, they are added preferably as a solid and not in the form of a solution. The crystalline silicates used, which may be present alone or in a mixture with amorphous silicates, are preferably crystalline sheet silicates of the general formula Na2SixO2x+1.yH2O, in which x, known as the modulus, is from 1.9 to 4 and y is from 0 to 20, and preferred values of x are 2, 3 or 4. Crystalline sheet silicates which fall under this general formula are described, for example, in the European patent application EP 0 164 514. Preferred crystalline sheet silicates are those in which x in the general formula mentioned assumes the value of 2 or 3. Preference is given in particular to both 0- and 6-sodium disilicates (Na2Si2O5.yH2O), and β-sodium disilicate can be obtained, for example, by the process which is described in the international patent application WO 91/08171. δ-sodium silicates having a module between 1.9 and 3.2 can be prepared according to the Japanese patent applications JP 04/238 809 or JP 04/260 610. It is also possible to use virtually anhydrous crystalline alkali metal silicates which have been prepared from amorphous alkali metal silicates and are of the above-mentioned general formula in which x is from 1.9 to 2.1, preparable as described in the European patent applications EP 0 548 599, EP 0 502 325 and EP 0 425 428, in compositions which comprise a combination used in accordance with the invention. In a further preferred embodiment of the composition, a crystalline sodium sheet silicate having a module of from 2 to 3 is used, as can be prepared from sand and sodium carbonate by the process of the European patent application EP 0 436 835. Crystalline sodium silicates having a module in the range from 1.9 to 3.5, as are obtainable by the processes of the European patent EP 0 164 552 and/or of the European patent application EP 0 294 753, are used in a further preferred embodiment of laundry detergents or cleaning compositions which comprise a combination used in accordance with the invention. Their content of alkali metal silicates is preferably from 1% by weight to 50% by weight and in particular from 5% by weight to 35% by weight, based on anhydrous active substance. If alkali metal aluminosilicate, in particular zeolite, is present as an additional builder substance, the content of alkali metal silicate is preferably from 1% by weight to 15% by weight and in particular from 2% by weight to 8% by weight, based on anhydrous active substance. The weight ratio of aluminosilicate to silicate, based in each case on anhydrous active substances, is then preferably from 4:1 to 10:1. In compositions which comprise both amorphous and crystalline alkali metal silicates, the weight ratio of amorphous alkali metal silicate to crystalline alkali metal silicate is preferably from 1:2 to 2:1 and in particular from 1:1 to 2:1.
In addition to the inorganic builders mentioned, it is possible to use further water-soluble or water-insoluble inorganic substances in the compositions which comprise a combination to be used in accordance with the invention. Suitable in this context are the alkali metal carbonates, alkali metal hydrogencarbonates and alkali metal sulfates, and also mixtures thereof. Such additional inorganic material may be present in amounts of up to 70% by weight.
In addition, the compositions may comprise further constituents customary in laundry detergents and cleaning compositions. These optional constituents include in particular enzymes, enzyme stabilizers, bleaches, bleach activators, complexing agents for heavy metals, for example aminopolycarboxylic acids, aminohydroxypolycarboxylic acids, polyphosphonic acids and/or aminopolyphosphonic acids, dye fixing active ingredients, dye transfer inhibitors, for example polyvinylpyrrolidone or polyvinylpyridine N-oxide, foam inhibitors, for example organopolysiloxanes or paraffins, solvents, and optical brighteners, for example stilbenedisulfonic acid derivatives. Compositions which comprise a combination used in accordance with the invention preferably contain up to 1% by weight, in particular from 0.01% by weight to 0.5% by weight, of optical brighteners, in particular compounds from the class of the substituted 4,4′-bis(2,4,6-triamino-s-triazinyl)stilbene-2,2′-disulfonic acids, up to 5% by weight, in particular from 0.1% by weight to 2% by weight, of complexing agents for heavy metals, in particular aminoalkylenephosphonic acids and salts thereof, up to 3% by weight, in particular from 0.5% by weight to 2% by weight, of graying inhibitors, and up to 2% by weight, in particular from 0.1% by weight to 1% by weight, of foam inhibitors, the proportions by weight specified being based in each case on overall composition.
Solvents which are used in particular in liquid compositions are, in addition to water, preferably those which are water-miscible. These include the lower alcohols, for example ethanol, propanol, isopropanol and the isomeric butanols, glycerol, lower glycols, for example ethylene glycol and propylene glycol, and the ethers which can be derived from the compound classes mentioned. In such liquid compositions, the cellulose derivatives used in accordance with the invention are generally in dissolved or suspended form.
Optionally present enzymes are preferably selected from the group comprising protease, amylase, lipase, cellulase, hemicellulase, oxidase, peroxidase or mixtures thereof. The primary use for enzymes is protease obtained from microorganisms such as bacteria or fungi. It can be obtained from suitable microorganisms in a known manner by fermentation processes, which are described, for example, in the German laid-open specifications DE 19 40 488, DE 20 44 161, DE 21 01 803 and DE 21 21 397, the U.S. Pat. No. 3,623,957 and U.S. Pat. No. 4,264,738, the European patent EP 006 638 and the international patent application WO 91/02792. Proteases are commercially available, for example, under the names BLAP®, Savinase®, Esperase®, Maxatase®, Optimase®, Alcalase®, Durazym® or Maxapem®. The usable lipase can be obtained from Humicola lanuginosa, as described, for example, in the European patent applications EP 258 068, EP 305 216 and EP 341 947, from Bacillus species, as described, for example, in the international patent application WO 91/16422 or the European patent application EP 384 717, from Pseudomonas species, as described, for example, in the European patent applications EP 468 102, EP 385 401, EP 375 102, EP 334 462, EP 331 376, EP 330 641, EP 214 761, EP 218 272 or EP 204 284 or the international patent application WO 90/10695, from Fusarium species, as described, for example, in the European patent application EP 130 064, from Rhizopus species, as described, for example, in the European patent application EP 117 553 or from Aspergillus species, as described, for example, in the European patent application EP 167 309. Suitable lipases are commercially available, for example, under the names Lipolase®, Lipozym®, Lipomax®, Lipex®, Amano® lipase, Toyo-Jozo® lipase, Meito® lipase and Diosynth® lipase. Suitable amylases are commercially available, for example, under the names Maxamyl®D, Termamyl®, Duramyl® and Purafect® OxAm. The usable cellulase may be an enzyme obtainable from bacteria or fungi which has a pH optimum preferably in the weakly acidic to weakly alkaline range of from 6 to 9.5. Such cellulases are known, for example, from the German laid-open specifications DE 31 17 250, DE 32 07 825, DE 32 07 847, DE 33 22 950 or the European patent applications EP 265 832, EP 269 977, EP 270 974, EP 273 125 and EP 339 550, and the international patent applications WO 95/02675 and WO 97/14804, and are commercially available under the names Celluzyme®, Carezyme® and Ecostone®.
The customary enzyme stabilizers optionally present, especially in liquid compositions, include amino alcohols, for example mono-, di-, triethanol- and -propanolamine and mixtures thereof, lower carboxylic acids, as known, for example, from the European patent applications EP 376 705 and EP 378 261, boric acid or alkali metal borates, boric acid-carboxylic acid combinations, as known, for example, from the European patent application EP 451 921, boric esters, as known, for example, from the international patent application WO 93/11215 or the European patent application EP 511 456, boronic acid derivatives, as known, for example, from the European patent application EP 583 536, calcium salts, for example the calcium-formic acid combination known from the European patent EP 28 865, magnesium salts, as known, for example, from the European patent application EP 378 262 and/or sulfur-containing reducing agents, as known, for example, from the European patent applications EP 080 748 or EP 080 223.
The suitable foam inhibitors include long-chain soaps, in particular behenic soaps, fatty acid amides, paraffins, waxes, microcrystalline waxes, organopolysiloxanes and mixtures thereof, which may additionally comprise microfine, optionally silanized or otherwise hydrophobized silica. For use in particulate compositions, such foam inhibiters are preferably bound to granular, water-soluble carrier substances, as described, for example, in the German laid-open specification DE 34 36 194, the European patent applications EP 262 588, EP 301 414, EP 309 931 or the European patent EP 150 386.
A further embodiment of such a composition which comprises a cellulose derivative to be used in accordance with the invention comprises peroxygen-based bleaches, in particular in amounts in the range from 5% by weight to 70% by weight, and also optionally bleach activator, in particular in amounts in the range from 2% by weight to 10% by weight. These useful bleaches are the per compounds used generally in laundry detergents, such as hydrogen peroxide, perborate which may be present as the tetra- or monohydrate, percarbonate, perpyrophosphate and persilicate, which are generally present as alkali metal salts, in particular as sodium salts. Such bleaches are present in laundry detergents which comprise a cellulose derivative to be used in accordance with the invention preferably in amounts of up to 25% by weight, in particular up to 15% by weight and more preferably from 5% by weight to 15% by weight, based in each case on overall composition, percarbonate in particular being used. The optionally present component of the bleach activators comprises the customarily used N- or O-acyl compounds, for example polyacylated alkylenediamines, in particular tetraacetylethylenediamine, acylated glycolurils, in particular tetraacetylglycoluril, N-acylated hydantoins, hydrazides, triazoles, urazoles, diketopiperazines, sulfurylamides and cyanurates, and also carboxylic anhydrides, in particular phthalic anhydride, carboxylic esters, in particular sodium isononanoylphenolsulfonate, and acylated sugar derivatives, in particular pentaacetylglucose, and also cationic nitrile derivatives such as trimethylammonioacetonitrile salts. To prevent interaction with the per compounds in the course of storage, the bleach activators may have been coated in a known manner with coating substances or granulated, in which case particular preference is given to tetraacetylethylenediamine which has been granulated with the aid of carboxymethylcellulose and has average particle sizes of from 0.01 mm to 0.8 mm, as can be prepared, for example, by the process described in the European patent EP 37 026, granulated 1,5-diacetyl-2,4-dioxohexahydro-1,3,5-triazine, as can be prepared by the process described in the German patent DD 255 884, and/or trialkylammonioacetonitrile formulated in particulate form by the processes described in the international patent applications WO 00/50553, WO 00/50556, WO 02/12425, WO 02/12426 or WO 02/26927. Laundry detergents comprise such bleach activators preferably in amounts of up to 8% by weight, in particular from 2% by weight to 6% by weight, based in each case on overall composition.
It is also possible to use the combination mentioned additionally with a polyester-active soil release-capable polymer composed of a dicarboxylic acid and an optionally polymeric diol to enhance the cleaning performance of laundry detergents in the washing of textiles.
The soil release-capable polymers which are known to be polyester-active and can be used in addition to the cellulose derivative essential to the invention include copolyesters of dicarboxylic acids, for example adipic acid, phthalic acid or terephthalic acid, diols, for example ethylene glycol or propylene glycol, and polydiols, for example polyethylene glycol or polypropylene glycol. The soil release-capable polyesters used with preference include those compounds which are obtainable in a formal sense by esterification of two monomer units, the first monomer being a dicarboxylic acid HOOC—Ph—COOH and the second monomer a diol HO—(CHR11—)aOH which may also be present as a polymeric diol H—(O—(CHR11—)a)bOH. In this formula, Ph is an o-, m- or p-phenylene radical which may bear from 1 to 4 substituents selected from alkyl radicals having from 1 to 22 carbon atoms, sulfonic acid groups, carboxyl groups and mixtures thereof, R11 is hydrogen, an alkyl radical having from 1 to 22 carbon atoms and mixtures thereof, a is from 2 to 6 and b is from 1 to 300. In the polyesters obtainable therefrom, preferably both monomer diol units —O—(CHR11—)aO— and polymer diol units —(O—(CHR11—)a)bO— are present. The molar ratio of monomer diol units to polymer diol units is preferably from 100:1 to 1:100, in particular from 10:1 to 1:10. In the polymer diol units, the degree of polymerization b is preferably in the range from 4 to 200, in particular from 12 to 140. The molecular weight or the mean molecular weight or the maximum of the molecular weight distribution of preferred soil release-capable polyesters is in the range from 250 to 100 000, in particular from 500 to 50 000. The parent acid of the Ph radical is preferably selected from terephthalic acid, isophthalic acid, phthalic acid, trimellitic acid, mellitic acid, the isomers of sulfophthalic acid, sulfoisophthalic acid and sulfoterephthalic acid, and mixtures thereof. When the acid groups are not part of the ester bonds in the polymer, they are preferably present in salt form, in particular as the alkali metal or ammonium salt. Among these, particular preference is given to the sodium and potassium salts. If desired, instead of the monomer HOOC—Ph—COOH small fractions, in particular not more than 10 mol % based on the proportion of Ph as defined above, of other acids which have at least two carboxyl groups may be present in the soil release-capable polyester. These include, for example, alkylene- and alkenylenedicarboxylic acids such as malonic acid, succinic acid, fumaric acid, maleic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid and sebacic acid. The preferred diols HO—(CHR11—)aOH include those in which R11 is hydrogen and a is from 2 to 6, and those in which a is 2 and R11 is selected from hydrogen and the alkyl radicals having from 1 to 10, in particular from 1 to 3, carbon atoms. Among the latter diols, particular preference is given to those of the formula HO—CH2—CHR11—OH in which R11 is as defined above. The examples of diol components are ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,8-octanediol, 1,2-decanediol, 1,2-dodecanediol and neopentyl glycol. Among the polymeric diols, particular preference is given to polyethylene glycol having a mean molar mass in the range of from 1000 to 6000.
If desired, the polyesters having the composition as described above may also be end group-capped, in which case useful end groups are alkyl groups having from 1 to 22 carbon atoms and esters of monocarbocylic acids. The parent acids of the end groups bonded by means of ester bonds may be alkyl-, alkenyl- and arylmonocarboxylic acids having from 5 to 32 carbon atoms, in particular from 5 to 18 carbon atoms. These include valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, undecanoic acid, undecenoic acid, lauric acid, lauroleic acid, tridecanoic acid, myristic acid, myristoleic acid, pentadecanoic acid, palmitic acid, stearic acid, petroselic acid, petroselaidic acid, oleic acid, linoleic acid, linolaidic acid, linolenic acid, eleostearic acid, arachic acid, gadoleic acid, arachidonic acid, behenic acid, erucic acid, brassidic acid, clupanodonic acid, lignoceric acid, cerotic acid, melissic acid, benzoic acid which may bear from 1 to 5 substituents having a total of up to 25 carbon atoms, in particular from 1 to 12 carbon atoms, for example tert-butylbenzoic acid. The parent acids of the end groups may also be hydroxymonocarboxylic acids, having from 5 to 22 carbon atoms, which include, for example, hydroxyvaleric acid, hydroxycaproic acid, ricinoleic acid, their hydrogenation product hydroxystearic acid, and also o-, m- and p-hydroxybenzoic acid. The hydroxymonocarboxylic acids may in turn be joined together by means of their hydroxyl group and their carboxyl group and thus be present more than once in one end group. The number of hydroxymonocarboxylic acid units per end group, i.e. their degree of oligomerization, is preferably in the range from 1 to 50, in particular from 1 to 10. In a preferred embodiment of the invention, polymers composed of ethylene terephthalate and polyethylene oxide terephthalate in which the polyethylene glycol units have molar masses of from 750 to 5000 and the molar ratio of ethylene terephthalate to polyethylene oxide terephthalate is from 50:50 to 90:10 are used together with the combination essential to the invention.
The soil release-capable polymers are preferably water-soluble, the term “water-soluble” meaning a solubility of at least 0.01 g, preferably at least 0.1 g, of the polymer per liter of water at room temperature and pH 8. However, polymers used with preference have a solubility of at least 1 g per liter, in particular at least 10 g per liter, under these conditions.
Preferred laundry after-treatment compositions which may comprise a cellulose derivative to be used in accordance with the invention and/or may be used in the context of the inventive use have, as a laundry-softening active ingredient, an ester quat, i.e. a quaternized ester composed of carboxylic acid and amino alcohol. These are known substances which can be obtained by the relevant methods of preparative organic chemistry. In this context, reference is made to the international patent application WO 91/01295, by which triethanolamine is esterified partly with fatty acids in the presence of hypophosphorous acid, air is passed through and the mixture is subsequently quaternized with dimethyl sulfate or ethylene oxide. Moreover, the German patent DE 43 08 794 discloses a process for preparing solid ester quats in which the quaternization of triethanolamine esters is carried out in the presence of suitable dispersants, preferably fatty alcohols. Reviews on this theme have been published, for example, by R. Puchta et al. in Tens. Surf. Det., 30, 186 (1993), M. Brock in Tens. Surf. Det. 30, 394 (1993), R. Lagerman et al. in J. Am. Oil.Chem. Soc., 71, 97 (1994) and I. Shapiro in Cosm. Toil. 109, 77 (1994).
Ester quats preferred in the compositions are quaternized fatty acid triethanolamine ester salts which follow the formula (I)
in which R1CO is an acyl radical having from 6 to 22 carbon atoms, R2 and R3 are each independently hydrogen or R1CO, R4 is an alkyl radical having from 1 to 4 carbon atoms or a (CH2CH2O)qH group, m, n and p in total are 0 or from 1 to 12, q is from 1 to 12 and X is a charge-balancing anion such as halide, alkylsulfate or alkylphosphate. Typical examples of ester quats which may find use in the context of the invention are products based on caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, isostearic acid, stearic acid, oleic acid, elaidic acid, arachic acid, behenic acid and erucic acid, and their technical-grade mixtures, as are obtained, for example, in the pressure cleavage of natural fats and oils. Preference is given to using technical-grade C12/18 coconut fatty acids and in particular partly hydrogenated C16/18 tallow or palm fatty acids, and also elaidic acid-rich C16/18 fatty acid cuts. To prepare the quaternized esters, the fatty acids and the triethanolamine can be used generally in the molar ratio of from 1.1:1 to 3:1. With regard to the performance properties of the ester quats, a use ratio of from 1.2:1 to 2.2:1, preferably from 1.5:1 to 1.9:1, has been found to be particularly advantageous. The ester quats used with preference are technical-grade mixtures of mono-, di- and triesters having an average degree of esterification of from 1.5 to 1.9, and derive from technical-grades C16/18 tallow or palm fatty acid (iodine number from 0 to 40). Quaternized fatty acid triethanolamine ester salts of the formula (I) in which R1CO is an acyl radical having from 16 to 18 carbon atoms, R2 is R1CO, R3 is hydrogen, R4 is a methyl group, m, n and p are each 0 and X is methylsulfate have been found to be particularly advantageous.
In addition to the quaternized carboxylic acid triethanolamine ester salts, useful ester quats are also quaternized ester salts of carboxylic acids with diethanolalkylamines of the formula (II)
in which R1CO is an acyl radical having from 6 to 22 carbon atoms, R2 is hydrogen or R1CO, R4 and R5 are each independently alkyl radicals having from 1 to 4 carbon atoms, m and n in total are 0 or from 1 to 12, and X is a charge-balancing anion such as halide, alkylsulfate or alkylphosphate.
As a further group of suitable ester quats, mention should finally be made of the quaternized ester salts of carboxylic acids with 1,2-dihydroxypropyldialkylamines of the formula (III),
in which R1CO is an acyl radical having from 6 to 22 carbon atoms, R2 is hydrogen or R1CO, R4, R6 and R7 are each independently alkyl radicals having from 1 to 4 carbon atoms, m and n in total are 0 or from 1 to 12, and X is a charge-balancing anion such as halide, alkylsulfate or alkylphosphate.
With regard to the selection of the preferred fatty acids and of the optimal degree of esterification, the remarks made by way of example for (I) also apply mutatis mutandis to the ester quats of the formulae (II) and (Ill). Typically, the ester quats are commercially available in the form of 50 to 90 percent by weight alcoholic solutions which can also be diluted with water without any problem, and ethanol, propanol and isopropanol are the customary alcoholic solvents.
Ester quats are used preferably in amounts of from 5% by weight to 25% by weight, in particular from 8% by weight to 20% by weight, based in each case on overall laundry after-treatment composition. If desired, the laundry after-treatment compositions used in accordance with the invention may additionally comprise above-detailed laundry detergent ingredients, as long as they do not interact adversely with the ester quat in an unacceptable manner. They are preferably liquid, water-containing compositions.
In a preferred embodiment, a composition into which the combination to be used in accordance with the invention is incorporated is particulate and contains from 20% by weight to 55% by weight of inorganic builders, up to 10% by weight, in particular from 2% by weight to 8% by weight, of water-soluble organic builders, from 10% by weight to 25% by weight of synthetic anionic surfactant, from 1% by weight to 5% by weight of nonionic surfactant, up to 25% by weight, in particular from 5% by weight to 20% by weight, of bleach, in particular alkali metal percarbonate, up to 15% by weight, in particular from 1% by weight to 10% by weight, of bleach activator, and up to 25% by weight, in particular from 0.1% by weight to 25% by weight, of inorganic salts, in particular alkali metal carbonate and/or hydrogencarbonate.
In a further preferred embodiment, a composition into which the combination to be used in accordance with the invention is incorporated is liquid and contains from 10% by weight to 25% by weight, in particular from 12% by weight to 22.5% by weight, of nonionic surfactant, from 2% by weight to 10% by weight, in particular from 2.5% by weight to 8% by weight, of synthetic anionic surfactant, from 3% by weight to 15% by weight, in particular from 4.5% by weight to 12.5% by weight, of soap, from 0.5% by weight to 5% by weight, in particular from 1% by weight to 4% by weight, of organic builders, in particular polycarboxylate such as citrate, up to 1.5% by weight, in particular from 0.1% by weight to 1% by weight, of complexing agents for heavy metals, such as phosphonate, and optionally enzyme, enzyme stabiliser, dye and/or fragrance, and also water and/or water-miscible solvent. Solid compositions are preferably prepared in such a way that a particle which comprises soil release-capable cellulose derivative and carboxymethylcellulose is mixed with further laundry detergent ingredients present in solid form. To prepare the particle which comprises the soil release-capable cellulose derivative, preference is given to using a spray-drying step. Alternatively, it is also possible to use a compacting compounding step to prepare this particle and optionally also to prepare the finished composition.
Number | Date | Country | Kind |
---|---|---|---|
DE 103 05 306.9 | Feb 2003 | DE | national |
DE 103 51 321.3 | Oct 2003 | DE | national |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/EP04/00871 | Jan 2004 | US |
Child | 11200751 | Aug 2005 | US |