This invention relates to a polypeptide (BIG1) and variants thereof capable of enhancing the rate of cell-division of a microorganism or plant cell, as well as nucleic acid molecules encoding said polypeptides, vectors comprising said nucleic acid molecules and host cells transformed or transfected with said vectors and expressing said polypeptides. The BIG1 polypeptide which has been identified in the marine centric diatom Thalassiosira pseudonana, variants thereof and nucleic acids encoding these may be used in methods of enhancing the rate of cell-division of microorganisms, plant cells or plants which produce useful substances or exhibit useful properties, to increase the yield thereof.
Diatoms are a major group of algae and one of the most common types of phytoplankton. Most diatoms are unicellular, although they can exist as colonies in the shapes of filaments or ribbons. A characteristic feature of diatom cells is that they are encased within a unique cell wall made of silica called a frustule. Marine diatoms exhibit a “bloom and bust” life cycle whereby they can very rapidly replicate when conditions are favourable (called a bloom) and can quickly dominate phytoplankton communities. This opportunistic growth is the reason why they contribute to about 25% of global carbon fixation. The mechanism that enables translation of favourable environmental conditions into a bloom has been hitherto unknown.
The present inventors have now identified a conserved DNA-associated protein and its encoding gene from the diatom Thalassiosira pseudonana which is a major regulator responsible for bloom formation in marine centric diatoms. The new gene, which was found to have no significant homology to any genes in the NCB1 dataset or uniprot dataset, has been named “bloom inducer gene” or BIG1.
In diatoms, culture in conditions of silicate limitation leads to cell cycle arrest at two points between G1 and S phase (just before DNA synthesis) and G2, prior to mitosis and cell division. The inventors had observed that BIG1 is upregulated in conditions of silicate limitation and is also upregulated during S phase (DNA synthesis). Thus, it was to be expected that BIG1 played a role in the cell cycle of marine diatoms. Further work, as described herein, has shown that over-expression, using a modified T. pseudonana expression cassette (Poulsen et al. 2006, Journal of Phycology 42, 1059-1065) of BIG1 in Thalassiosira pseudonana caused a distinct phenotype, characterised by fast recovery and growth after a period of nitrogen starvation, which lead to out competition of a wild-type culture. Comparative whole-genome expression profiling of the transgenic strain and wild type under simulated bloom conditions revealed that BIG1 regulates various transcription factors, DNA-methyltransferases, and RNA processing proteins among unknown diatom specific proteins. Many of these proteins regulated by BIG1 could be identified in a natural bloom of centric diatoms, confirming their significance for bloom formation.
Further, the inventors have confirmed that polypeptides having a common structural motif with BIG1 in a core region can be found in other centric diatoms. As shown herein, amino acids 128 to 184 of BIG1 share very high amino acid identity with these polypeptides from other diatoms.
In the light of these observations, the BIG1 gene and variants encoding a polypeptide with the function of BIG1 may be used to transfect or transform microorganisms, including yeast and fungi as well as plant cells to induce a rapid increase in cell-division (bloom) therein. Such an increase in yield would be very advantageous in the case of cells or plants which produce useful products such as, for example, biofuels or long-chain polyunsaturated fatty acids, as well as for general production of biomass and/or for agricultural crops. The invention is further described herein.
In a first aspect the invention relates to a nucleic acid molecule encoding a polypeptide capable of enhancing the rate of cell-division of a microorganism or plant cell (activity of BIG1) wherein said polypeptide comprises an amino acid sequence having at least 50% amino acid sequence similarity with amino acids 128 to 184 of the amino acid sequence set forth in
Preferably, the nucleic acid molecule encodes a polypeptide having at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90% or at least 95% amino acid sequence similarity to the amino acids 128 to 184 of the sequence set forth in
In one embodiment the invention relates to a nucleic acid molecule wherein the encoded polypeptide comprises an amino acid sequence having at least 50% amino acid sequence identity to the amino acids 128 to 184 of the amino acid sequence set forth in
The percentage identity to amino acids 128 to 184 of
Preferably the nucleic acid molecule is one which encodes a polypeptide comprising the amino acid sequence set forth in
In a second aspect the invention relates to a nucleic acid molecule encoding a polypeptide capable of enhancing the rate of cell-division of a microorganism or a plant cell wherein said nucleic acid molecule comprises a nucleotide sequence having at least 50% sequence identity to nucleotides 381 to 552 of the nucleotide sequence of
Preferably, the nucleic acid molecule comprises a nucleic acid sequence having at least 50% identity to the nucleotide sequence of
The percentage identity of the nucleotide sequence to the nucleotides 381 to 552 of
In one embodiment of the invention the nucleic acid molecule comprises the sequence of nucleotides set forth in
In another embodiment the nucleic acid molecule which encodes a polypeptide capable of enhancing the rate of cell-division of a microorganism or plant cell is capable of hybridising under the medium conditions of stringency, preferably under conditions of high stringency to the complement of the nucleotide sequence set forth in
The nucleic acids of the invention may be DNA or RNA and may be epigenetically modified, for example by means of cytosine methylation. Further, the nucleic acid molecule may include modified nucleotides.
In a third aspect the invention relates to a nucleic acid molecule capable of acting as a nucleic acid probe or primer and which comprises a fragment of the nucleotide sequence set forth in
In yet a further aspect there are provided nucleic acid vectors, preferably expression vectors comprising any one of the nucleic acid molecules discussed above, as well as host cells transformed or transfected with said vectors. The vectors may be constructed in a manner well-known to those skilled in the art.
Suitable host cells in which to express the nucleic acids of the invention and thereby enhance its cell-division rate are yeast, other fungal cells, algal cells or plant cells. For example the host cell may be a diatom. Preferably, the host cell is a photosynthetic cell. The transformation or transfection of such cells may be carried out in a manner well-known to those skilled in the art.
The invention thus also relates to a specific (isolated) strain of algae belonging to the Thalassiosiraceae family and in particular the genus Thalassiosira, more specifically a strain of Thalassiosira pseudonana (Thalassiosira pseudonana-1335-BIG1). The strain was deposited with the Culture Collection of Algae and Protozoa under the accession number CCAP 1085/23 and accepted on 7 Feb. 2011.
Transgenic plants comprising the nucleic acids of the invention and having an enhanced growth rate are also embodiments of the invention, as are transgenic or mutant algal cultures showing enhanced algal bloom as a result of enhanced or over-expression of the said nucleic acids.
The invention also relates to a vector comprising the antisense of the nucleic acid molecule described above, or a fragment thereof, under the control of a promoter. In a preferred embodiment, the fragment is nucleotides 33 to 282 of the nucleic acid molecule described above. Furthermore, the invention relates to a vector comprising an inverted repeat of the nucleic acid molecule described above, or a fragment thereof, under the control of a promoter. In a preferred embodiment, the fragment is nucleotides 33 to 446 of the nucleic acid molecule described above.
In a fourth aspect the invention relates to a polypeptide capable of enhancing the rate of cell-division of a microorganism or plant cell (activity of BIG1) wherein said polypeptide comprises an amino acid sequence having at least 50% amino acid similarity to amino acids 128 to 184 of
Preferably the percent identity or percent similarity is at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90% or at least 95% amino acid sequence similarity or identity to amino acids 128 to 184 of
The polypeptides of the invention may be formed into compositions for application to microorganisms and plant cells such as those recited herein to enhance the rate of cell-division thereof, for example for inducing “bloom”.
Alternatively, a method for enhancing the rate of cell-division of a microorganism or plant cell may be achieved by transforming or transfecting said microorganism or plant cell with a nucleic acid of the invention such that the encoded polypeptide is expressed therein. Preferably, the transfected or transformed cell is a yeast, a fungal cell, an algal cell or a plant cell. Such transformation or transfection may be carried out in any manner well-known to one skilled in the art.
The method of the invention can be used on microorganisms including algae, on plant cells or on a plant which have other genetic modifications, such as for example, cells which produce, biofuels, long-chain polyunsaturated fatty acids or other useful substances or activities. By enhancing the rate of cell-division or bloom, a much higher yield of the substance may be achieved. Indeed, there are many known industrial applications of algae such as those listed in Table 1 or Table 2 for which application of the method of the invention would be beneficial.
In addition, the nucleic acids and polypeptides of the invention may be used to increase the yield of the cells themselves, for example, for producing biomass or to increase the yield of an agricultural crop.
Such conservative substitutions preferably are substitutions in which one amino acid within the groups (a)-(e) is substituted by another amino acid residue within the same group: (a) small aliphatic, nonpolar or slightly polar residues: Ala, Ser, Thr, Pro and Gly; (b) polar, negatively charged residues and their (uncharged) amides: Asp, Asn Glu and Gln; (c) polar, positively charged residues: His, Arg and Lys; (d) large aliphatic, nonpolar residues: Met, Leu He, Val and Cys; and (e) aromatic residues: Phe, Tyr and Trp.
The invention will now be demonstrated by virtue of the following non-limiting Figures and Examples.
To investigate the role this gene could potentially play in regulation networks/transcription T. pseudonana was transformed with a BIG1 nitrate reductase-inducible over expression vector, tagged with green fluorescent protein (GFP). When DNA was extracted GFP was found to be bound to the DNA in vitro. The GFP signal has been shown to correspond to the nucleus as localised by the double stranded DNA stain Hoechst 33342 in vivo (see
Growth experiments were carried out to obtain a phenotype for the over-expression of BIG1 in T. pseudonana. When mutants and wildtype (WT) are grown to limited states with a subsequent stationary phase (no growth) and then transferred into nutrient replete media the BIG1 over-expression cells are able to adjust to the nutrients and come out of a lag phase 24-48 hours before the WT cells. This phenotype was strongest when in a 100 uM nitrate concentration seawater with 7 days in stationary period then transferred to replete media (see
The competitive phenotype conferred by the over-expression of BIG1 was verified with a competition experiment (
BIG1 is not present in P.tricornutum or F. cylindrus. To determine whether it had evolved in other centric diatoms clone libraries of other centric diatoms from the core region in the BIG1 gene flanked by repeats were prepared. BIG1 has been identified in 7 centric species (see
The centric diatoms in which BIG1 homologues have been found come from different clades of centric diatoms (Damaste et al., 2004, Science 304 (584-587)
To analyse the effect of BIG1 on the whole gene expression of T. pseudonana, microarrays were carried out. The RNA samples used were at the point where BIG1 was more competitive in exponential phase (
The microarrays gave an insight to how BIG1 influences gene expression in T. pseudonana. There were 68 differentially upregulated genes and 36 downregulated genes in exponential growth, all p<0.05 with differential expression of more than log2 >1.0
Set forth below is a table focusing on the top 10 differentially up and down regulated genes in exponential growth in the BIG1 mutant (Table 3). Within the Top 10 only three have a known function, predicted by pfam/interpro p<10−5. All of these have a predicted function in cell signalling or transcription. It is interesting that in the top 10 there is one transcription factor and it is a myb transcription factor. This is relatively unexpected due to the expansion of the heat shock factors in T. pseudonana but not the Myb transcription factors (Montsant et al., 2007) (Plant Physiology, 10.1104/pp. 104.052829)). Within the top 10 there is also a calcium binding protein, likely regulating signalling. Also the presence of a cyclic nucleotide binding domain could represent signalling, since theses are recognised secondary messengers found in all kingdom of life (Beano & Brunton, 2002)(Nat Rev Mol Cell Biol. 2002 September; 3(9):710-8.).
Thus, in the downregulated dataset there is one gene potentially involved in down regulation of methylation. This dataset lead the inventors to carry out an analysis of the methylated state of the cells using an imprint methylation kit (Imprint® Methylated DNA Quantification, SigmaAldrich). BIG1 was found in exponentially growing cells to have a methylation of 15% of control DNA and WT was found to have 67% global methylation of the control DNA, control DNA was at 100%. The significance level was p=0.019 (N=3). The BIG1 over-expression mutant was found to be hypomethylated compared to the WT. This is extremely important as it indicates methylation patterns are important in growth of centric diatoms.
As growth regulators were identified in the dataset, a further analysis was carried out to identify whether any of the differentially regulated genes were present in pennate diatoms. This analysis included the stationary dataset of gene expression. The analysis found that the most downregulated gene, the methyltransferase, is in F. cylindrus. Furthermore, 73 of the 309 genes were found in F. cylindrus and 23 in P. tricornutum (9 of these share with each other).
Following the finding of some of the differentially regulated genes in pennate diatoms, it was investigated whether any of these genes were being expressed in the environment, and thus are globally important. Eukaryotic metatranscriptomes were utilised from different environments and examined using bioinformatics. The datasets analysed were from the Equatorial Pacific, an oligotrophic environment, Pudget Sound, a coastal nutrient rich centric diatom bloom and an Iron induced pennate diatom bloom at Station Papa, Pacific.
The number of normalised reads and transcripts from these datasets increased with nutrient availability, Equatorial Pacific, Pudget Sound and Station P (
Thus, although BIG1 is not present in pennate diatoms they could have evolved similar networks to T. pseudonana for rapid growth with a pulse of a limiting nutrient. Moreover analysis of genes differentially regulated in the two genomes of pennate diatoms P. tricornutum and F. Cylindrus indicates many shared genes, between the two species and the pennate diatom bloom. The pennate bloom was dominated by Pseudo-nitzschia granii which is evolutionarily closer to F. Cylindrus than P. tricornutum and hence they have more shared genes between them.
BIG1 has been cloned in E.coli. It was cloned into Rosetta using in Pet 21 (no HIS tags), and inducible expression has been confirmed (
To identify phenotypes of BIG1 cells compared to WildType post a silicate induced stationary phase cells were first grown in reduced silicate seawater to 80 μM, compared to normally being 105 μM and doubling all other nutrients (other than vitamins which were kept at 1× concentration). Once stationary phase was reached no nutrients were added and cells were held in stationary phase for 8 days. After 8 days cells were inoculated at 25,000 cells/mL into nutrient replete seawater and cells/mL and Fv/Fm were recorded daily (
For the first 72 hours in nutrient replete media both BIG1 and WildType cells grow exponentially. The specific growth rate of each type of cell is shown in table 4. BIG1 cells were found to be growing significantly faster using a paired T-Testp<0.01, n=3 over the first 72 hours.
BIG1 cells also had significantly higher final cell yields than WildType using a paired T-Testp<0.01, n=3.
BIG1 cells were also found to have a significantly better photosynthetic efficiency using a paired T-Testp<0.01, n=3 with Fv/Fm at 216 hours being recorded as 0.35 higher than WildType cells, Table 6.
To confirm the role of the BIG1 gene product, the gene was knocked down using RNA interference (RNAi). This was achieved using the same expression cassette as that used for construction of an over expression vector (Poulsen et al. 2006) in addition to a second cassette reported in the same work containing an FCP promotor for constitutive expression. Primers were designed to amplify bases 33-282 of the cDNA of BIG1 and introduce restriction sites to allow the fragment to be inserted into the cassette in the antisense direction. This resulted in a vector producing a strand of antisense RNA that interacts with the cellular BIG1 messenger RNA activating poorly understood silencing mechanisms within the cell. A second silencing strategy employed a primer pair to amplify a longer fragment (bases 33-446) of the BIG1 cDNA. These primers also introduced restriction enzyme sites, allowing both the fragments to be inserted into the cassette in an inverted repeat, the resulting double stranded RNA also activates gene silencing mechanisms. The vectors produced are shown in
Transformants were screened by Western blot targeting the BIG1 protein using a 1:1000 dilution of an antipeptide serum (shown in
The phenotype of a knockdown clone transformed with inverted repeat construct was assessed through a growth experiment comparing its growth with that of wildtype cells (
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB2012/050305 | 2/10/2012 | WO | 00 | 8/8/2013 |
Number | Date | Country | |
---|---|---|---|
61441692 | Feb 2011 | US |