U.S. Non-provisional application Ser. No. 11/033,186 entitled ENHANCEMENT OF DEPTH PERCEPTION filed on Jan. 11, 2005.
Not Applicable
Not Applicable
The field of the invention pertains to systems, devices, and methods for enhancing the visual perception of a viewer in a two-dimensional image, which includes enhancement of the viewer's perception of depth and clarity in a two-dimensional image. This field of invention is distinct from that of Garcia, U.S. Pat. No. 5,510,832: synthesized stereoscopic imaging from two-dimensional images. Garcia adequately discusses the utility and merits of simulation of 3D video from two-dimensional video sources. The field of the present invention is also distinct from that of Ashbey, U.S. Pat. No. 5,541,642: stereoscopic imaging with interlaced video through a lenticular decoder screen. Ashbey also discusses derivation of stereoscopic effects from a “monoscopic” source by simultaneously displaying successive frames of a motion picture with lateral displacement through his system.
The use of the terms “two-dimensional”, “monoscopic”, and “monocular” have been used in the prior art to distinguish the viewing of single images from that which is “stereoscopic”—the quality of vision with which a human viewer with two normal eyes and the ability for stereopsis sees a scene in physical (three-dimensional) space with objects at varying distances from the viewer. However, some clarification of these terms is necessary: the term “two-dimensional” as an adjective for the term “image” does not mean that the image does not represent a three-dimensional scene, i.e. a scene with visual cues for depth related to objects and surfaces at varying distances within the perspective of the scene; the term “three-dimensional” or “3D” as applied to an image does not necessarily mean that it is stereoscopic, but may also mean that it is an image displayed on a two-dimensional surface, flat or curved, and/or which may be manipulated so that the objects represented therein are viewable at different angles, either by rotation of the object or the variation in the angle of view with an apparent change in position of the viewer; the term “monocular”, which literally means “having only one eye” or “with one eye” (in contrast with “binocular”, meaning with two eyes), sometimes used as a synonym for “two-dimensional”, is used to describe an image which appears to be displayed on a two-dimensional surface (as when a physical scene of objects at varying distance from the viewer is viewed with one eye), and is also used in the prior art terms “monocular cues” and “monocular depth cues” to describe certain aspects of a two-dimensional display of a three-dimensional scene which indicate the varying distances and angles of objects with reference to the view represented therein; the term “monoscopic” appears to be used in the prior art as a synonym for “monocular”, particularly in Ashbey, but is not defined as such in common usage.
The subject of “depth perception of images on a television screen” has been discussed in LeMay, U.S. Pat. No. 5,488,510, but not the subject of depth perception in other types of two-dimensional images, such as posters, paintings, signs, still photographs, cinema, etc. LeMay uses a window screen type mesh in a device to be worn by a viewer through which a two-dimensional television image is viewed, and creates, according to its inventor, an “illusion”. Unlike LeMay, the present invention, in its preferred embodiments, does not require any type of eye wear or worn device, and provides a natural stereo vision experience in the viewing of two-dimensional images of all kinds, including photographs, posters, drawings and paintings, signs, television and motion pictures, and projected images in general. Also, unlike LeMay, the present invention does not rely upon an “illusion”, but enhances the viewer's perception of depth in the monocular depth cues and perception of clarity in a two-dimensional image.
The present invention should be distinguished from stereographic devices and methods providing stereoscopic vision which require simultaneous or alternated display of two images, still or motion picture, each image being of one of two monocular views, actual or stimulated, of a binocular view of a scene, which must be viewed with special viewing glasses or display lens; whereas the present invention involves the display of only one image, still or motion picture, of a single monocular view of the scene. It is to be noted that the stereo vision provided by the prior art is artificial in appearance as discussed in Garcia. Stereographic devices have been well known for many years, while the principle underlying the present invention, although not yet completely understood, is newly presented in this application.
The present invention should also be distinguished from the well-known effect that is observed with monocular viewing of a two-dimensional image with monocular depth cues against a featureless or flat background without such cues. The same effect can also be observed by monocular viewing of a two-dimensional image at the end of an enclosed space. With such a viewing the monocular depth cues in the two-dimensional image become pronounced, albeit seen with only one eye. Such monocular viewing, however, not only involves the discomfort of viewing with only one eye, but more importantly deprives the viewer of the accommodation reflex which occurs with binocular vision that gives the viewer the ability to accurately focus on the two-dimensional image. The result is that although, with such monocular viewing, the monocular depth cues in the two-dimensional image have an effect greater than if viewed binocularly, the two-dimensional image cannot be seen with the same degree of focus as if seen binocularly. The present invention operates very differently: the viewer's depth perception and perception of clarity in a two-dimensional image is enhanced by inducing a retinal disparity in the viewer that results in a fusion experience. With the present invention the two-dimensional image can be seen binocularly with the accurate focus of the accommodation reflex. Such accurate focus in turn heightens the fusion experience, and thus the enhancement of depth perception and perception of clarity afforded by the present invention.
The classification that applies to this aspect of the invention is generally in U.S. Class 359, “OPTICAL: SYSTEMS AND ELEMENTS”, but the only subclass titles that provide a verbal similarity are 462, “STEROSCOPIC”, and 478, “RELIEF ILLUSION”, the descriptions of neither being applicable to the theory of operability of the present invention.
As previously indicated, the present invention provides enhanced perception of clarity for the viewer in a two-dimensional image. This effect became known during the testing of the depth perception enhancement effect from the assertions of many viewer-subjects that the two-dimensional images they viewed with the invention were “clearer” than without the system. Such an effect appears to have a basis in the notions of eye dominance and binocular retinal rivalry.
The enhancement of clarity of the present invention should be distinguished from eye wear, lens systems, and surgical procedures for gaining improved focus of images on the retina, which are all well-known. Distinction should also be made between the present invention and eye exercise systems, discussed extensively in Liberman, U.S. Pat. No. 6,742,892 (along with an informative tract on eye anatomy, function and optics), which are primarily concerned with the improvement of eye tracking, convergence and accommodation. It is presumed that U.S. Class 359, “OPTICAL: SYSTEMS AND ELEMENTS” may apply to this aspect of the invention as well. U.S. Class 351, “OPTICAL: EYE EXAMINING, VISION TESTING AND CORRECTION” may also apply.
The present invention provides enhancement of a viewer's visual perception in a single two-dimensional image, which includes enhancement of the depth perception of a viewer in various types of two-dimensional images that include monocular cues for depth, and thereby the experience of stereo vision in the viewing by such enhancement of the viewer's perception of those monocular depth cues. Such an enhancement is effected by the present invention with the induction of a slight but sufficient retinal disparity in the viewer's view of the two-dimensional image. Such a retinal disparity is experienced by a viewer with a normal capacity for stereopsis as the fusion of retinally disparate images which include the two-dimensional image, the “enhancement effect” of the present invention. That is, the present invention so enhances the viewer's perception of the monocular depth cues in a single two-dimensional image as to cause the viewer to experience the fusion of stereo vision. Also included in the invention is the enhancement of the “clarity” with which the viewer perceives a two-dimensional image, that is, the increase in resolution of the two-dimensional image as perceived by the viewer.
The present invention comprises the creation for the viewer of what is referred to herein as an enhanced scene which includes a single two-dimensional image. There are several ways in which such an enhanced scene may be created by the invention, examples of which are: 1) the placement in front of the two-dimensional image of a visually identifiable object; 2) the horizontal movement of the two-dimensional image on the surface upon which the two-dimensional image is displayed; and 3) the display and horizontal movement of a visually identifiable object, or an image of such, on or at the surface upon which the two-dimensional image is displayed. All of these ways may be effected mechanically, electronically, optically, or by computer programming, or by a combination of such means. The currently preferred way to create an enhanced scene is the first way stated above.
The creation of the enhanced scene within which the two-dimensional image is presented for viewing causes a retinal disparity in the viewer of the two-dimensional image. In the case of the preferred way, the retinal disparity is induced spatially, by reason of the viewer's binocular viewing of the enhanced scene, and is slight but sufficient to cause the viewer to experience the enhancement effect. In the other ways of creation of the enhanced scene, the retinal disparity is temporally induced, i.e. by the enhanced scene changing in time. The currently preferred visually identifiable object is a frame which surrounds the viewer's area of interest in the two-dimensional image. Such a frame may have other features, such as illumination, shape, and color, that can add to the enhancement effect by combination and/or control with reference to the qualities of the two-dimensional image and the viewer's vision.
The present invention comprises the creation for the viewer of what is referred to herein as an enhanced scene which includes a two-dimensional image. There are several ways in which such an enhanced scene may be created by the invention, examples of which are: 1) the placement in front of the two-dimensional image and of a visually identifiable object; 2) the horizontal movement of the two-dimensional image on the surface upon which the two-dimensional image is displayed; and 3) the display and horizontal movement of a visually identifiable object, or an image of such, on or at the surface upon which the two-dimensional image is displayed. All of these ways may be effected mechanically, electronically, optically, or by computer programming, or by a combination of such means. The currently preferred way to create an enhanced scene is the first way stated above.
The creation of the enhanced scene within which the two-dimensional image is presented for viewing causes a retinal disparity in the viewer of the two-dimensional image. In the case of the preferred way, the retinal disparity is induced spatially, by reason of the viewer's binocular viewing of the enhanced scene, and is slight but sufficient to cause the viewer to experience the enhancement effect. In the other ways of creation of the enhanced scene, the retinal disparity is temporally induced, i.e. by the enhanced scene changing in time. The currently preferred visually identifiable object is a frame which surrounds the viewer's area of interest in the two-dimensional image. Such a frame may have other features, such as illumination, shape, and color, that can add to the enhancement effect by combination and/or control with reference to the qualities of the two-dimensional image and the viewer's vision.
The system may include means for obscuring the edge of the two-dimensional image, where the edge of the two-dimensional image is sufficiently well defined to detract from the enhancement effect; and may also include a background mask for the enhanced scene to prevent the diminution of the enhancement effect by the visual environment in which the system is operating.
The present invention provides a system, device within a system, and method for enhancing a viewer's visual perception in a two-dimensional image, which enhances the depth perception of a viewer in various types of two-dimensional images that include monocular cues for depth, and enhances the “clarity” with which the viewer perceives a two-dimensional image. The term “clarity” is used herein to mean the resolution with which the two-dimensional image is perceived by the viewer, and not the focus of the two-dimensional image. The effect of these enhancements shall hereinafter be referred to as the “enhancement effect”. However, the enhancement effect being twofold, the aspects thereof shall be referred to as the “depth perception enhancement effect” and the “clarity enhancement effect” when the distinction is necessary. Otherwise, the term “enhancement effect” should be understood to mean either or both, depending on the context.
The present invention is described herein as a “device within a system”, rather than simply a “device”, because the device that is employed receives its identity and function according to an interactive relationship with the other elements of the system and/or the visual system of a viewer. The term visual system shall be taken to mean the human visual system, including the eyes and all of their internal structures, the optic nerves, all neural structures associated with all other functions of eye movement, protection, or control; and all neural structures by which data collected by the eyes is processed, recorded and interpreted, including the human brain, particularly the visual cortex.
As a foundation for understanding the invention and the nature of the enhancement effect, the following generally accepted definitions and principles related to the human visual system and visual perception may be considered:
With respect to depth perception enhancement, the present invention provides a viewer who has the capacity for stereopsis with the experience of stereo vision in the viewing of a single two-dimensional image, hereinafter referred to as the “2D image”, by enhancing the viewer's perception of depth in the monocular depth cues in the 2D image. That is, the depth perception enhancement effect of the present invention so enhances the viewer's perception of the monocular depth cues in a single two-dimensional image as to cause the viewer to experience the fusion of stereo vision with respect to the content of that 2D image. With respect to the clarity enhancement, the present invention provides a viewer who has the capacity for stereopsis with enhancement of the viewer's perception of clarity in viewing a 2D image, even without the presence of monocular depth cues therein. Such enhancements are effected by the present invention with the stimulation of a slight but sufficient retinal disparity on the Panum's fusional area of the viewer. A retinal disparity is experienced by a viewer with a normal capacity for stereopsis as the fusion of binocular views of the 2D image when viewed with the present invention. The theoretical foundation for the clarity enhancement effect also resides in the phenomena of eye dominance in humans, i.e., the dominant eye more strongly contributes to binocular vision than the other, and is said to be the eye that looks directly at an object; and the phenomena of binocular retinal rivalry, i.e., alternating perception of the two retinal images—indicating that the retinal image from only one eye at a time is being neurally recorded in the visual cortex. If it is the fusion of slightly disparate retinal images in the visual cortex that provides the experience of stereo vision, then a diminution of the strength of one of such images in the visual cortex must diminish the experience. Therefore, if one eye is more dominant, greater viewer attention to binocular vision, with consequently greater contribution by the non-dominant eye, may be required for a full perception of binocular cues. In ordinary viewing of a 2D image (without the use of the present invention) the viewer's attention in the 2D image is probably relaxed, because no significant retinal disparity results from the viewing of a 2D image directly, that is, along a line-of-sight which is substantially perpendicular to the 2D image. Such relaxation in attention appears to decrease the contribution that the retinal image from the non-dominant eye makes to the single cyclopean image (said to be the result of the fusion of the two retinal images in the visual cortex). However, greater attention in a two-dimensional image seems to occur with the use of the present invention and the consequent greater contribution to the cyclopean image by the non-dominant eye. This greater contribution by the retinal image of the non-dominant eye is a product of and carries with it the stimulus of the rods and cones of the non-dominant eye, thus increasing by as much as two-fold the number of stimulus points contributing to the cyclopean image with fusion of the retinally disparate images in the visual cortex. With such an increase in stimulus points being fused in the visual cortex, the resolution of the cyclopean image in the visual cortex is increased, and thus the increase in the “clarity” of the two-dimensional image experienced by the viewer, the clarity enhancement effect.
The system is here exemplified in various embodiments: mechanical (static and dynamic), electromechanical, electrical, electronic, optical, and by computer programming. All of the embodiments are designed to produce the enhancement effect for the viewer of a 2D image by a fusion experience resulting from the viewing of an “enhanced scene”, hereinafter referred to as such, that includes the 2D image and the device within the system, the viewing of which causes a retinal disparity in the viewer.
In the various embodiments of the invention such retinal disparity may be spatial and/or temporal: spatial retinal disparity resulting from creation of retinal images with different eye locations, as where an enhanced scene includes mechanical elements spatially arranged with the 2D image and is viewed binocularly (with separation of the viewer's eyes); temporal retinal disparity resulting from the creation of retinal images at different times, as when an enhanced scene changes over time with the motion of its elements and/or motion of the viewer's eye.
The present invention and its underlying principle may be understood with reference to the drawings of the fundamental embodiment, also referred to as Embodiment No. 1, which is the static mechanical embodiment shown in
In the various drawings it should be noted that the reference numerals for certain elements of the system are the same throughout the drawings where the function of such elements remains the same.
The 2D image 1 is referred to as such because it is substantially representable using coordinates of only two dimensions, regardless of the shape of the image surface 3, such as on an embossed surface, having a discernable texture, or the surface of a relief. The 2D image may be of any kind, including photographs, posters, drawings, paintings, signs, television and computer images; and all forms of front and rear projection images, film or electronic, both still and motion; however viewed, either directly or by other means; or whether generated or displayed mechanically, optically, or electronically. The term “2D image” as used in this disclosure may represent a three-dimensional scene, which is a scene with one or more monocular depth cues related to objects and/or surfaces at varying apparent distances from the viewer. A 2D image need not have any monocular depth cues in order for it to be viewed with the clarity enhancement effect; but in order to be viewed with the depth perception enhancement effect where not representing a three-dimensional scene, the 2D image must have at a minimum some monocular depth cue, even if only contrived for that purpose. The term “monocular”, which literally means “having only one eye” or “with one eye”, is not used in this disclosure as a synonym for “two-dimensional” as used in the term “2D image”, and is specifically excluded from the meaning of “2D image” as used in this disclosure. However, the common meaning of “monocular” is used in this disclosure to describe an image of a physical scene of objects at varying distance from the viewer when viewed with one eye (and thereby may appear to be displayed on a two-dimensional surface), as well as with reference to “monocular cues” or “monocular depth cues”.
The surface upon which a 2D image is presented shall be referred to as the “image surface” 3, which may be flat, faceted, horizontally and/or vertically curved, spherical, some other shape, or as previously discussed herein, and may be a surface which is not associated with a solid physical object, such as a sheet flow, spray of liquid, or cloud of vapor; or may be a surface defined by the 2D image in physical space not associated with any physical object at all.
For the purpose of this disclosure the term “horizontal”, as referred to in all its derivative forms as well (such as “horizontally” as used hereinabove), shall mean a direction substantially parallel to the orientation of the viewer's eyes, i.e. in the direction of the line joining the center of the viewer's eyes, even though not horizontal in relation to the earth's surface; or the direction of a component of the distance vector between two points in space (from the vector representation of location, wherein the distance vector of a location is resolved into two component distance vectors at right angles, the magnitude of the resolved vector being the magnitude of the hypotenuse of the right triangle formed by the resolved distance vector with its components), which is substantially parallel to the orientation of the viewer's eyes.
An object 6 upon which an image surface 3 may be displayed or otherwise exist shall hereinafter be referred to as the “image object” 6, and may be solid, liquid or gaseous.
Referring to the examples of the fundamental embodiment shown in
The invention is designed to be effective to enhance depth perception and/or clarity perception in a 2D image for a viewer who has two eyes and a relatively normal ocular and neural capacity for stereopsis. However, the intensity of the enhancement effect will vary with the level of such capacity in the viewer. In this respect the invention may also serve as an experimental probe for the phenomena of visual perception, both binocular and monocular.
The experience of stereo vision provided by the present invention is superior to the prior art in that the cyclopean images experienced with the present invention do not suffer from the defects described in the prior art, but are as natural as normal stereo vision to the viewer. The experience is natural because the experience is with the viewer's own eye separation and capacity for stereopsis.
A VIO may have any shape, and may also be made to be adjustable between flat, and horizontally and/or vertically curved. The placement of a VIO may be by any means, such as suspension in position or attachment to the image object 6, fixed or adjustable with respect to distance from and angle with the image surface 3.
In an enhanced scene a VIO is operably associated with the image surface by a spatial relationship with and proximity to the image surface in order to produce the enhancement effect. Such status of a VIO is also intended to mean herein that the VIO is not physically connected to or with the viewer, either by attachment to or being worn by the viewer.
Different types of VIO may be used effectively, depending on the application for the invention. For example, a VIO may be a vertically oriented rod or tube, placed to the side and in front of the image surface; or may be a group of medallions strung above and in front of the image surface. The VIO may be a grid between the viewer and the 2D image with wide enough spacing between visible grid elements to minimize interference with the viewing of the 2D image. However, because the VIO must be clearly present to the viewer as an integral part of the enhanced scene, the use of a grid as the VIO would probably interfere with the viewer's appreciation of the content of the 2D image as an entirety. Where the viewer's “area of attention” 5 in the 2D image 1 is less than the entire 2D image 1, a VIO 2 may be designed that is effective for that area of attention 5, such as a frame about the area of attention 5, which may partially obscure the rest of the image area, which shall hereinafter be referred to as a “VIO/frame” 2, examples of which are shown in
Where the viewer's appreciation of the entire image is practically or aesthetically necessary, the preferred VIO/frame 2 is one that completely or partially surrounds the entire 2D image 1, with an aperture 12 that does not severely crop the 2D image 1 to the viewer 9. Such a VIO/frame 2 may have an adjustable aperture 12 in order to compensate for the viewer's 9 viewing position relative to the 2D image 1, the viewer's 9 angle of view, the shape of the image surface 3, the size of the 2D image 1, and the distance of the viewer 9 from the 2D image 1. An adjustable aperture 12 may also be moved horizontally within the structure of a VIO/frame 2 for the purpose of intensification of the enhancement effect.
As indicated with respect to a VIO/frame which restricts the view of a viewer to a specific area of attention, the visibility to the viewer of well defined edges of a 2D image tends to announce the 2D image as flat in the space in front of the viewer, in contrast to other binocular cues within that viewing environment, and thus detracts from the enhancement effect. This tendency shall hereinafter be referred to as the “edge effect”. The edge effect can be diminished by the diminution of the visibility of the edge of a 2D image, which shall hereinafter be referred to as “edge obscuring”. A device employed to accomplish edge obscuring shall be referred to as an “edge obscuring” device.
A VIO/frame 2 may be a simple frame, as shown in
As indicated earlier, the VIO 2 may also be itself an edge obscuring device by obscuring the edges 4 of the 2D image 1 from the immediate view 8 of the viewer 9, as in the case of a VIO/frame 2 shown in
In the case of front- or rear-projected 2D images, film or electronic, an edge obscuring image, such as shown in
The image obscuring in the form shown in
Again referring to
As with the edge effect, detraction from the enhancement effect may also occur with the “background effect”: the spatial contrast between the enhanced depth perception in the viewing of a 2D image and the scene of objects in the region of physical space within focus behind or beside the 2D image. Such a spatial contrast also occurs when the relatively confined region of space behind the 2D image is not greatly out of focus and contains easily visible and distinguishable objects that are distributed therein. Large spaces behind the 2D image with objects distributed therein that are not easily focused upon when viewing the 2D image do not tend to provide the spatial contrast of the background effect. That tendency is similarly avoided when the 2D image is displayed against or a short distance in front of a relatively flat wall, or a background with random textures, regular patterns, or visually indiscernible objects. Indeed, a means for the defeat of the background effect is thus suggested, which shall be referred to as “background masking”: a mechanical or optical background for the enhanced scene to prevent the diminution of the enhancement effect by the visual environment in which the system is operating, which effects the conditions that avoid the spatial contrast of the visual environment with the enhanced scene.
The enhancement effect may be intensified and/or maintained by illumination of the VIO for the viewer from the front, back, or internally, or where the VIO is itself in whole or in part an illuminating device. Illumination of the VIO may also be derived from the light emitted or reflected by the 2D image, in the case of video display or projection, using light transmitting or reflecting panels. The illumination of the VIO may be of various colors and intensities, and/or may be polarized; and the color, intensity and/or polarization of the illumination may be variable over time. Such variation in the illumination may be programmably controlled with reference to the characteristics of the 2D image, such as brightness, coloration, resolution, shape, program material, monocular depth cues, etc.; and/or controlled with reference to the characteristics of the viewer's vision.
Intensification of the enhancement effect may be achieved with a graphic pattern 19 visually discernable by the viewer 9 being applied to a surface of the VIO 2 which faces the viewer 9, as shown in
Where the 2D image is not produced on an illuminating device, such as a television monitor, light box, or projection screen, the enhancement effect of the system and device may also be improved by illumination of the 2D image. Such illumination of the 2D image may be from sources attached to or independent of the VIO, and may be controlled in a manner similar to the illumination of the VIO.
All of the various attributes of the 2D image and the VIO may be combined and controlled to accommodate the position and vision characteristics for the viewer and to intensify and/or maintain the enhancement effect with respect to the various characteristics of the 2D image; and the entire range of such combination and control is included in the invention. Such control of the system may also be programmed to achieve specific effects in the 2D image, and/or associated with the generation of the 2D image, such as a broadcast signal, or on a recorded track, such as videotape, compact disc, digital video disk, digital video recorder, or on a motion picture film. Such programming may even be composed for presentation of the entire range of 2D images with which the system may be practiced, preexisting as well as contemporary with the composition.
The method for enhancement of visual perception of the present invention, which the system and device of the present invention are designed to practice, may include the creation for the viewer of an enhanced scene. The method may therefore involves the selection of the elements of the enhanced scene: the 2D image which is the subject of the enhanced scene; the surface upon which it is to be displayed, and the enhancer. For depth perception enhancement, it is necessary that the 2D image have monocular depth cues, but such monocular depth cues are not necessary for clarity enhancement. Among the monocular depth cues to be considered in the selection for depth perception enhancement of a 2D image as the subject of an enhanced scene are occlusion or interposition, aerial perspective, linear perspective, relative height, texture gradients, shading and light, relative size, relative motion, and familiar size. In addition to monocular depth cues, other characteristics of the 2D image may be considered in the analysis, such as the inherent clarity of the 2D image, the level of illumination depicted within the 2D image, the number of objects in the 2D image, the similarity of objects in the 2D image, the randomness or order of the objects in the 2D image, and the inherent resolution of the 2D image; and, in the case of moving 2D images, the steadiness of the 2D image, the rapidity of movement within the 2D image, the duration of the cuts (the period of uninterrupted action) in the 2D image, and the length of time that monocular depth cues exist uninterruptedly in the scenes of the 2D image. The method may also include the taking into consideration of the size of the 2D image, the distance of the viewer from the 2D image, and the angle from which the 2D image is being viewed. The 2D image is then presented on an image surface selected for the 2D image. One or more enhancers to be used with the 2D image as displayed (its type, size, etc.), and its mode of operation (coloration, illumination, motion, programming, etc.) may then be selected for the desired enhancement effect. If the enhancer is a VIO, it is preferred that it be operably associated with the image surface upon which the 2D image is displayed. The VIO together with the 2D image presents an enhanced scene to a viewer's visual system as an image on the retina of each eye of the viewer with a spatial retinal disparity. The other possible enhancers include a configuration of standard electronic, optical and/or mechanical components which moves said two-dimensional image horizontally with respect to a viewer's point of fixation on the image surface; and/or generates a horizontally moving two-dimensional image of a visually identifiable object at or on the image surface which is seen by the viewer with said 2D image. If one or more of the enhancers is a VIO, the visual system of the viewer of the 2D image is caused by the constitution of the enhanced scene to be subjected to a slight but sufficient spatial retinal disparity in the retinal images of the 2D image detected by the viewer's visual system: if one of the other enhancers is used, the viewer of the 2D image is caused to be subjected to a slight but sufficient temporal retinal disparity in the retinal images of the 2D image. The viewer is thus caused to experience a single fused cyclopean image, a single vision resulting from a fusion of the retinally disparate images, in which the viewer' perception of depth in any monocular depth cue in the 2D image may have is so enhanced as to be experienced as a form of stereo vision, and in which the viewer's perception of clarity is so enhanced as to be experienced as an increase in resolution of the 2D image.
The criteria for the analysis of the 2D image that is to be performed in conjunction with the method described above may be included in a rating system for 2D images the purpose of which is to inform the viewer and the parties involved with the presentation of the 2D image as to the level of qualification of the 2D image for the enhancement effect that may be expected with the present invention. Such a rating system may quantify the criteria used to rate the 2D image, and report the results thereof in a numerical, verbal, graphic, and/or summary form. The ratings thereby generated may also be used by the parties having a proprietary interest in the content of the 2D image to market same and to qualify for the use of the present invention.
With the understanding of Embodiment No. 1, the fundamental embodiment, the other following described basic embodiments will be seen to also employ the essential elements:
Embodiments 2 through 5 may be practiced with enhancers which are various configurations of standard components: devices which are well known for the purpose for which they are designed and fabricated. Such devices are comprised of standard signal processing circuitry that generates, combines, modifies, and extracts the signals for the 2D image and the accessory images of which Embodiments 2 through 5 are comprised. A configuration of standard components is a utilization of standard components by combination in a relationship and/or connection to achieve an operation to which each contributes according to its respective purpose. However, the operations performed by the configurations of standard components disclosed herein do not appear to be known in the prior art. Embodiment No. 6, however, is practiced with a computer program operating in a computer which itself generates and/or displays the 2D image which is enhanced by the operation of the computer program itself in the generation and/or display of the 2D image, such enhancement including the elements of horizontal movement of the 2D image and/or horizontal movement of a one or more 2D VIO images in the same way as in Embodiments Nos. 3 and 4.
Embodiment No. 2 is shown in
Embodiment No. 3 shown in
Embodiment No. 3 of the system for horizontal motion 20L, 20R of the 2D image 1 may be mechanical, as in the case of a film projector, front or rear, motion or still. Such motion may be accomplished by the mechanical movement of certain components of a film projector, such as the film gate, aperture plate, or the projector optics; or electromechanically, electronically controlled electrically driven mechanical motion, all of which may be regulated in the same manner as the electronic system previously described.
Embodiment No. 3 optionally lends itself to the use of viewing glasses of the type used with Embodiment No. 2. In this embodiment, however, the viewing glasses alternately shutter each eye as the 2D image 1 is horizontally moved 20L, 20R. The system of Embodiment No. 3 is designed to provide an adequate enhancement effect without the necessity for viewing glasses, but the use thereof is not excluded from use with the system.
As can be seen from
Embodiment No. 4 shown in
Embodiment No. 4 also includes the mechanical, electromechanical, or electronically controlled electrically driven mechanical horizontal motion of the 2D VIO image 21, and the regulation thereof, which may be implemented in a substantially similar manner as that described for Embodiment No. 3. The system for horizontal movement 22L, 22R of the 2D/frame image 21 may be mechanical, as in the case of a film projector, front or rear, motion or still. Such motion may be accomplished by the mechanical movement of certain components of a film projector, such as the film gate, aperture plate, or the projector optics; or electromechanically, electronically controlled electrically driven mechanical movement, all of which may be regulated in the same manner as the electronic system previously described.
Embodiment No. 4 also optionally lends itself to the use of viewing glasses of the type used with Embodiment No. 2. In this embodiment, however, the viewing glasses alternately shutter each eye as the 2D VIO/frame image 21 is horizontally moved 22L, 22R. The system of Embodiment No. 4 is designed to provide an adequate enhancement effect without the necessity for viewing glasses, but the use thereof is not excluded from use with the system.
Embodiment No. 4 may also be employed with edge obscuring images 18B, 18W (
Embodiment No. 5 (shown only in relation to the drawings for the other embodiments) involves a mechanical VIO, and may be practiced in a manner similar to Embodiment No. 4, but without the flexibility afforded by the use of an electronically generated 2D VIO/frame image 21 (
Embodiment No. 6 is implemented by and within a computer program operating in a computer that generates and/or displays 2D images, such as for animation, art, simulation, graphical representation, and from processing and/or presentation of analog and digitized images generally. The term computer program as used herein shall mean a complete operational computer program, or a component thereof, such as a program overlay, a coded algorithm, or a subroutine. The computer program performs by instructions to the computer for the operations carried out by the configurations of standard components in Embodiments Nos. 3 and 4. Embodiment No. 6 makes the movement of the 2D image and/or the movement of the 2D VIO images practiced by Embodiments Nos. 3 and 4 inherent in and/or included with and/or and adjunct to the 2D images generated or processed by the computer program in its primary function (such as a presentation, gaming, design, animation, artistic expression, word processing, and image processing). A computer program that generates or processes “still” 2D images (such as photographs, graphics and word processing) may include with the generated video frames information for one or more 2D VIO images and their horizontal movement, and/or information for the horizontal motion of the 2D image. Edge obscuring image information may also be incorporated with the information for the generated frames of the 2D image. A computer program that generates or processes a “moving” 2D image, i.e. motion presented by successive still frames (such as animation, cinematography, or television), may include with the generated video frames similar information as that for “still” images appropriate for the characteristics of the “moving” 2D image. The same control of the horizontal movement involved in Embodiments Nos. 3 and 4 may also be practiced with Embodiment No. 6, but controlled by the program and the inputs provided for thereby.
At various points during the course of this disclosure the suggestion has been made that the enhancement effect of the present invention has application to the study of vision, particularly in diagnostics and treatment. It has also been suggested that the principle upon which the present invention operates is newly presented here. In fact there are additional aspects to the enhancement effect of the present invention that plumb the depths of the currently unknown functions of the visual cortex and the operation of binocular retinal rivalry.
While the invention has been disclosed in connection with the example of certain embodiments, it will be understood that there is no intention to limit the invention to the particular embodiments shown. This disclosure is intended to cover the general application of the method and systems specifically disclosed and the various alternative and equivalent constructions included within the spirit and scope of the appended claims.
The present application claims the benefit of and priority from U.S. Provisional Application No. US60/685,737 entitled ENHANCEMENT OF DEPTH PERCEPTION filed on May 27, 2005.
Number | Name | Date | Kind |
---|---|---|---|
2679188 | Gould | May 1954 | A |
2943964 | Goldenberg | Jul 1960 | A |
3582961 | Shindo | Jun 1971 | A |
3701581 | Henkes, Jr. | Oct 1972 | A |
4517558 | Davids | May 1985 | A |
4633322 | Fourny | Dec 1986 | A |
4819085 | Liang | Apr 1989 | A |
5172266 | Garcia et al. | Dec 1992 | A |
5257130 | Monroe | Oct 1993 | A |
5291330 | Daniels | Mar 1994 | A |
5488510 | LeMay | Jan 1996 | A |
5510832 | Garcia | Apr 1996 | A |
5541642 | Ashbey | Jul 1996 | A |
5556184 | Nader-Esfahani | Sep 1996 | A |
5751927 | Wason | May 1998 | A |
5806218 | Shanks et al. | Sep 1998 | A |
5886771 | Osgood | Mar 1999 | A |
6414681 | Ohshima et al. | Jul 2002 | B1 |
6530662 | Haseltine et al. | Mar 2003 | B1 |
6536146 | Ericson | Mar 2003 | B1 |
6742892 | Liberman | Jun 2004 | B1 |
6929369 | Jones | Aug 2005 | B1 |
20050052617 | Fujikawa et al. | Mar 2005 | A1 |
20050206582 | Bell et al. | Sep 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
60685737 | May 2005 | US |